summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/number_decimalquantity.h
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/i18n/number_decimalquantity.h')
-rw-r--r--intl/icu/source/i18n/number_decimalquantity.h559
1 files changed, 559 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/number_decimalquantity.h b/intl/icu/source/i18n/number_decimalquantity.h
new file mode 100644
index 0000000000..2211fe9c19
--- /dev/null
+++ b/intl/icu/source/i18n/number_decimalquantity.h
@@ -0,0 +1,559 @@
+// © 2017 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_FORMATTING
+#ifndef __NUMBER_DECIMALQUANTITY_H__
+#define __NUMBER_DECIMALQUANTITY_H__
+
+#include <cstdint>
+#include "unicode/umachine.h"
+#include "standardplural.h"
+#include "plurrule_impl.h"
+#include "number_types.h"
+
+U_NAMESPACE_BEGIN namespace number {
+namespace impl {
+
+// Forward-declare (maybe don't want number_utils.h included here):
+class DecNum;
+
+/**
+ * A class for representing a number to be processed by the decimal formatting pipeline. Includes
+ * methods for rounding, plural rules, and decimal digit extraction.
+ *
+ * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
+ * object holding state during a pass through the decimal formatting pipeline.
+ *
+ * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
+ *
+ * <p>Java has multiple implementations for testing, but C++ has only one implementation.
+ */
+class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
+ public:
+ /** Copy constructor. */
+ DecimalQuantity(const DecimalQuantity &other);
+
+ /** Move constructor. */
+ DecimalQuantity(DecimalQuantity &&src) noexcept;
+
+ DecimalQuantity();
+
+ ~DecimalQuantity() override;
+
+ /**
+ * Sets this instance to be equal to another instance.
+ *
+ * @param other The instance to copy from.
+ */
+ DecimalQuantity &operator=(const DecimalQuantity &other);
+
+ /** Move assignment */
+ DecimalQuantity &operator=(DecimalQuantity&& src) noexcept;
+
+ /**
+ * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
+ * This method does not perform rounding.
+ *
+ * @param minInt The minimum number of integer digits.
+ */
+ void setMinInteger(int32_t minInt);
+
+ /**
+ * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
+ * This method does not perform rounding.
+ *
+ * @param minFrac The minimum number of fraction digits.
+ */
+ void setMinFraction(int32_t minFrac);
+
+ /**
+ * Truncates digits from the upper magnitude of the number in order to satisfy the
+ * specified maximum number of integer digits.
+ *
+ * @param maxInt The maximum number of integer digits.
+ */
+ void applyMaxInteger(int32_t maxInt);
+
+ /**
+ * Rounds the number to a specified interval, such as 0.05.
+ *
+ * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
+ *
+ * @param increment The increment to which to round.
+ * @param magnitude The power of 10 to which to round.
+ * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
+ */
+ void roundToIncrement(
+ uint64_t increment,
+ digits_t magnitude,
+ RoundingMode roundingMode,
+ UErrorCode& status);
+
+ /** Removes all fraction digits. */
+ void truncate();
+
+ /**
+ * Rounds the number to the nearest multiple of 5 at the specified magnitude.
+ * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
+ *
+ * @param magnitude The magnitude at which the digit should become either 0 or 5.
+ * @param roundingMode Rounding strategy.
+ */
+ void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
+
+ /**
+ * Rounds the number to a specified magnitude (power of ten).
+ *
+ * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
+ * round to 2 decimal places.
+ * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
+ */
+ void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
+
+ /**
+ * Rounds the number to an infinite number of decimal points. This has no effect except for
+ * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
+ */
+ void roundToInfinity();
+
+ /**
+ * Multiply the internal value. Uses decNumber.
+ *
+ * @param multiplicand The value by which to multiply.
+ */
+ void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
+
+ /**
+ * Divide the internal value. Uses decNumber.
+ *
+ * @param multiplicand The value by which to multiply.
+ */
+ void divideBy(const DecNum& divisor, UErrorCode& status);
+
+ /** Flips the sign from positive to negative and back. */
+ void negate();
+
+ /**
+ * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
+ * this method with delta=-3 will change the value to "1.23456".
+ *
+ * @param delta The number of magnitudes of ten to change by.
+ * @return true if integer overflow occurred; false otherwise.
+ */
+ bool adjustMagnitude(int32_t delta);
+
+ /**
+ * Scales the number such that the least significant nonzero digit is at magnitude 0.
+ *
+ * @return The previous magnitude of the least significant digit.
+ */
+ int32_t adjustToZeroScale();
+
+ /**
+ * @return The power of ten corresponding to the most significant nonzero digit.
+ * The number must not be zero.
+ */
+ int32_t getMagnitude() const;
+
+ /**
+ * @return The value of the (suppressed) exponent after the number has been
+ * put into a notation with exponents (ex: compact, scientific). Ex: given
+ * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
+ */
+ int32_t getExponent() const;
+
+ /**
+ * Adjusts the value for the (suppressed) exponent stored when using
+ * notation with exponents (ex: compact, scientific).
+ *
+ * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
+ * order to allow flexibility for {@link StandardPlural} to be selected in
+ * formatting (ex: for compact notation) either with or without the exponent
+ * applied in the value of the number.
+ * @param delta
+ * The value to adjust the exponent by.
+ */
+ void adjustExponent(int32_t delta);
+
+ /**
+ * Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent.
+ */
+ void resetExponent();
+
+ /**
+ * @return Whether the value represented by this {@link DecimalQuantity} is
+ * zero, infinity, or NaN.
+ */
+ bool isZeroish() const;
+
+ /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
+ bool isNegative() const;
+
+ /** @return The appropriate value from the Signum enum. */
+ Signum signum() const;
+
+ /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
+ bool isInfinite() const override;
+
+ /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
+ bool isNaN() const override;
+
+ /**
+ * Note: this method incorporates the value of {@code exponent}
+ * (for cases such as compact notation) to return the proper long value
+ * represented by the result.
+ * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
+ */
+ int64_t toLong(bool truncateIfOverflow = false) const;
+
+ /**
+ * Note: this method incorporates the value of {@code exponent}
+ * (for cases such as compact notation) to return the proper long value
+ * represented by the result.
+ */
+ uint64_t toFractionLong(bool includeTrailingZeros) const;
+
+ /**
+ * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
+ * @param ignoreFraction if true, silently ignore digits after the decimal place.
+ */
+ bool fitsInLong(bool ignoreFraction = false) const;
+
+ /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
+ double toDouble() const;
+
+ /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
+ DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
+
+ DecimalQuantity &setToInt(int32_t n);
+
+ DecimalQuantity &setToLong(int64_t n);
+
+ DecimalQuantity &setToDouble(double n);
+
+ /**
+ * Produces a DecimalQuantity that was parsed from a string by the decNumber
+ * C Library.
+ *
+ * decNumber is similar to BigDecimal in Java, and supports parsing strings
+ * such as "123.456621E+40".
+ */
+ DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
+
+ /** Internal method if the caller already has a DecNum. */
+ DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
+
+ /** Returns a DecimalQuantity after parsing the input string. */
+ static DecimalQuantity fromExponentString(UnicodeString n, UErrorCode& status);
+
+ /**
+ * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
+ * by this DecimalQuantity.
+ *
+ * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
+ * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
+ *
+ * @param value The digit to append.
+ * @param leadingZeros The number of zeros to append before the digit. For example, if the value
+ * in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
+ * 12.304.
+ * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
+ * new digit. If false, append to the end like a fraction digit. If true, there must not be
+ * any fraction digits already in the number.
+ * @internal
+ * @deprecated This API is ICU internal only.
+ */
+ void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
+
+ double getPluralOperand(PluralOperand operand) const override;
+
+ bool hasIntegerValue() const override;
+
+ /**
+ * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
+ * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
+ *
+ * @param magnitude The magnitude of the digit.
+ * @return The digit at the specified magnitude.
+ */
+ int8_t getDigit(int32_t magnitude) const;
+
+ /**
+ * Gets the largest power of ten that needs to be displayed. The value returned by this function
+ * will be bounded between minInt and maxInt.
+ *
+ * @return The highest-magnitude digit to be displayed.
+ */
+ int32_t getUpperDisplayMagnitude() const;
+
+ /**
+ * Gets the smallest power of ten that needs to be displayed. The value returned by this function
+ * will be bounded between -minFrac and -maxFrac.
+ *
+ * @return The lowest-magnitude digit to be displayed.
+ */
+ int32_t getLowerDisplayMagnitude() const;
+
+ int32_t fractionCount() const;
+
+ int32_t fractionCountWithoutTrailingZeros() const;
+
+ void clear();
+
+ /** This method is for internal testing only. */
+ uint64_t getPositionFingerprint() const;
+
+// /**
+// * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
+// * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
+// * happens.
+// *
+// * @param fp The {@link UFieldPosition} to populate.
+// */
+// void populateUFieldPosition(FieldPosition fp);
+
+ /**
+ * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
+ *
+ * @return An error message if this instance is invalid, or null if this instance is healthy.
+ */
+ const char16_t* checkHealth() const;
+
+ UnicodeString toString() const;
+
+ /** Returns the string in standard exponential notation. */
+ UnicodeString toScientificString() const;
+
+ /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
+ UnicodeString toPlainString() const;
+
+ /** Returns the string using ASCII digits and using exponential notation for non-zero
+ exponents, following the UTS 35 specification for plural rule samples. */
+ UnicodeString toExponentString() const;
+
+ /** Visible for testing */
+ inline bool isUsingBytes() { return usingBytes; }
+
+ /** Visible for testing */
+ inline bool isExplicitExactDouble() { return explicitExactDouble; }
+
+ bool operator==(const DecimalQuantity& other) const;
+
+ inline bool operator!=(const DecimalQuantity& other) const {
+ return !(*this == other);
+ }
+
+ /**
+ * Bogus flag for when a DecimalQuantity is stored on the stack.
+ */
+ bool bogus = false;
+
+ private:
+ /**
+ * The power of ten corresponding to the least significant digit in the BCD. For example, if this
+ * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
+ *
+ * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
+ * digits after the decimal place, which is the negative of our definition of scale.
+ */
+ int32_t scale;
+
+ /**
+ * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
+ * maximum precision is 16 since a long can hold only 16 digits.
+ *
+ * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
+ * #computePrecisionAndCompact()}.
+ */
+ int32_t precision;
+
+ /**
+ * A bitmask of properties relating to the number represented by this object.
+ *
+ * @see #NEGATIVE_FLAG
+ * @see #INFINITY_FLAG
+ * @see #NAN_FLAG
+ */
+ int8_t flags;
+
+ // The following three fields relate to the double-to-ascii fast path algorithm.
+ // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
+ // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
+ // of rounding the number ensures that the converted digits are correct, falling back to a slow-
+ // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it
+ // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
+ // you don't round, assertions will fail in certain other methods if you try calling them.
+
+ /**
+ * Whether the value in the BCD comes from the double fast path without having been rounded to
+ * ensure correctness
+ */
+ UBool isApproximate;
+
+ /**
+ * The original number provided by the user and which is represented in BCD. Used when we need to
+ * re-compute the BCD for an exact double representation.
+ */
+ double origDouble;
+
+ /**
+ * The change in magnitude relative to the original double. Used when we need to re-compute the
+ * BCD for an exact double representation.
+ */
+ int32_t origDelta;
+
+ // Positions to keep track of leading and trailing zeros.
+ // lReqPos is the magnitude of the first required leading zero.
+ // rReqPos is the magnitude of the last required trailing zero.
+ int32_t lReqPos = 0;
+ int32_t rReqPos = 0;
+
+ // The value of the (suppressed) exponent after the number has been put into
+ // a notation with exponents (ex: compact, scientific).
+ int32_t exponent = 0;
+
+ /**
+ * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
+ * to one digit. For example, the number "12345" in BCD is "0x12345".
+ *
+ * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
+ * like setting the digit to zero.
+ */
+ union {
+ struct {
+ int8_t *ptr;
+ int32_t len;
+ } bcdBytes;
+ uint64_t bcdLong;
+ } fBCD;
+
+ bool usingBytes = false;
+
+ /**
+ * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
+ * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
+ * Used for testing.
+ */
+ bool explicitExactDouble = false;
+
+ void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
+
+ /**
+ * Returns a single digit from the BCD list. No internal state is changed by calling this method.
+ *
+ * @param position The position of the digit to pop, counted in BCD units from the least
+ * significant digit. If outside the range supported by the implementation, zero is returned.
+ * @return The digit at the specified location.
+ */
+ int8_t getDigitPos(int32_t position) const;
+
+ /**
+ * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
+ * responsibility to call {@link #compact} after setting the digit, and to ensure
+ * that the precision field is updated to reflect the correct number of digits if a
+ * nonzero digit is added to the decimal.
+ *
+ * @param position The position of the digit to pop, counted in BCD units from the least
+ * significant digit. If outside the range supported by the implementation, an AssertionError
+ * is thrown.
+ * @param value The digit to set at the specified location.
+ */
+ void setDigitPos(int32_t position, int8_t value);
+
+ /**
+ * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
+ * the caller's responsibility to do further manipulation and then call {@link #compact}.
+ *
+ * @param numDigits The number of zeros to add.
+ */
+ void shiftLeft(int32_t numDigits);
+
+ /**
+ * Directly removes digits from the end of the BCD list.
+ * Updates the scale and precision.
+ *
+ * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
+ */
+ void shiftRight(int32_t numDigits);
+
+ /**
+ * Directly removes digits from the front of the BCD list.
+ * Updates precision.
+ *
+ * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
+ */
+ void popFromLeft(int32_t numDigits);
+
+ /**
+ * Sets the internal representation to zero. Clears any values stored in scale, precision,
+ * hasDouble, origDouble, origDelta, exponent, and BCD data.
+ */
+ void setBcdToZero();
+
+ /**
+ * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
+ * be either positive. The internal state is guaranteed to be empty when this method is called.
+ *
+ * @param n The value to consume.
+ */
+ void readIntToBcd(int32_t n);
+
+ /**
+ * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
+ * be either positive. The internal state is guaranteed to be empty when this method is called.
+ *
+ * @param n The value to consume.
+ */
+ void readLongToBcd(int64_t n);
+
+ void readDecNumberToBcd(const DecNum& dn);
+
+ void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
+
+ void copyFieldsFrom(const DecimalQuantity& other);
+
+ void copyBcdFrom(const DecimalQuantity &other);
+
+ void moveBcdFrom(DecimalQuantity& src);
+
+ /**
+ * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
+ * precision. The precision is the number of digits in the number up through the greatest nonzero
+ * digit.
+ *
+ * <p>This method must always be called when bcd changes in order for assumptions to be correct in
+ * methods like {@link #fractionCount()}.
+ */
+ void compact();
+
+ void _setToInt(int32_t n);
+
+ void _setToLong(int64_t n);
+
+ void _setToDoubleFast(double n);
+
+ void _setToDecNum(const DecNum& dn, UErrorCode& status);
+
+ static int32_t getVisibleFractionCount(UnicodeString value);
+
+ void convertToAccurateDouble();
+
+ /** Ensure that a byte array of at least 40 digits is allocated. */
+ void ensureCapacity();
+
+ void ensureCapacity(int32_t capacity);
+
+ /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
+ void switchStorage();
+};
+
+} // namespace impl
+} // namespace number
+U_NAMESPACE_END
+
+
+#endif //__NUMBER_DECIMALQUANTITY_H__
+
+#endif /* #if !UCONFIG_NO_FORMATTING */