diff options
Diffstat (limited to 'media/libsoundtouch/src/sse_optimized.cpp')
-rw-r--r-- | media/libsoundtouch/src/sse_optimized.cpp | 365 |
1 files changed, 365 insertions, 0 deletions
diff --git a/media/libsoundtouch/src/sse_optimized.cpp b/media/libsoundtouch/src/sse_optimized.cpp new file mode 100644 index 0000000000..9c16ea8f89 --- /dev/null +++ b/media/libsoundtouch/src/sse_optimized.cpp @@ -0,0 +1,365 @@ +//////////////////////////////////////////////////////////////////////////////// +/// +/// SSE optimized routines for Pentium-III, Athlon-XP and later CPUs. All SSE +/// optimized functions have been gathered into this single source +/// code file, regardless to their class or original source code file, in order +/// to ease porting the library to other compiler and processor platforms. +/// +/// The SSE-optimizations are programmed using SSE compiler intrinsics that +/// are supported both by Microsoft Visual C++ and GCC compilers, so this file +/// should compile with both toolsets. +/// +/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++ +/// 6.0 processor pack" update to support SSE instruction set. The update is +/// available for download at Microsoft Developers Network, see here: +/// http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx +/// +/// If the above URL is expired or removed, go to "http://msdn.microsoft.com" and +/// perform a search with keywords "processor pack". +/// +/// Author : Copyright (c) Olli Parviainen +/// Author e-mail : oparviai 'at' iki.fi +/// SoundTouch WWW: http://www.surina.net/soundtouch +/// +//////////////////////////////////////////////////////////////////////////////// +// +// License : +// +// SoundTouch audio processing library +// Copyright (c) Olli Parviainen +// +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +// Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License along with this library; if not, write to the Free Software +// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +// +//////////////////////////////////////////////////////////////////////////////// + +#include "cpu_detect.h" +#include "STTypes.h" + +using namespace soundtouch; + +#ifdef SOUNDTOUCH_ALLOW_SSE + +// SSE routines available only with float sample type + +////////////////////////////////////////////////////////////////////////////// +// +// implementation of SSE optimized functions of class 'TDStretchSSE' +// +////////////////////////////////////////////////////////////////////////////// + +#include "TDStretch.h" +#include <xmmintrin.h> +#include <math.h> + +// Calculates cross correlation of two buffers +double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &anorm) +{ + int i; + const float *pVec1; + const __m128 *pVec2; + __m128 vSum, vNorm; + + // Note. It means a major slow-down if the routine needs to tolerate + // unaligned __m128 memory accesses. It's way faster if we can skip + // unaligned slots and use _mm_load_ps instruction instead of _mm_loadu_ps. + // This can mean up to ~ 10-fold difference (incl. part of which is + // due to skipping every second round for stereo sound though). + // + // Compile-time define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION is provided + // for choosing if this little cheating is allowed. + +#ifdef ST_SIMD_AVOID_UNALIGNED + // Little cheating allowed, return valid correlation only for + // aligned locations, meaning every second round for stereo sound. + + #define _MM_LOAD _mm_load_ps + + if (((ulongptr)pV1) & 15) return -1e50; // skip unaligned locations + +#else + // No cheating allowed, use unaligned load & take the resulting + // performance hit. + #define _MM_LOAD _mm_loadu_ps +#endif + + // ensure overlapLength is divisible by 8 + assert((overlapLength % 8) == 0); + + // Calculates the cross-correlation value between 'pV1' and 'pV2' vectors + // Note: pV2 _must_ be aligned to 16-bit boundary, pV1 need not. + pVec1 = (const float*)pV1; + pVec2 = (const __m128*)pV2; + vSum = vNorm = _mm_setzero_ps(); + + // Unroll the loop by factor of 4 * 4 operations. Use same routine for + // stereo & mono, for mono it just means twice the amount of unrolling. + for (i = 0; i < channels * overlapLength / 16; i ++) + { + __m128 vTemp; + // vSum += pV1[0..3] * pV2[0..3] + vTemp = _MM_LOAD(pVec1); + vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp ,pVec2[0])); + vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp)); + + // vSum += pV1[4..7] * pV2[4..7] + vTemp = _MM_LOAD(pVec1 + 4); + vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp, pVec2[1])); + vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp)); + + // vSum += pV1[8..11] * pV2[8..11] + vTemp = _MM_LOAD(pVec1 + 8); + vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp, pVec2[2])); + vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp)); + + // vSum += pV1[12..15] * pV2[12..15] + vTemp = _MM_LOAD(pVec1 + 12); + vSum = _mm_add_ps(vSum, _mm_mul_ps(vTemp, pVec2[3])); + vNorm = _mm_add_ps(vNorm, _mm_mul_ps(vTemp ,vTemp)); + + pVec1 += 16; + pVec2 += 4; + } + + // return value = vSum[0] + vSum[1] + vSum[2] + vSum[3] + float *pvNorm = (float*)&vNorm; + float norm = (pvNorm[0] + pvNorm[1] + pvNorm[2] + pvNorm[3]); + anorm = norm; + + float *pvSum = (float*)&vSum; + return (double)(pvSum[0] + pvSum[1] + pvSum[2] + pvSum[3]) / sqrt(norm < 1e-9 ? 1.0 : norm); + + /* This is approximately corresponding routine in C-language yet without normalization: + double corr, norm; + uint i; + + // Calculates the cross-correlation value between 'pV1' and 'pV2' vectors + corr = norm = 0.0; + for (i = 0; i < channels * overlapLength / 16; i ++) + { + corr += pV1[0] * pV2[0] + + pV1[1] * pV2[1] + + pV1[2] * pV2[2] + + pV1[3] * pV2[3] + + pV1[4] * pV2[4] + + pV1[5] * pV2[5] + + pV1[6] * pV2[6] + + pV1[7] * pV2[7] + + pV1[8] * pV2[8] + + pV1[9] * pV2[9] + + pV1[10] * pV2[10] + + pV1[11] * pV2[11] + + pV1[12] * pV2[12] + + pV1[13] * pV2[13] + + pV1[14] * pV2[14] + + pV1[15] * pV2[15]; + + for (j = 0; j < 15; j ++) norm += pV1[j] * pV1[j]; + + pV1 += 16; + pV2 += 16; + } + return corr / sqrt(norm); + */ +} + + + +double TDStretchSSE::calcCrossCorrAccumulate(const float *pV1, const float *pV2, double &norm) +{ + // call usual calcCrossCorr function because SSE does not show big benefit of + // accumulating "norm" value, and also the "norm" rolling algorithm would get + // complicated due to SSE-specific alignment-vs-nonexact correlation rules. + return calcCrossCorr(pV1, pV2, norm); +} + + +////////////////////////////////////////////////////////////////////////////// +// +// implementation of SSE optimized functions of class 'FIRFilter' +// +////////////////////////////////////////////////////////////////////////////// + +#include "FIRFilter.h" + +FIRFilterSSE::FIRFilterSSE() : FIRFilter() +{ + filterCoeffsAlign = NULL; + filterCoeffsUnalign = NULL; +} + + +FIRFilterSSE::~FIRFilterSSE() +{ + delete[] filterCoeffsUnalign; + filterCoeffsAlign = NULL; + filterCoeffsUnalign = NULL; +} + + +// (overloaded) Calculates filter coefficients for SSE routine +void FIRFilterSSE::setCoefficients(const float *coeffs, uint newLength, uint uResultDivFactor) +{ + uint i; + float fDivider; + + FIRFilter::setCoefficients(coeffs, newLength, uResultDivFactor); + + // Scale the filter coefficients so that it won't be necessary to scale the filtering result + // also rearrange coefficients suitably for SSE + // Ensure that filter coeffs array is aligned to 16-byte boundary + delete[] filterCoeffsUnalign; + filterCoeffsUnalign = new float[2 * newLength + 4]; + filterCoeffsAlign = (float *)SOUNDTOUCH_ALIGN_POINTER_16(filterCoeffsUnalign); + + fDivider = (float)resultDivider; + + // rearrange the filter coefficients for mmx routines + for (i = 0; i < newLength; i ++) + { + filterCoeffsAlign[2 * i + 0] = + filterCoeffsAlign[2 * i + 1] = coeffs[i + 0] / fDivider; + } +} + + + +// SSE-optimized version of the filter routine for stereo sound +uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint numSamples) const +{ + int count = (int)((numSamples - length) & (uint)-2); + int j; + + assert(count % 2 == 0); + + if (count < 2) return 0; + + assert(source != NULL); + assert(dest != NULL); + assert((length % 8) == 0); + assert(filterCoeffsAlign != NULL); + assert(((ulongptr)filterCoeffsAlign) % 16 == 0); + + // filter is evaluated for two stereo samples with each iteration, thus use of 'j += 2' + #pragma omp parallel for + for (j = 0; j < count; j += 2) + { + const float *pSrc; + float *pDest; + const __m128 *pFil; + __m128 sum1, sum2; + uint i; + + pSrc = (const float*)source + j * 2; // source audio data + pDest = dest + j * 2; // destination audio data + pFil = (const __m128*)filterCoeffsAlign; // filter coefficients. NOTE: Assumes coefficients + // are aligned to 16-byte boundary + sum1 = sum2 = _mm_setzero_ps(); + + for (i = 0; i < length / 8; i ++) + { + // Unroll loop for efficiency & calculate filter for 2*2 stereo samples + // at each pass + + // sum1 is accu for 2*2 filtered stereo sound data at the primary sound data offset + // sum2 is accu for 2*2 filtered stereo sound data for the next sound sample offset. + + sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc) , pFil[0])); + sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 2), pFil[0])); + + sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc + 4), pFil[1])); + sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 6), pFil[1])); + + sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc + 8) , pFil[2])); + sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 10), pFil[2])); + + sum1 = _mm_add_ps(sum1, _mm_mul_ps(_mm_loadu_ps(pSrc + 12), pFil[3])); + sum2 = _mm_add_ps(sum2, _mm_mul_ps(_mm_loadu_ps(pSrc + 14), pFil[3])); + + pSrc += 16; + pFil += 4; + } + + // Now sum1 and sum2 both have a filtered 2-channel sample each, but we still need + // to sum the two hi- and lo-floats of these registers together. + + // post-shuffle & add the filtered values and store to dest. + _mm_storeu_ps(pDest, _mm_add_ps( + _mm_shuffle_ps(sum1, sum2, _MM_SHUFFLE(1,0,3,2)), // s2_1 s2_0 s1_3 s1_2 + _mm_shuffle_ps(sum1, sum2, _MM_SHUFFLE(3,2,1,0)) // s2_3 s2_2 s1_1 s1_0 + )); + } + + // Ideas for further improvement: + // 1. If it could be guaranteed that 'source' were always aligned to 16-byte + // boundary, a faster aligned '_mm_load_ps' instruction could be used. + // 2. If it could be guaranteed that 'dest' were always aligned to 16-byte + // boundary, a faster '_mm_store_ps' instruction could be used. + + return (uint)count; + + /* original routine in C-language. please notice the C-version has differently + organized coefficients though. + double suml1, suml2; + double sumr1, sumr2; + uint i, j; + + for (j = 0; j < count; j += 2) + { + const float *ptr; + const float *pFil; + + suml1 = sumr1 = 0.0; + suml2 = sumr2 = 0.0; + ptr = src; + pFil = filterCoeffs; + for (i = 0; i < lengthLocal; i ++) + { + // unroll loop for efficiency. + + suml1 += ptr[0] * pFil[0] + + ptr[2] * pFil[2] + + ptr[4] * pFil[4] + + ptr[6] * pFil[6]; + + sumr1 += ptr[1] * pFil[1] + + ptr[3] * pFil[3] + + ptr[5] * pFil[5] + + ptr[7] * pFil[7]; + + suml2 += ptr[8] * pFil[0] + + ptr[10] * pFil[2] + + ptr[12] * pFil[4] + + ptr[14] * pFil[6]; + + sumr2 += ptr[9] * pFil[1] + + ptr[11] * pFil[3] + + ptr[13] * pFil[5] + + ptr[15] * pFil[7]; + + ptr += 16; + pFil += 8; + } + dest[0] = (float)suml1; + dest[1] = (float)sumr1; + dest[2] = (float)suml2; + dest[3] = (float)sumr2; + + src += 4; + dest += 4; + } + */ +} + +#endif // SOUNDTOUCH_ALLOW_SSE |