summaryrefslogtreecommitdiffstats
path: root/third_party/rust/ffi-support/src/handle_map.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/ffi-support/src/handle_map.rs')
-rw-r--r--third_party/rust/ffi-support/src/handle_map.rs1263
1 files changed, 1263 insertions, 0 deletions
diff --git a/third_party/rust/ffi-support/src/handle_map.rs b/third_party/rust/ffi-support/src/handle_map.rs
new file mode 100644
index 0000000000..b9b0df7c78
--- /dev/null
+++ b/third_party/rust/ffi-support/src/handle_map.rs
@@ -0,0 +1,1263 @@
+/* Copyright 2018-2019 Mozilla Foundation
+ *
+ * Licensed under the Apache License (Version 2.0), or the MIT license,
+ * (the "Licenses") at your option. You may not use this file except in
+ * compliance with one of the Licenses. You may obtain copies of the
+ * Licenses at:
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ * http://opensource.org/licenses/MIT
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the Licenses is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the Licenses for the specific language governing permissions and
+ * limitations under the Licenses. */
+
+//! This module provides a [`Handle`] type, which you can think of something
+//! like a dynamically checked, type erased reference/pointer type. Depending on
+//! the usage pattern a handle can behave as either a borrowed reference, or an
+//! owned pointer.
+//!
+//! They can be losslessly converted [to](Handle::into_u64) and
+//! [from](Handle::from_u64) a 64 bit integer, for ease of passing over the FFI
+//! (and they implement [`IntoFfi`] using these primitives for this purpose).
+//!
+//! The benefit is primarially that they can detect common misuse patterns that
+//! would otherwise be silent bugs, such as use-after-free, double-free, passing
+//! a wrongly-typed pointer to a function, etc.
+//!
+//! Handles are provided when inserting an item into either a [`HandleMap`] or a
+//! [`ConcurrentHandleMap`].
+//!
+//! # Comparison to types from other crates
+//!
+//! [`HandleMap`] is similar to types offered by other crates, such as
+//! `slotmap`, or `slab`. However, it has a number of key differences which make
+//! it better for our purposes as compared to the types in those crates:
+//!
+//! 1. Unlike `slab` (but like `slotmap`), we implement versioning, detecting
+//! ABA problems, which allows us to detect use after free.
+//! 2. Unlike `slotmap`, we don't have the `T: Copy` restriction.
+//! 3. Unlike either, we can detect when you use a Key in a map that did not
+//! allocate the key. This is true even when the map is from a `.so` file
+//! compiled separately.
+//! 3. Our implementation of doesn't use any `unsafe` (at the time of this
+//! writing).
+//!
+//! However, it comes with the following drawbacks:
+//!
+//! 1. `slotmap` holds its version information in a `u32`, and so it takes
+//! 2<sup>31</sup> colliding insertions and deletions before it could
+//! potentially fail to detect an ABA issue, wheras we use a `u16`, and are
+//! limited to 2<sup>15</sup>.
+//! 2. Similarly, we can only hold 2<sup>16</sup> items at once, unlike
+//! `slotmap`'s 2<sup>32</sup>. (Considering these items are typically things
+//! like database handles, this is probably plenty).
+//! 3. Our implementation is slower, and uses slightly more memory than
+//! `slotmap` (which is in part due to the lack of `unsafe` mentioned above)
+//!
+//! The first two issues seem exceptionally unlikely, even for extremely
+//! long-lived `HandleMap`, and we're still memory safe even if they occur (we
+//! just might fail to notice a bug). The third issue also seems unimportant for
+//! our use case.
+
+use crate::error::{ErrorCode, ExternError};
+use crate::into_ffi::IntoFfi;
+use std::error::Error as StdError;
+use std::fmt;
+use std::ops;
+use std::sync::atomic::{AtomicUsize, Ordering};
+use std::sync::{Mutex, RwLock};
+
+/// `HandleMap` is a collection type which can hold any type of value, and
+/// offers a stable handle which can be used to retrieve it on insertion. These
+/// handles offer methods for converting [to](Handle::into_u64) and
+/// [from](Handle::from_u64) 64 bit integers, meaning they're very easy to pass
+/// over the FFI (they also implement [`IntoFfi`] for the same purpose).
+///
+/// See the [module level docs](index.html) for more information.
+///
+/// Note: In FFI code, most usage of `HandleMap` will be done through the
+/// [`ConcurrentHandleMap`] type, which is a thin wrapper around a
+/// `RwLock<HandleMap<Mutex<T>>>`.
+#[derive(Debug, Clone)]
+pub struct HandleMap<T> {
+ // The value of `map_id` in each `Handle`.
+ id: u16,
+
+ // Index to the start of the free list. Always points to a free item --
+ // we never allow our free list to become empty.
+ first_free: u16,
+
+ // The number of entries with `data.is_some()`. This is never equal to
+ // `entries.len()`, we always grow before that point to ensure we always have
+ // a valid `first_free` index to add entries onto. This is our `len`.
+ num_entries: usize,
+
+ // The actual data. Note: entries.len() is our 'capacity'.
+ entries: Vec<Entry<T>>,
+}
+
+#[derive(Debug, Clone)]
+struct Entry<T> {
+ // initially 1, incremented on insertion and removal. Thus,
+ // if version is even, state should always be EntryState::Active.
+ version: u16,
+ state: EntryState<T>,
+}
+
+#[derive(Debug, Clone)]
+enum EntryState<T> {
+ // Not part of the free list
+ Active(T),
+ // The u16 is the next index in the free list.
+ InFreeList(u16),
+ // Part of the free list, but the sentinel.
+ EndOfFreeList,
+}
+
+impl<T> EntryState<T> {
+ #[cfg(any(debug_assertions, test))]
+ fn is_end_of_list(&self) -> bool {
+ match self {
+ EntryState::EndOfFreeList => true,
+ _ => false,
+ }
+ }
+
+ #[inline]
+ fn is_occupied(&self) -> bool {
+ self.get_item().is_some()
+ }
+
+ #[inline]
+ fn get_item(&self) -> Option<&T> {
+ match self {
+ EntryState::Active(v) => Some(v),
+ _ => None,
+ }
+ }
+
+ #[inline]
+ fn get_item_mut(&mut self) -> Option<&mut T> {
+ match self {
+ EntryState::Active(v) => Some(v),
+ _ => None,
+ }
+ }
+}
+
+// Small helper to check our casts.
+#[inline]
+fn to_u16(v: usize) -> u16 {
+ use std::u16::MAX as U16_MAX;
+ // Shouldn't ever happen.
+ assert!(v <= (U16_MAX as usize), "Bug: Doesn't fit in u16: {}", v);
+ v as u16
+}
+
+/// The maximum capacity of a [`HandleMap`]. Attempting to instantiate one with
+/// a larger capacity will cause a panic.
+///
+/// Note: This could go as high as `(1 << 16) - 2`, but doing is seems more
+/// error prone. For the sake of paranoia, we limit it to this size, which is
+/// already quite a bit larger than it seems like we're likely to ever need.
+pub const MAX_CAPACITY: usize = (1 << 15) - 1;
+
+// Never having to worry about capacity == 0 simplifies the code at the cost of
+// worse memory usage. It doesn't seem like there's any reason to make this
+// public.
+const MIN_CAPACITY: usize = 4;
+
+/// An error representing the ways a `Handle` may be invalid.
+#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
+pub enum HandleError {
+ /// Identical to invalid handle, but has a slightly more helpful
+ /// message for the most common case 0.
+ NullHandle,
+
+ /// Returned from [`Handle::from_u64`] if [`Handle::is_valid`] fails.
+ InvalidHandle,
+
+ /// Returned from get/get_mut/delete if the handle is stale (this indicates
+ /// something equivalent to a use-after-free / double-free, etc).
+ StaleVersion,
+
+ /// Returned if the handle index references an index past the end of the
+ /// HandleMap.
+ IndexPastEnd,
+
+ /// The handle has a map_id for a different map than the one it was
+ /// attempted to be used with.
+ WrongMap,
+}
+
+impl StdError for HandleError {}
+
+impl fmt::Display for HandleError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use HandleError::*;
+ match self {
+ NullHandle => {
+ f.write_str("Tried to use a null handle (this object has probably been closed)")
+ }
+ InvalidHandle => f.write_str("u64 could not encode a valid Handle"),
+ StaleVersion => f.write_str("Handle has stale version number"),
+ IndexPastEnd => f.write_str("Handle references a index past the end of this HandleMap"),
+ WrongMap => f.write_str("Handle is from a different map"),
+ }
+ }
+}
+
+impl From<HandleError> for ExternError {
+ fn from(e: HandleError) -> Self {
+ ExternError::new_error(ErrorCode::INVALID_HANDLE, e.to_string())
+ }
+}
+
+impl<T> HandleMap<T> {
+ /// Create a new `HandleMap` with the default capacity.
+ pub fn new() -> Self {
+ Self::new_with_capacity(MIN_CAPACITY)
+ }
+
+ /// Allocate a new `HandleMap`. Note that the actual capacity may be larger
+ /// than the requested value.
+ ///
+ /// Panics if `request` is greater than [`handle_map::MAX_CAPACITY`](MAX_CAPACITY)
+ pub fn new_with_capacity(request: usize) -> Self {
+ assert!(
+ request <= MAX_CAPACITY,
+ "HandleMap capacity is limited to {} (request was {})",
+ MAX_CAPACITY,
+ request
+ );
+
+ let capacity = request.max(MIN_CAPACITY);
+ let id = next_handle_map_id();
+ let mut entries = Vec::with_capacity(capacity);
+
+ // Initialize each entry with version 1, and as a member of the free list
+ for i in 0..(capacity - 1) {
+ entries.push(Entry {
+ version: 1,
+ state: EntryState::InFreeList(to_u16(i + 1)),
+ });
+ }
+
+ // And the final entry is at the end of the free list
+ // (but still has version 1).
+ entries.push(Entry {
+ version: 1,
+ state: EntryState::EndOfFreeList,
+ });
+ Self {
+ id,
+ first_free: 0,
+ num_entries: 0,
+ entries,
+ }
+ }
+
+ /// Get the number of entries in the `HandleMap`.
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.num_entries
+ }
+
+ /// Returns true if the HandleMap is empty.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Returns the number of slots allocated in the handle map.
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ // It's not a bug that this isn't entries.capacity() -- We're returning
+ // how many slots exist, not something about the backing memory allocation
+ self.entries.len()
+ }
+
+ fn ensure_capacity(&mut self, cap_at_least: usize) {
+ assert_ne!(self.len(), self.capacity(), "Bug: should have grown by now");
+ assert!(cap_at_least <= MAX_CAPACITY, "HandleMap overfilled");
+ if self.capacity() > cap_at_least {
+ return;
+ }
+
+ let mut next_cap = self.capacity();
+ while next_cap <= cap_at_least {
+ next_cap *= 2;
+ }
+ next_cap = next_cap.min(MAX_CAPACITY);
+
+ let need_extra = next_cap.saturating_sub(self.entries.capacity());
+ self.entries.reserve(need_extra);
+
+ assert!(
+ !self.entries[self.first_free as usize].state.is_occupied(),
+ "Bug: HandleMap.first_free points at occupied index"
+ );
+
+ // Insert new entries at the front of our list.
+ while self.entries.len() < next_cap - 1 {
+ // This is a little wasteful but whatever. Add each new entry to the
+ // front of the free list one at a time.
+ self.entries.push(Entry {
+ version: 1,
+ state: EntryState::InFreeList(self.first_free),
+ });
+ self.first_free = to_u16(self.entries.len() - 1);
+ }
+
+ self.debug_check_valid();
+ }
+
+ #[inline]
+ fn debug_check_valid(&self) {
+ // Run the expensive validity check in tests and in debug builds.
+ #[cfg(any(debug_assertions, test))]
+ {
+ self.assert_valid();
+ }
+ }
+
+ #[cfg(any(debug_assertions, test))]
+ fn assert_valid(&self) {
+ assert_ne!(self.len(), self.capacity());
+ assert!(self.capacity() <= MAX_CAPACITY, "Entries too large");
+ // Validate that our free list is correct.
+
+ let number_of_ends = self
+ .entries
+ .iter()
+ .filter(|e| e.state.is_end_of_list())
+ .count();
+ assert_eq!(
+ number_of_ends, 1,
+ "More than one entry think's it's the end of the list, or no entries do"
+ );
+
+ // Check that the free list hits every unoccupied item.
+ // The tuple is: `(should_be_in_free_list, is_in_free_list)`.
+ let mut free_indices = vec![(false, false); self.capacity()];
+ for (i, e) in self.entries.iter().enumerate() {
+ if !e.state.is_occupied() {
+ free_indices[i].0 = true;
+ }
+ }
+
+ let mut next = self.first_free;
+ loop {
+ let ni = next as usize;
+
+ assert!(
+ ni <= free_indices.len(),
+ "Free list contains out of bounds index!"
+ );
+
+ assert!(
+ free_indices[ni].0,
+ "Free list has an index that shouldn't be free! {}",
+ ni
+ );
+
+ assert!(
+ !free_indices[ni].1,
+ "Free list hit an index ({}) more than once! Cycle detected!",
+ ni
+ );
+
+ free_indices[ni].1 = true;
+
+ match &self.entries[ni].state {
+ EntryState::InFreeList(next_index) => next = *next_index,
+ EntryState::EndOfFreeList => break,
+ // Hitting `Active` here is probably not possible because of the checks above, but who knows.
+ EntryState::Active(..) => unreachable!("Bug: Active item in free list at {}", next),
+ }
+ }
+ let mut occupied_count = 0;
+ for (i, &(should_be_free, is_free)) in free_indices.iter().enumerate() {
+ assert_eq!(
+ should_be_free, is_free,
+ "Free list missed item, or contains an item it shouldn't: {}",
+ i
+ );
+ if !should_be_free {
+ occupied_count += 1;
+ }
+ }
+ assert_eq!(
+ self.num_entries, occupied_count,
+ "num_entries doesn't reflect the actual number of entries"
+ );
+ }
+
+ /// Insert an item into the map, and return a handle to it.
+ pub fn insert(&mut self, v: T) -> Handle {
+ let need_cap = self.len() + 1;
+ self.ensure_capacity(need_cap);
+ let index = self.first_free;
+ let result = {
+ // Scoped mutable borrow of entry.
+ let entry = &mut self.entries[index as usize];
+ let new_first_free = match entry.state {
+ EntryState::InFreeList(i) => i,
+ _ => panic!("Bug: next_index pointed at non-free list entry (or end of list)"),
+ };
+ entry.version += 1;
+ if entry.version == 0 {
+ entry.version += 2;
+ }
+ entry.state = EntryState::Active(v);
+ self.first_free = new_first_free;
+ self.num_entries += 1;
+
+ Handle {
+ map_id: self.id,
+ version: entry.version,
+ index,
+ }
+ };
+ self.debug_check_valid();
+ result
+ }
+
+ // Helper to contain the handle validation boilerplate. Returns `h.index as usize`.
+ fn check_handle(&self, h: Handle) -> Result<usize, HandleError> {
+ if h.map_id != self.id {
+ log::info!(
+ "HandleMap access with handle having wrong map id: {:?} (our map id is {})",
+ h,
+ self.id
+ );
+ return Err(HandleError::WrongMap);
+ }
+ let index = h.index as usize;
+ if index >= self.entries.len() {
+ log::info!("HandleMap accessed with handle past end of map: {:?}", h);
+ return Err(HandleError::IndexPastEnd);
+ }
+ if self.entries[index].version != h.version {
+ log::info!(
+ "HandleMap accessed with handle with wrong version {:?} (entry version is {})",
+ h,
+ self.entries[index].version
+ );
+ return Err(HandleError::StaleVersion);
+ }
+ // At this point, we know the handle version matches the entry version,
+ // but if someone created a specially invalid handle, they could have
+ // its version match the version they expect an unoccupied index to
+ // have.
+ //
+ // We don't use any unsafe, so the worse thing that can happen here is
+ // that we get confused and panic, but still that's not great, so we
+ // check for this explicitly.
+ //
+ // Note that `active` versions are always even, as they start at 1, and
+ // are incremented on both insertion and deletion.
+ //
+ // Anyway, this is just for sanity checking, we already check this in
+ // practice when we convert `u64`s into `Handle`s, which is the only
+ // way we ever use these in the real world.
+ if (h.version % 2) != 0 {
+ log::info!(
+ "HandleMap given handle with matching but illegal version: {:?}",
+ h,
+ );
+ return Err(HandleError::StaleVersion);
+ }
+ Ok(index)
+ }
+
+ /// Delete an item from the HandleMap.
+ pub fn delete(&mut self, h: Handle) -> Result<(), HandleError> {
+ self.remove(h).map(drop)
+ }
+
+ /// Remove an item from the HandleMap, returning the old value.
+ pub fn remove(&mut self, h: Handle) -> Result<T, HandleError> {
+ let index = self.check_handle(h)?;
+ let prev = {
+ // Scoped mutable borrow of entry.
+ let entry = &mut self.entries[index];
+ entry.version += 1;
+ let index = h.index;
+ let last_state =
+ std::mem::replace(&mut entry.state, EntryState::InFreeList(self.first_free));
+ self.num_entries -= 1;
+ self.first_free = index;
+
+ if let EntryState::Active(value) = last_state {
+ value
+ } else {
+ // This indicates either a bug in HandleMap or memory
+ // corruption. Abandon all hope.
+ unreachable!(
+ "Handle {:?} passed validation but references unoccupied entry",
+ h
+ );
+ }
+ };
+ self.debug_check_valid();
+ Ok(prev)
+ }
+
+ /// Get a reference to the item referenced by the handle, or return a
+ /// [`HandleError`] describing the problem.
+ pub fn get(&self, h: Handle) -> Result<&T, HandleError> {
+ let idx = self.check_handle(h)?;
+ let entry = &self.entries[idx];
+ // This should be caught by check_handle above, but we avoid panicking
+ // because we'd rather not poison any locks we don't have to poison
+ let item = entry
+ .state
+ .get_item()
+ .ok_or_else(|| HandleError::InvalidHandle)?;
+ Ok(item)
+ }
+
+ /// Get a mut reference to the item referenced by the handle, or return a
+ /// [`HandleError`] describing the problem.
+ pub fn get_mut(&mut self, h: Handle) -> Result<&mut T, HandleError> {
+ let idx = self.check_handle(h)?;
+ let entry = &mut self.entries[idx];
+ // This should be caught by check_handle above, but we avoid panicking
+ // because we'd rather not poison any locks we don't have to poison
+ let item = entry
+ .state
+ .get_item_mut()
+ .ok_or_else(|| HandleError::InvalidHandle)?;
+ Ok(item)
+ }
+}
+
+impl<T> Default for HandleMap<T> {
+ #[inline]
+ fn default() -> Self {
+ HandleMap::new()
+ }
+}
+
+impl<T> ops::Index<Handle> for HandleMap<T> {
+ type Output = T;
+ #[inline]
+ fn index(&self, h: Handle) -> &T {
+ self.get(h)
+ .expect("Indexed into HandleMap with invalid handle!")
+ }
+}
+
+// We don't implement IndexMut intentionally (implementing ops::Index is
+// dubious enough)
+
+/// A Handle we allow to be returned over the FFI by implementing [`IntoFfi`].
+/// This type is intentionally not `#[repr(C)]`, and getting the data out of the
+/// FFI is done using `Handle::from_u64`, or it's implemetation of `From<u64>`.
+///
+/// It consists of, at a minimum:
+///
+/// - A "map id" (used to ensure you're using it with the correct map)
+/// - a "version" (incremented when the value in the index changes, used to
+/// detect multiple frees, use after free, and ABA and ABA)
+/// - and a field indicating which index it goes into.
+///
+/// In practice, it may also contain extra information to help detect other
+/// errors (currently it stores a "magic value" used to detect invalid
+/// [`Handle`]s).
+///
+/// These fields may change but the following guarantees are made about the
+/// internal representation:
+///
+/// - This will always be representable in 64 bits.
+/// - The bits, when interpreted as a signed 64 bit integer, will be positive
+/// (that is to say, it will *actually* be representable in 63 bits, since
+/// this makes the most significant bit unavailable for the purposes of
+/// encoding). This guarantee makes things slightly less dubious when passing
+/// things to Java, gives us some extra validation ability, etc.
+#[derive(Copy, Clone, Debug, PartialEq)]
+pub struct Handle {
+ map_id: u16,
+ version: u16,
+ index: u16,
+}
+
+// We stuff this into the top 16 bits of the handle when u16 encoded to detect
+// various sorts of weirdness. It's the letters 'A' and 'S' as ASCII, but the
+// only important thing about it is that the most significant bit be unset.
+const HANDLE_MAGIC: u16 = 0x4153_u16;
+
+impl Handle {
+ /// Convert a `Handle` to a `u64`. You can also use `Into::into` directly.
+ /// Most uses of this will be automatic due to our [`IntoFfi`] implementation.
+ #[inline]
+ pub fn into_u64(self) -> u64 {
+ let map_id = u64::from(self.map_id);
+ let version = u64::from(self.version);
+ let index = u64::from(self.index);
+ // SOMEDAY: we could also use this as a sort of CRC if we were really paranoid.
+ // e.g. `magic = combine_to_u16(map_id, version, index)`.
+ let magic = u64::from(HANDLE_MAGIC);
+ (magic << 48) | (map_id << 32) | (index << 16) | version
+ }
+
+ /// Convert a `u64` to a `Handle`. Inverse of `into_u64`. We also implement
+ /// `From::from` (which will panic instead of returning Err).
+ ///
+ /// Returns [`HandleError::InvalidHandle`](HandleError) if the bits cannot
+ /// possibly represent a valid handle.
+ pub fn from_u64(v: u64) -> Result<Self, HandleError> {
+ if !Handle::is_valid(v) {
+ log::warn!("Illegal handle! {:x}", v);
+ if v == 0 {
+ Err(HandleError::NullHandle)
+ } else {
+ Err(HandleError::InvalidHandle)
+ }
+ } else {
+ let map_id = (v >> 32) as u16;
+ let index = (v >> 16) as u16;
+ let version = v as u16;
+ Ok(Self {
+ map_id,
+ version,
+ index,
+ })
+ }
+ }
+
+ /// Returns whether or not `v` makes a bit pattern that could represent an
+ /// encoded [`Handle`].
+ #[inline]
+ pub fn is_valid(v: u64) -> bool {
+ (v >> 48) == u64::from(HANDLE_MAGIC) &&
+ // The "bottom" field is the version. We increment it both when
+ // inserting and removing, and they're all initially 1. So, all valid
+ // handles that we returned should have an even version.
+ ((v & 1) == 0)
+ }
+}
+
+impl From<u64> for Handle {
+ fn from(u: u64) -> Self {
+ Handle::from_u64(u).expect("Illegal handle!")
+ }
+}
+
+impl From<Handle> for u64 {
+ #[inline]
+ fn from(h: Handle) -> u64 {
+ h.into_u64()
+ }
+}
+
+unsafe impl IntoFfi for Handle {
+ type Value = u64;
+ // Note: intentionally does not encode a valid handle for any map.
+ #[inline]
+ fn ffi_default() -> u64 {
+ 0u64
+ }
+ #[inline]
+ fn into_ffi_value(self) -> u64 {
+ self.into_u64()
+ }
+}
+
+/// `ConcurrentHandleMap` is a relatively thin wrapper around
+/// `RwLock<HandleMap<Mutex<T>>>`. Due to the nested locking, it's not possible
+/// to implement the same API as [`HandleMap`], however it does implement an API
+/// that offers equivalent functionality, as well as several functions that
+/// greatly simplify FFI usage (see example below).
+///
+/// See the [module level documentation](index.html) for more info.
+///
+/// # Example
+///
+/// ```rust,no_run
+/// # #[macro_use] extern crate lazy_static;
+/// # extern crate ffi_support;
+/// # use ffi_support::*;
+/// # use std::sync::*;
+///
+/// // Somewhere...
+/// struct Thing { value: f64 }
+///
+/// lazy_static! {
+/// static ref ITEMS: ConcurrentHandleMap<Thing> = ConcurrentHandleMap::new();
+/// }
+///
+/// #[no_mangle]
+/// pub extern "C" fn mylib_new_thing(value: f64, err: &mut ExternError) -> u64 {
+/// // Most uses will be `ITEMS.insert_with_result`. Note that this already
+/// // calls `call_with_output` (or `call_with_result` if this were
+/// // `insert_with_result`) for you.
+/// ITEMS.insert_with_output(err, || Thing { value })
+/// }
+///
+/// #[no_mangle]
+/// pub extern "C" fn mylib_thing_value(h: u64, err: &mut ExternError) -> f64 {
+/// // Or `ITEMS.call_with_result` for the fallible functions.
+/// ITEMS.call_with_output(err, h, |thing| thing.value)
+/// }
+///
+/// #[no_mangle]
+/// pub extern "C" fn mylib_thing_set_value(h: u64, new_value: f64, err: &mut ExternError) {
+/// ITEMS.call_with_output_mut(err, h, |thing| {
+/// thing.value = new_value;
+/// })
+/// }
+///
+/// // Note: defines the following function:
+/// // pub extern "C" fn mylib_destroy_thing(h: u64, err: &mut ExternError)
+/// define_handle_map_deleter!(ITEMS, mylib_destroy_thing);
+/// ```
+pub struct ConcurrentHandleMap<T> {
+ /// The underlying map. Public so that more advanced use-cases
+ /// may use it as they please.
+ pub map: RwLock<HandleMap<Mutex<T>>>,
+}
+
+impl<T> ConcurrentHandleMap<T> {
+ /// Construct a new `ConcurrentHandleMap`.
+ pub fn new() -> Self {
+ Self {
+ map: RwLock::new(HandleMap::new()),
+ }
+ }
+
+ /// Get the number of entries in the `ConcurrentHandleMap`.
+ ///
+ /// This takes the map's `read` lock.
+ #[inline]
+ pub fn len(&self) -> usize {
+ let map = self.map.read().unwrap();
+ map.len()
+ }
+
+ /// Returns true if the `ConcurrentHandleMap` is empty.
+ ///
+ /// This takes the map's `read` lock.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Insert an item into the map, returning the newly allocated handle to the
+ /// item.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking the map's write lock, and so it will
+ /// block until all other threads have finished any read/write operations.
+ pub fn insert(&self, v: T) -> Handle {
+ // Fails if the lock is poisoned. Not clear what we should do here... We
+ // could always insert anyway (by matching on LockResult), but that
+ // seems... really quite dubious.
+ let mut map = self.map.write().unwrap();
+ map.insert(Mutex::new(v))
+ }
+
+ /// Remove an item from the map.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking the map's write lock, and so it will
+ /// block until all other threads have finished any read/write operations.
+ pub fn delete(&self, h: Handle) -> Result<(), HandleError> {
+ // We use `remove` and not delete (and use the inner block) to ensure
+ // that if `v`'s destructor panics, we aren't holding the write lock
+ // when it happens, so that the map itself doesn't get poisoned.
+ let v = {
+ let mut map = self.map.write().unwrap();
+ map.remove(h)
+ };
+ v.map(drop)
+ }
+
+ /// Convenient wrapper for `delete` which takes a `u64` that it will
+ /// convert to a handle.
+ ///
+ /// The main benefit (besides convenience) of this over the version
+ /// that takes a [`Handle`] is that it allows handling handle-related errors
+ /// in one place.
+ pub fn delete_u64(&self, h: u64) -> Result<(), HandleError> {
+ self.delete(Handle::from_u64(h)?)
+ }
+
+ /// Remove an item from the map, returning either the item,
+ /// or None if its guard mutex got poisoned at some point.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking the map's write lock, and so it will
+ /// block until all other threads have finished any read/write operations.
+ pub fn remove(&self, h: Handle) -> Result<Option<T>, HandleError> {
+ let mut map = self.map.write().unwrap();
+ let mutex = map.remove(h)?;
+ Ok(mutex.into_inner().ok())
+ }
+
+ /// Convenient wrapper for `remove` which takes a `u64` that it will
+ /// convert to a handle.
+ ///
+ /// The main benefit (besides convenience) of this over the version
+ /// that takes a [`Handle`] is that it allows handling handle-related errors
+ /// in one place.
+ pub fn remove_u64(&self, h: u64) -> Result<Option<T>, HandleError> {
+ self.remove(Handle::from_u64(h)?)
+ }
+
+ /// Call `callback` with a non-mutable reference to the item from the map,
+ /// after acquiring the necessary locks.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking both:
+ ///
+ /// - The map's read lock, and so it will block until all other threads have
+ /// finished any write operations.
+ /// - The mutex on the slot the handle is mapped to.
+ ///
+ /// And so it will block if there are ongoing write operations, or if
+ /// another thread is reading from the same handle.
+ ///
+ /// # Panics
+ ///
+ /// This will panic if a previous `get()` or `get_mut()` call has panicked
+ /// inside it's callback. The solution to this
+ ///
+ /// (It may also panic if the handle map detects internal state corruption,
+ /// however this should not happen except for bugs in the handle map code).
+ pub fn get<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E>
+ where
+ F: FnOnce(&T) -> Result<R, E>,
+ E: From<HandleError>,
+ {
+ self.get_mut(h, |v| callback(v))
+ }
+
+ /// Call `callback` with a mutable reference to the item from the map, after
+ /// acquiring the necessary locks.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking both:
+ ///
+ /// - The map's read lock, and so it will block until all other threads have
+ /// finished any write operations.
+ /// - The mutex on the slot the handle is mapped to.
+ ///
+ /// And so it will block if there are ongoing write operations, or if
+ /// another thread is reading from the same handle.
+ ///
+ /// # Panics
+ ///
+ /// This will panic if a previous `get()` or `get_mut()` call has panicked
+ /// inside it's callback. The only solution to this is to remove and reinsert
+ /// said item.
+ ///
+ /// (It may also panic if the handle map detects internal state corruption,
+ /// however this should not happen except for bugs in the handle map code).
+ pub fn get_mut<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E>
+ where
+ F: FnOnce(&mut T) -> Result<R, E>,
+ E: From<HandleError>,
+ {
+ // XXX figure out how to handle poison...
+ let map = self.map.read().unwrap();
+ let mtx = map.get(h)?;
+ let mut hm = mtx.lock().unwrap();
+ callback(&mut *hm)
+ }
+
+ /// Convenient wrapper for `get` which takes a `u64` that it will convert to
+ /// a handle.
+ ///
+ /// The other benefit (besides convenience) of this over the version
+ /// that takes a [`Handle`] is that it allows handling handle-related errors
+ /// in one place.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking both:
+ ///
+ /// - The map's read lock, and so it will block until all other threads have
+ /// finished any write operations.
+ /// - The mutex on the slot the handle is mapped to.
+ ///
+ /// And so it will block if there are ongoing write operations, or if
+ /// another thread is reading from the same handle.
+ pub fn get_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E>
+ where
+ F: FnOnce(&T) -> Result<R, E>,
+ E: From<HandleError>,
+ {
+ self.get(Handle::from_u64(u)?, callback)
+ }
+
+ /// Convenient wrapper for [`Self::get_mut`] which takes a `u64` that it will
+ /// convert to a handle.
+ ///
+ /// The main benefit (besides convenience) of this over the version
+ /// that takes a [`Handle`] is that it allows handling handle-related errors
+ /// in one place.
+ ///
+ /// # Locking
+ ///
+ /// Note that this requires taking both:
+ ///
+ /// - The map's read lock, and so it will block until all other threads have
+ /// finished any write operations.
+ /// - The mutex on the slot the handle is mapped to.
+ ///
+ /// And so it will block if there are ongoing write operations, or if
+ /// another thread is reading from the same handle.
+ pub fn get_mut_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E>
+ where
+ F: FnOnce(&mut T) -> Result<R, E>,
+ E: From<HandleError>,
+ {
+ self.get_mut(Handle::from_u64(u)?, callback)
+ }
+
+ /// Helper that performs both a
+ /// [`call_with_result`][crate::call_with_result] and
+ /// [`get`](ConcurrentHandleMap::get_mut).
+ pub fn call_with_result_mut<R, E, F>(
+ &self,
+ out_error: &mut ExternError,
+ h: u64,
+ callback: F,
+ ) -> R::Value
+ where
+ F: std::panic::UnwindSafe + FnOnce(&mut T) -> Result<R, E>,
+ ExternError: From<E>,
+ R: IntoFfi,
+ {
+ use crate::call_with_result;
+ call_with_result(out_error, || -> Result<_, ExternError> {
+ // We can't reuse get_mut here because it would require E:
+ // From<HandleError>, which is inconvenient...
+ let h = Handle::from_u64(h)?;
+ let map = self.map.read().unwrap();
+ let mtx = map.get(h)?;
+ let mut hm = mtx.lock().unwrap();
+ Ok(callback(&mut *hm)?)
+ })
+ }
+
+ /// Helper that performs both a
+ /// [`call_with_result`][crate::call_with_result] and
+ /// [`get`](ConcurrentHandleMap::get).
+ pub fn call_with_result<R, E, F>(
+ &self,
+ out_error: &mut ExternError,
+ h: u64,
+ callback: F,
+ ) -> R::Value
+ where
+ F: std::panic::UnwindSafe + FnOnce(&T) -> Result<R, E>,
+ ExternError: From<E>,
+ R: IntoFfi,
+ {
+ self.call_with_result_mut(out_error, h, |r| callback(r))
+ }
+
+ /// Helper that performs both a
+ /// [`call_with_output`][crate::call_with_output] and
+ /// [`get`](ConcurrentHandleMap::get).
+ pub fn call_with_output<R, F>(
+ &self,
+ out_error: &mut ExternError,
+ h: u64,
+ callback: F,
+ ) -> R::Value
+ where
+ F: std::panic::UnwindSafe + FnOnce(&T) -> R,
+ R: IntoFfi,
+ {
+ self.call_with_result(out_error, h, |r| -> Result<_, HandleError> {
+ Ok(callback(r))
+ })
+ }
+
+ /// Helper that performs both a
+ /// [`call_with_output`][crate::call_with_output] and
+ /// [`get_mut`](ConcurrentHandleMap::get).
+ pub fn call_with_output_mut<R, F>(
+ &self,
+ out_error: &mut ExternError,
+ h: u64,
+ callback: F,
+ ) -> R::Value
+ where
+ F: std::panic::UnwindSafe + FnOnce(&mut T) -> R,
+ R: IntoFfi,
+ {
+ self.call_with_result_mut(out_error, h, |r| -> Result<_, HandleError> {
+ Ok(callback(r))
+ })
+ }
+
+ /// Use `constructor` to create and insert a `T`, while inside a
+ /// [`call_with_result`][crate::call_with_result] call (to handle panics and
+ /// map errors onto an [`ExternError`][crate::ExternError]).
+ pub fn insert_with_result<E, F>(&self, out_error: &mut ExternError, constructor: F) -> u64
+ where
+ F: std::panic::UnwindSafe + FnOnce() -> Result<T, E>,
+ ExternError: From<E>,
+ {
+ use crate::call_with_result;
+ call_with_result(out_error, || -> Result<_, ExternError> {
+ // Note: it's important that we don't call the constructor while
+ // we're holding the write lock, because we don't want to poison
+ // the entire map if it panics!
+ let to_insert = constructor()?;
+ Ok(self.insert(to_insert))
+ })
+ }
+
+ /// Equivalent to
+ /// [`insert_with_result`](ConcurrentHandleMap::insert_with_result) for the
+ /// case where the constructor cannot produce an error.
+ ///
+ /// The name is somewhat dubious, since there's no `output`, but it's
+ /// intended to make it clear that it contains a
+ /// [`call_with_output`][crate::call_with_output] internally.
+ pub fn insert_with_output<F>(&self, out_error: &mut ExternError, constructor: F) -> u64
+ where
+ F: std::panic::UnwindSafe + FnOnce() -> T,
+ {
+ // The Err type isn't important here beyond being convertable to ExternError
+ self.insert_with_result(out_error, || -> Result<_, HandleError> {
+ Ok(constructor())
+ })
+ }
+}
+
+impl<T> Default for ConcurrentHandleMap<T> {
+ #[inline]
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+// Returns the next map_id.
+fn next_handle_map_id() -> u16 {
+ let id = HANDLE_MAP_ID_COUNTER
+ .fetch_add(1, Ordering::SeqCst)
+ .wrapping_add(1);
+ id as u16
+}
+
+// Note: These IDs are only used to detect using a key against the wrong HandleMap.
+// We ensure they're randomly initialized, to prevent using them across separately
+// compiled .so files.
+lazy_static::lazy_static! {
+ // This should be `AtomicU16`, but those aren't stablilized yet.
+ // Instead, we just cast to u16 on read.
+ static ref HANDLE_MAP_ID_COUNTER: AtomicUsize = {
+ // Abuse HashMap's RandomState to get a strong RNG without bringing in
+ // the `rand` crate (OTOH maybe we should just bring in the rand crate?)
+ use std::collections::hash_map::RandomState;
+ use std::hash::{BuildHasher, Hasher};
+ let init = RandomState::new().build_hasher().finish() as usize;
+ AtomicUsize::new(init)
+ };
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[derive(PartialEq, Debug)]
+ pub(super) struct Foobar(usize);
+
+ #[test]
+ fn test_invalid_handle() {
+ assert_eq!(Handle::from_u64(0), Err(HandleError::NullHandle));
+ // Valid except `version` is odd
+ assert_eq!(
+ Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0001),
+ Err(HandleError::InvalidHandle)
+ );
+
+ assert_eq!(
+ Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0002),
+ Ok(Handle {
+ version: 0x0002,
+ index: 0x0012,
+ map_id: 0x1234,
+ })
+ );
+ }
+
+ #[test]
+ fn test_correct_value_single() {
+ let mut map = HandleMap::new();
+ let handle = map.insert(Foobar(1234));
+ assert_eq!(map.get(handle).unwrap(), &Foobar(1234));
+ map.delete(handle).unwrap();
+ assert_eq!(map.get(handle), Err(HandleError::StaleVersion));
+ }
+
+ #[test]
+ fn test_correct_value_multiple() {
+ let mut map = HandleMap::new();
+ let handle1 = map.insert(Foobar(1234));
+ let handle2 = map.insert(Foobar(4321));
+ assert_eq!(map.get(handle1).unwrap(), &Foobar(1234));
+ assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
+ map.delete(handle1).unwrap();
+ assert_eq!(map.get(handle1), Err(HandleError::StaleVersion));
+ assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
+ }
+
+ #[test]
+ fn test_wrong_map() {
+ let mut map1 = HandleMap::new();
+ let mut map2 = HandleMap::new();
+
+ let handle1 = map1.insert(Foobar(1234));
+ let handle2 = map2.insert(Foobar(1234));
+
+ assert_eq!(map1.get(handle1).unwrap(), &Foobar(1234));
+ assert_eq!(map2.get(handle2).unwrap(), &Foobar(1234));
+
+ assert_eq!(map1.get(handle2), Err(HandleError::WrongMap));
+ assert_eq!(map2.get(handle1), Err(HandleError::WrongMap));
+ }
+
+ #[test]
+ fn test_bad_index() {
+ let map: HandleMap<Foobar> = HandleMap::new();
+ assert_eq!(
+ map.get(Handle {
+ map_id: map.id,
+ version: 2,
+ index: 100
+ }),
+ Err(HandleError::IndexPastEnd)
+ );
+ }
+
+ #[test]
+ fn test_resizing() {
+ let mut map = HandleMap::new();
+ let mut handles = vec![];
+ for i in 0..1000 {
+ handles.push(map.insert(Foobar(i)))
+ }
+ for (i, &h) in handles.iter().enumerate() {
+ assert_eq!(map.get(h).unwrap(), &Foobar(i));
+ assert_eq!(map.remove(h).unwrap(), Foobar(i));
+ }
+ let mut handles2 = vec![];
+ for i in 1000..2000 {
+ // Not really related to this test, but it's convenient to check this here.
+ let h = map.insert(Foobar(i));
+ let hu = h.into_u64();
+ assert_eq!(Handle::from_u64(hu).unwrap(), h);
+ handles2.push(hu);
+ }
+
+ for (i, (&h0, h1u)) in handles.iter().zip(handles2).enumerate() {
+ // It's still a stale version, even though the slot is occupied again.
+ assert_eq!(map.get(h0), Err(HandleError::StaleVersion));
+ let h1 = Handle::from_u64(h1u).unwrap();
+ assert_eq!(map.get(h1).unwrap(), &Foobar(i + 1000));
+ }
+ }
+
+ /// Tests that check our behavior when panicing.
+ ///
+ /// Naturally these require panic=unwind, which means we can't run them when
+ /// generating coverage (well, `-Zprofile`-based coverage can't -- although
+ /// ptrace-based coverage like tarpaulin can), and so we turn them off.
+ ///
+ /// (For clarity, `cfg(coverage)` is not a standard thing. We add it in
+ /// `automation/emit_coverage_info.sh`, and you can force it by adding
+ /// "--cfg coverage" to your RUSTFLAGS manually if you need to do so).
+ #[cfg(not(coverage))]
+ mod panic_tests {
+ use super::*;
+
+ struct PanicOnDrop(());
+ impl Drop for PanicOnDrop {
+ fn drop(&mut self) {
+ panic!("intentional panic (drop)");
+ }
+ }
+
+ #[test]
+ fn test_panicking_drop() {
+ let map = ConcurrentHandleMap::new();
+ let h = map.insert(PanicOnDrop(())).into_u64();
+ let mut e = ExternError::success();
+ crate::call_with_result(&mut e, || map.delete_u64(h));
+ assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
+ let _ = unsafe { e.get_and_consume_message() };
+ assert!(!map.map.is_poisoned());
+ let inner = map.map.read().unwrap();
+ inner.assert_valid();
+ assert_eq!(inner.len(), 0);
+ }
+
+ #[test]
+ fn test_panicking_call_with() {
+ let map = ConcurrentHandleMap::new();
+ let h = map.insert(Foobar(0)).into_u64();
+ let mut e = ExternError::success();
+ map.call_with_output(&mut e, h, |_thing| {
+ panic!("intentional panic (call_with_output)");
+ });
+
+ assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
+ let _ = unsafe { e.get_and_consume_message() };
+
+ {
+ assert!(!map.map.is_poisoned());
+ let inner = map.map.read().unwrap();
+ inner.assert_valid();
+ assert_eq!(inner.len(), 1);
+ let mut seen = false;
+ for e in &inner.entries {
+ if let EntryState::Active(v) = &e.state {
+ assert!(!seen);
+ assert!(v.is_poisoned());
+ seen = true;
+ }
+ }
+ }
+ assert!(map.delete_u64(h).is_ok());
+ assert!(!map.map.is_poisoned());
+ let inner = map.map.read().unwrap();
+ inner.assert_valid();
+ assert_eq!(inner.len(), 0);
+ }
+
+ #[test]
+ fn test_panicking_insert_with() {
+ let map = ConcurrentHandleMap::new();
+ let mut e = ExternError::success();
+ let res = map.insert_with_output(&mut e, || {
+ panic!("intentional panic (insert_with_output)");
+ });
+
+ assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
+ let _ = unsafe { e.get_and_consume_message() };
+
+ assert_eq!(res, 0);
+
+ assert!(!map.map.is_poisoned());
+ let inner = map.map.read().unwrap();
+ inner.assert_valid();
+ assert_eq!(inner.len(), 0);
+ }
+ }
+}