summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio/src/runtime/builder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/tokio/src/runtime/builder.rs')
-rw-r--r--third_party/rust/tokio/src/runtime/builder.rs718
1 files changed, 718 insertions, 0 deletions
diff --git a/third_party/rust/tokio/src/runtime/builder.rs b/third_party/rust/tokio/src/runtime/builder.rs
new file mode 100644
index 0000000000..91c365fd51
--- /dev/null
+++ b/third_party/rust/tokio/src/runtime/builder.rs
@@ -0,0 +1,718 @@
+use crate::runtime::handle::Handle;
+use crate::runtime::{blocking, driver, Callback, Runtime, Spawner};
+
+use std::fmt;
+use std::io;
+use std::time::Duration;
+
+/// Builds Tokio Runtime with custom configuration values.
+///
+/// Methods can be chained in order to set the configuration values. The
+/// Runtime is constructed by calling [`build`].
+///
+/// New instances of `Builder` are obtained via [`Builder::new_multi_thread`]
+/// or [`Builder::new_current_thread`].
+///
+/// See function level documentation for details on the various configuration
+/// settings.
+///
+/// [`build`]: method@Self::build
+/// [`Builder::new_multi_thread`]: method@Self::new_multi_thread
+/// [`Builder::new_current_thread`]: method@Self::new_current_thread
+///
+/// # Examples
+///
+/// ```
+/// use tokio::runtime::Builder;
+///
+/// fn main() {
+/// // build runtime
+/// let runtime = Builder::new_multi_thread()
+/// .worker_threads(4)
+/// .thread_name("my-custom-name")
+/// .thread_stack_size(3 * 1024 * 1024)
+/// .build()
+/// .unwrap();
+///
+/// // use runtime ...
+/// }
+/// ```
+pub struct Builder {
+ /// Runtime type
+ kind: Kind,
+
+ /// Whether or not to enable the I/O driver
+ enable_io: bool,
+
+ /// Whether or not to enable the time driver
+ enable_time: bool,
+
+ /// Whether or not the clock should start paused.
+ start_paused: bool,
+
+ /// The number of worker threads, used by Runtime.
+ ///
+ /// Only used when not using the current-thread executor.
+ worker_threads: Option<usize>,
+
+ /// Cap on thread usage.
+ max_blocking_threads: usize,
+
+ /// Name fn used for threads spawned by the runtime.
+ pub(super) thread_name: ThreadNameFn,
+
+ /// Stack size used for threads spawned by the runtime.
+ pub(super) thread_stack_size: Option<usize>,
+
+ /// Callback to run after each thread starts.
+ pub(super) after_start: Option<Callback>,
+
+ /// To run before each worker thread stops
+ pub(super) before_stop: Option<Callback>,
+
+ /// To run before each worker thread is parked.
+ pub(super) before_park: Option<Callback>,
+
+ /// To run after each thread is unparked.
+ pub(super) after_unpark: Option<Callback>,
+
+ /// Customizable keep alive timeout for BlockingPool
+ pub(super) keep_alive: Option<Duration>,
+}
+
+pub(crate) type ThreadNameFn = std::sync::Arc<dyn Fn() -> String + Send + Sync + 'static>;
+
+pub(crate) enum Kind {
+ CurrentThread,
+ #[cfg(feature = "rt-multi-thread")]
+ MultiThread,
+}
+
+impl Builder {
+ /// Returns a new builder with the current thread scheduler selected.
+ ///
+ /// Configuration methods can be chained on the return value.
+ ///
+ /// To spawn non-`Send` tasks on the resulting runtime, combine it with a
+ /// [`LocalSet`].
+ ///
+ /// [`LocalSet`]: crate::task::LocalSet
+ pub fn new_current_thread() -> Builder {
+ Builder::new(Kind::CurrentThread)
+ }
+
+ /// Returns a new builder with the multi thread scheduler selected.
+ ///
+ /// Configuration methods can be chained on the return value.
+ #[cfg(feature = "rt-multi-thread")]
+ #[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
+ pub fn new_multi_thread() -> Builder {
+ Builder::new(Kind::MultiThread)
+ }
+
+ /// Returns a new runtime builder initialized with default configuration
+ /// values.
+ ///
+ /// Configuration methods can be chained on the return value.
+ pub(crate) fn new(kind: Kind) -> Builder {
+ Builder {
+ kind,
+
+ // I/O defaults to "off"
+ enable_io: false,
+
+ // Time defaults to "off"
+ enable_time: false,
+
+ // The clock starts not-paused
+ start_paused: false,
+
+ // Default to lazy auto-detection (one thread per CPU core)
+ worker_threads: None,
+
+ max_blocking_threads: 512,
+
+ // Default thread name
+ thread_name: std::sync::Arc::new(|| "tokio-runtime-worker".into()),
+
+ // Do not set a stack size by default
+ thread_stack_size: None,
+
+ // No worker thread callbacks
+ after_start: None,
+ before_stop: None,
+ before_park: None,
+ after_unpark: None,
+
+ keep_alive: None,
+ }
+ }
+
+ /// Enables both I/O and time drivers.
+ ///
+ /// Doing this is a shorthand for calling `enable_io` and `enable_time`
+ /// individually. If additional components are added to Tokio in the future,
+ /// `enable_all` will include these future components.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime;
+ ///
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .enable_all()
+ /// .build()
+ /// .unwrap();
+ /// ```
+ pub fn enable_all(&mut self) -> &mut Self {
+ #[cfg(any(feature = "net", feature = "process", all(unix, feature = "signal")))]
+ self.enable_io();
+ #[cfg(feature = "time")]
+ self.enable_time();
+
+ self
+ }
+
+ /// Sets the number of worker threads the `Runtime` will use.
+ ///
+ /// This can be any number above 0 though it is advised to keep this value
+ /// on the smaller side.
+ ///
+ /// # Default
+ ///
+ /// The default value is the number of cores available to the system.
+ ///
+ /// # Panic
+ ///
+ /// When using the `current_thread` runtime this method will panic, since
+ /// those variants do not allow setting worker thread counts.
+ ///
+ ///
+ /// # Examples
+ ///
+ /// ## Multi threaded runtime with 4 threads
+ ///
+ /// ```
+ /// use tokio::runtime;
+ ///
+ /// // This will spawn a work-stealing runtime with 4 worker threads.
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .worker_threads(4)
+ /// .build()
+ /// .unwrap();
+ ///
+ /// rt.spawn(async move {});
+ /// ```
+ ///
+ /// ## Current thread runtime (will only run on the current thread via `Runtime::block_on`)
+ ///
+ /// ```
+ /// use tokio::runtime;
+ ///
+ /// // Create a runtime that _must_ be driven from a call
+ /// // to `Runtime::block_on`.
+ /// let rt = runtime::Builder::new_current_thread()
+ /// .build()
+ /// .unwrap();
+ ///
+ /// // This will run the runtime and future on the current thread
+ /// rt.block_on(async move {});
+ /// ```
+ ///
+ /// # Panic
+ ///
+ /// This will panic if `val` is not larger than `0`.
+ pub fn worker_threads(&mut self, val: usize) -> &mut Self {
+ assert!(val > 0, "Worker threads cannot be set to 0");
+ self.worker_threads = Some(val);
+ self
+ }
+
+ /// Specifies the limit for additional threads spawned by the Runtime.
+ ///
+ /// These threads are used for blocking operations like tasks spawned
+ /// through [`spawn_blocking`]. Unlike the [`worker_threads`], they are not
+ /// always active and will exit if left idle for too long. You can change
+ /// this timeout duration with [`thread_keep_alive`].
+ ///
+ /// The default value is 512.
+ ///
+ /// # Panic
+ ///
+ /// This will panic if `val` is not larger than `0`.
+ ///
+ /// # Upgrading from 0.x
+ ///
+ /// In old versions `max_threads` limited both blocking and worker threads, but the
+ /// current `max_blocking_threads` does not include async worker threads in the count.
+ ///
+ /// [`spawn_blocking`]: fn@crate::task::spawn_blocking
+ /// [`worker_threads`]: Self::worker_threads
+ /// [`thread_keep_alive`]: Self::thread_keep_alive
+ #[cfg_attr(docsrs, doc(alias = "max_threads"))]
+ pub fn max_blocking_threads(&mut self, val: usize) -> &mut Self {
+ assert!(val > 0, "Max blocking threads cannot be set to 0");
+ self.max_blocking_threads = val;
+ self
+ }
+
+ /// Sets name of threads spawned by the `Runtime`'s thread pool.
+ ///
+ /// The default name is "tokio-runtime-worker".
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .thread_name("my-pool")
+ /// .build();
+ /// # }
+ /// ```
+ pub fn thread_name(&mut self, val: impl Into<String>) -> &mut Self {
+ let val = val.into();
+ self.thread_name = std::sync::Arc::new(move || val.clone());
+ self
+ }
+
+ /// Sets a function used to generate the name of threads spawned by the `Runtime`'s thread pool.
+ ///
+ /// The default name fn is `|| "tokio-runtime-worker".into()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ /// # use std::sync::atomic::{AtomicUsize, Ordering};
+ ///
+ /// # pub fn main() {
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .thread_name_fn(|| {
+ /// static ATOMIC_ID: AtomicUsize = AtomicUsize::new(0);
+ /// let id = ATOMIC_ID.fetch_add(1, Ordering::SeqCst);
+ /// format!("my-pool-{}", id)
+ /// })
+ /// .build();
+ /// # }
+ /// ```
+ pub fn thread_name_fn<F>(&mut self, f: F) -> &mut Self
+ where
+ F: Fn() -> String + Send + Sync + 'static,
+ {
+ self.thread_name = std::sync::Arc::new(f);
+ self
+ }
+
+ /// Sets the stack size (in bytes) for worker threads.
+ ///
+ /// The actual stack size may be greater than this value if the platform
+ /// specifies minimal stack size.
+ ///
+ /// The default stack size for spawned threads is 2 MiB, though this
+ /// particular stack size is subject to change in the future.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .thread_stack_size(32 * 1024)
+ /// .build();
+ /// # }
+ /// ```
+ pub fn thread_stack_size(&mut self, val: usize) -> &mut Self {
+ self.thread_stack_size = Some(val);
+ self
+ }
+
+ /// Executes function `f` after each thread is started but before it starts
+ /// doing work.
+ ///
+ /// This is intended for bookkeeping and monitoring use cases.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let runtime = runtime::Builder::new_multi_thread()
+ /// .on_thread_start(|| {
+ /// println!("thread started");
+ /// })
+ /// .build();
+ /// # }
+ /// ```
+ #[cfg(not(loom))]
+ pub fn on_thread_start<F>(&mut self, f: F) -> &mut Self
+ where
+ F: Fn() + Send + Sync + 'static,
+ {
+ self.after_start = Some(std::sync::Arc::new(f));
+ self
+ }
+
+ /// Executes function `f` before each thread stops.
+ ///
+ /// This is intended for bookkeeping and monitoring use cases.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let runtime = runtime::Builder::new_multi_thread()
+ /// .on_thread_stop(|| {
+ /// println!("thread stopping");
+ /// })
+ /// .build();
+ /// # }
+ /// ```
+ #[cfg(not(loom))]
+ pub fn on_thread_stop<F>(&mut self, f: F) -> &mut Self
+ where
+ F: Fn() + Send + Sync + 'static,
+ {
+ self.before_stop = Some(std::sync::Arc::new(f));
+ self
+ }
+
+ /// Executes function `f` just before a thread is parked (goes idle).
+ /// `f` is called within the Tokio context, so functions like [`tokio::spawn`](crate::spawn)
+ /// can be called, and may result in this thread being unparked immediately.
+ ///
+ /// This can be used to start work only when the executor is idle, or for bookkeeping
+ /// and monitoring purposes.
+ ///
+ /// Note: There can only be one park callback for a runtime; calling this function
+ /// more than once replaces the last callback defined, rather than adding to it.
+ ///
+ /// # Examples
+ ///
+ /// ## Multithreaded executor
+ /// ```
+ /// # use std::sync::Arc;
+ /// # use std::sync::atomic::{AtomicBool, Ordering};
+ /// # use tokio::runtime;
+ /// # use tokio::sync::Barrier;
+ /// # pub fn main() {
+ /// let once = AtomicBool::new(true);
+ /// let barrier = Arc::new(Barrier::new(2));
+ ///
+ /// let runtime = runtime::Builder::new_multi_thread()
+ /// .worker_threads(1)
+ /// .on_thread_park({
+ /// let barrier = barrier.clone();
+ /// move || {
+ /// let barrier = barrier.clone();
+ /// if once.swap(false, Ordering::Relaxed) {
+ /// tokio::spawn(async move { barrier.wait().await; });
+ /// }
+ /// }
+ /// })
+ /// .build()
+ /// .unwrap();
+ ///
+ /// runtime.block_on(async {
+ /// barrier.wait().await;
+ /// })
+ /// # }
+ /// ```
+ /// ## Current thread executor
+ /// ```
+ /// # use std::sync::Arc;
+ /// # use std::sync::atomic::{AtomicBool, Ordering};
+ /// # use tokio::runtime;
+ /// # use tokio::sync::Barrier;
+ /// # pub fn main() {
+ /// let once = AtomicBool::new(true);
+ /// let barrier = Arc::new(Barrier::new(2));
+ ///
+ /// let runtime = runtime::Builder::new_current_thread()
+ /// .on_thread_park({
+ /// let barrier = barrier.clone();
+ /// move || {
+ /// let barrier = barrier.clone();
+ /// if once.swap(false, Ordering::Relaxed) {
+ /// tokio::spawn(async move { barrier.wait().await; });
+ /// }
+ /// }
+ /// })
+ /// .build()
+ /// .unwrap();
+ ///
+ /// runtime.block_on(async {
+ /// barrier.wait().await;
+ /// })
+ /// # }
+ /// ```
+ #[cfg(not(loom))]
+ pub fn on_thread_park<F>(&mut self, f: F) -> &mut Self
+ where
+ F: Fn() + Send + Sync + 'static,
+ {
+ self.before_park = Some(std::sync::Arc::new(f));
+ self
+ }
+
+ /// Executes function `f` just after a thread unparks (starts executing tasks).
+ ///
+ /// This is intended for bookkeeping and monitoring use cases; note that work
+ /// in this callback will increase latencies when the application has allowed one or
+ /// more runtime threads to go idle.
+ ///
+ /// Note: There can only be one unpark callback for a runtime; calling this function
+ /// more than once replaces the last callback defined, rather than adding to it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ ///
+ /// # pub fn main() {
+ /// let runtime = runtime::Builder::new_multi_thread()
+ /// .on_thread_unpark(|| {
+ /// println!("thread unparking");
+ /// })
+ /// .build();
+ ///
+ /// runtime.unwrap().block_on(async {
+ /// tokio::task::yield_now().await;
+ /// println!("Hello from Tokio!");
+ /// })
+ /// # }
+ /// ```
+ #[cfg(not(loom))]
+ pub fn on_thread_unpark<F>(&mut self, f: F) -> &mut Self
+ where
+ F: Fn() + Send + Sync + 'static,
+ {
+ self.after_unpark = Some(std::sync::Arc::new(f));
+ self
+ }
+
+ /// Creates the configured `Runtime`.
+ ///
+ /// The returned `Runtime` instance is ready to spawn tasks.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Builder;
+ ///
+ /// let rt = Builder::new_multi_thread().build().unwrap();
+ ///
+ /// rt.block_on(async {
+ /// println!("Hello from the Tokio runtime");
+ /// });
+ /// ```
+ pub fn build(&mut self) -> io::Result<Runtime> {
+ match &self.kind {
+ Kind::CurrentThread => self.build_basic_runtime(),
+ #[cfg(feature = "rt-multi-thread")]
+ Kind::MultiThread => self.build_threaded_runtime(),
+ }
+ }
+
+ fn get_cfg(&self) -> driver::Cfg {
+ driver::Cfg {
+ enable_pause_time: match self.kind {
+ Kind::CurrentThread => true,
+ #[cfg(feature = "rt-multi-thread")]
+ Kind::MultiThread => false,
+ },
+ enable_io: self.enable_io,
+ enable_time: self.enable_time,
+ start_paused: self.start_paused,
+ }
+ }
+
+ /// Sets a custom timeout for a thread in the blocking pool.
+ ///
+ /// By default, the timeout for a thread is set to 10 seconds. This can
+ /// be overridden using .thread_keep_alive().
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use tokio::runtime;
+ /// # use std::time::Duration;
+ ///
+ /// # pub fn main() {
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .thread_keep_alive(Duration::from_millis(100))
+ /// .build();
+ /// # }
+ /// ```
+ pub fn thread_keep_alive(&mut self, duration: Duration) -> &mut Self {
+ self.keep_alive = Some(duration);
+ self
+ }
+
+ fn build_basic_runtime(&mut self) -> io::Result<Runtime> {
+ use crate::runtime::{BasicScheduler, Kind};
+
+ let (driver, resources) = driver::Driver::new(self.get_cfg())?;
+
+ // And now put a single-threaded scheduler on top of the timer. When
+ // there are no futures ready to do something, it'll let the timer or
+ // the reactor to generate some new stimuli for the futures to continue
+ // in their life.
+ let scheduler =
+ BasicScheduler::new(driver, self.before_park.clone(), self.after_unpark.clone());
+ let spawner = Spawner::Basic(scheduler.spawner().clone());
+
+ // Blocking pool
+ let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads);
+ let blocking_spawner = blocking_pool.spawner().clone();
+
+ Ok(Runtime {
+ kind: Kind::CurrentThread(scheduler),
+ handle: Handle {
+ spawner,
+ io_handle: resources.io_handle,
+ time_handle: resources.time_handle,
+ signal_handle: resources.signal_handle,
+ clock: resources.clock,
+ blocking_spawner,
+ },
+ blocking_pool,
+ })
+ }
+}
+
+cfg_io_driver! {
+ impl Builder {
+ /// Enables the I/O driver.
+ ///
+ /// Doing this enables using net, process, signal, and some I/O types on
+ /// the runtime.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime;
+ ///
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .enable_io()
+ /// .build()
+ /// .unwrap();
+ /// ```
+ pub fn enable_io(&mut self) -> &mut Self {
+ self.enable_io = true;
+ self
+ }
+ }
+}
+
+cfg_time! {
+ impl Builder {
+ /// Enables the time driver.
+ ///
+ /// Doing this enables using `tokio::time` on the runtime.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime;
+ ///
+ /// let rt = runtime::Builder::new_multi_thread()
+ /// .enable_time()
+ /// .build()
+ /// .unwrap();
+ /// ```
+ pub fn enable_time(&mut self) -> &mut Self {
+ self.enable_time = true;
+ self
+ }
+ }
+}
+
+cfg_test_util! {
+ impl Builder {
+ /// Controls if the runtime's clock starts paused or advancing.
+ ///
+ /// Pausing time requires the current-thread runtime; construction of
+ /// the runtime will panic otherwise.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime;
+ ///
+ /// let rt = runtime::Builder::new_current_thread()
+ /// .enable_time()
+ /// .start_paused(true)
+ /// .build()
+ /// .unwrap();
+ /// ```
+ pub fn start_paused(&mut self, start_paused: bool) -> &mut Self {
+ self.start_paused = start_paused;
+ self
+ }
+ }
+}
+
+cfg_rt_multi_thread! {
+ impl Builder {
+ fn build_threaded_runtime(&mut self) -> io::Result<Runtime> {
+ use crate::loom::sys::num_cpus;
+ use crate::runtime::{Kind, ThreadPool};
+ use crate::runtime::park::Parker;
+
+ let core_threads = self.worker_threads.unwrap_or_else(num_cpus);
+
+ let (driver, resources) = driver::Driver::new(self.get_cfg())?;
+
+ let (scheduler, launch) = ThreadPool::new(core_threads, Parker::new(driver), self.before_park.clone(), self.after_unpark.clone());
+ let spawner = Spawner::ThreadPool(scheduler.spawner().clone());
+
+ // Create the blocking pool
+ let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads);
+ let blocking_spawner = blocking_pool.spawner().clone();
+
+ // Create the runtime handle
+ let handle = Handle {
+ spawner,
+ io_handle: resources.io_handle,
+ time_handle: resources.time_handle,
+ signal_handle: resources.signal_handle,
+ clock: resources.clock,
+ blocking_spawner,
+ };
+
+ // Spawn the thread pool workers
+ let _enter = crate::runtime::context::enter(handle.clone());
+ launch.launch();
+
+ Ok(Runtime {
+ kind: Kind::ThreadPool(scheduler),
+ handle,
+ blocking_pool,
+ })
+ }
+ }
+}
+
+impl fmt::Debug for Builder {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Builder")
+ .field("worker_threads", &self.worker_threads)
+ .field("max_blocking_threads", &self.max_blocking_threads)
+ .field(
+ "thread_name",
+ &"<dyn Fn() -> String + Send + Sync + 'static>",
+ )
+ .field("thread_stack_size", &self.thread_stack_size)
+ .field("after_start", &self.after_start.as_ref().map(|_| "..."))
+ .field("before_stop", &self.before_stop.as_ref().map(|_| "..."))
+ .field("before_park", &self.before_park.as_ref().map(|_| "..."))
+ .field("after_unpark", &self.after_unpark.as_ref().map(|_| "..."))
+ .finish()
+ }
+}