1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
window.docShell.chromeEventHandler.classList.add("textRecognitionDialogFrame");
window.addEventListener("DOMContentLoaded", () => {
// The arguments are passed in as the final parameters to TabDialogBox.prototype.open.
new TextRecognitionModal(...window.arguments);
});
/**
* @typedef {Object} TextRecognitionResult
* @property {number} confidence
* @property {string} string
* @property {DOMQuad} quad
*/
class TextRecognitionModal {
/**
* @param {Promise<TextRecognitionResult[]>} resultsPromise
* @param {() => {}} resizeVertically
* @param {(url: string, where: string, params: Object) => {}} openLinkIn
*/
constructor(resultsPromise, resizeVertically, openLinkIn) {
/** @type {HTMLElement} */
this.textEl = document.querySelector(".textRecognitionText");
/** @type {NodeListOf<HTMLElement>} */
this.headerEls = document.querySelectorAll(".textRecognitionHeader");
/** @type {HTMLAnchorElement} */
this.linkEl = document.querySelector(
"#text-recognition-header-no-results a"
);
this.resizeVertically = resizeVertically;
this.openLinkIn = openLinkIn;
this.setupLink();
this.setupCloseHandler();
this.showHeaderByID("text-recognition-header-loading");
resultsPromise.then(
({ results, direction }) => {
if (results.length === 0) {
// Update the UI to indicate that there were no results.
this.showHeaderByID("text-recognition-header-no-results");
// It's still worth recording telemetry times, as the API was still invoked.
TelemetryStopwatch.finish(
"TEXT_RECOGNITION_API_PERFORMANCE",
resultsPromise
);
return;
}
// There were results, cluster them into a nice presentation, and present
// the results to the UI.
this.runClusteringAndUpdateUI(results, direction);
this.showHeaderByID("text-recognition-header-results");
TelemetryStopwatch.finish(
"TEXT_RECOGNITION_API_PERFORMANCE",
resultsPromise
);
TextRecognitionModal.recordInteractionTime();
},
error => {
// There was an error in the text recognition call. Treat this as the same
// as if there were no results, but report the error to the console and telemetry.
this.showHeaderByID("text-recognition-header-no-results");
console.error(
"There was an error recognizing the text from an image.",
error
);
Services.telemetry.scalarAdd(
"browser.ui.interaction.textrecognition_error",
1
);
TelemetryStopwatch.cancel(
"TEXT_RECOGNITION_API_PERFORMANCE",
resultsPromise
);
}
);
}
/**
* After the results are shown, measure how long a user interacts with the modal.
*/
static recordInteractionTime() {
TelemetryStopwatch.start(
"TEXT_RECOGNITION_INTERACTION_TIMING",
// Pass the instance of the window in case multiple tabs are doing text recognition
// and there is a race condition.
window
);
const finish = () => {
TelemetryStopwatch.finish("TEXT_RECOGNITION_INTERACTION_TIMING", window);
window.removeEventListener("blur", finish);
window.removeEventListener("unload", finish);
};
// The user's focus went away, record this as the total interaction, even if they
// go back and interact with it more. This can be triggered by doing actions like
// clicking the URL bar, or by switching tabs.
window.addEventListener("blur", finish);
// The modal is closed.
window.addEventListener("unload", finish);
}
/**
* After the results are shown, measure how long a user interacts with the modal.
* @param {number} textLength
*/
static recordTextLengthTelemetry(textLength) {
const histogram = Services.telemetry.getHistogramById(
"TEXT_RECOGNITION_TEXT_LENGTH"
);
histogram.add(textLength);
}
setupCloseHandler() {
document
.querySelector("#text-recognition-close")
.addEventListener("click", () => {
window.close();
});
}
/**
* Apply the variables for the support.mozilla.org URL.
*/
setupLink() {
this.linkEl.href = Services.urlFormatter.formatURL(this.linkEl.href);
this.linkEl.addEventListener("click", event => {
event.preventDefault();
this.openLinkIn(this.linkEl.href, "tab", {
forceForeground: true,
triggeringPrincipal:
Services.scriptSecurityManager.getSystemPrincipal(),
});
});
}
/**
* A helper to only show the appropriate header.
*
* @param {string} id
*/
showHeaderByID(id) {
for (const header of this.headerEls) {
header.style.display = "none";
}
document.getElementById(id).style.display = "";
this.resizeVertically();
}
/**
* @param {string} text
*/
static copy(text) {
const clipboard = Cc["@mozilla.org/widget/clipboardhelper;1"].getService(
Ci.nsIClipboardHelper
);
clipboard.copyString(text);
}
/**
* Cluster the text based on its visual position.
*
* @param {TextRecognitionResult[]} results
* @param {"ltr" | "rtl"} direction
*/
runClusteringAndUpdateUI(results, direction) {
/** @type {Vec2[]} */
const centers = [];
for (const result of results) {
const p = result.quad;
// Pick either the left-most or right-most edge. This optimizes for
// aligned text over centered text.
const minOrMax = direction === "ltr" ? Math.min : Math.max;
centers.push([
minOrMax(p.p1.x, p.p2.x, p.p3.x, p.p4.x),
(p.p1.y, p.p2.y, p.p3.y, p.p4.y) / 4,
]);
}
const distSq = new DistanceSquared(centers);
// The values are ranged 0 - 1. This value might be able to be determined
// algorithmically.
const averageDistance = Math.sqrt(distSq.quantile(0.2));
const clusters = densityCluster(
centers,
// Neighborhood radius:
averageDistance,
// Minimum points to form a cluster:
2
);
let text = "";
for (const cluster of clusters) {
const pCluster = document.createElement("p");
pCluster.className = "textRecognitionTextCluster";
for (let i = 0; i < cluster.length; i++) {
const index = cluster[i];
const { string } = results[index];
if (i + 1 === cluster.length) {
// Each cluster could be a paragraph, so add newlines to the end
// for better copying.
text += string + "\n\n";
// The paragraph tag automatically uses two newlines.
pCluster.innerText += string;
} else {
// This text is assumed to be a newlines in a paragraph, so only needs
// to be separated by a space.
text += string + " ";
pCluster.innerText += string + " ";
}
}
this.textEl.appendChild(pCluster);
}
this.textEl.style.display = "block";
text = text.trim();
TextRecognitionModal.copy(text);
TextRecognitionModal.recordTextLengthTelemetry(text.length);
}
}
/**
* A two dimensional vector.
*
* @typedef {[number, number]} Vec2
*/
/**
* @typedef {number} PointIndex
*/
/**
* An implementation of the DBSCAN clustering algorithm.
*
* https://en.wikipedia.org/wiki/DBSCAN#Algorithm
*
* @param {Vec2[]} points
* @param {number} distance
* @param {number} minPoints
* @returns {Array<PointIndex[]>}
*/
function densityCluster(points, distance, minPoints) {
/**
* A flat of array of labels that match the index of the points array. The values have
* the following meaning:
*
* undefined := No label has been assigned
* "noise" := Noise is a point that hasn't been clustered.
* number := Cluster index
*
* @type {undefined | "noise" | Index}
*/
const labels = Array(points.length);
const noiseLabel = "noise";
let nextClusterIndex = 0;
// Every point must be visited at least once. Often they will be visited earlier
// in the interior of the loop.
for (let pointIndex = 0; pointIndex < points.length; pointIndex++) {
if (labels[pointIndex] !== undefined) {
// This point is already labeled from the interior logic.
continue;
}
// Get the neighbors that are within the range of the epsilon value, includes
// the current point.
const neighbors = getNeighborsWithinDistance(points, distance, pointIndex);
if (neighbors.length < minPoints) {
labels[pointIndex] = noiseLabel;
continue;
}
// Start a new cluster.
const clusterIndex = nextClusterIndex++;
labels[pointIndex] = clusterIndex;
// Fill the cluster. The neighbors array grows.
for (let i = 0; i < neighbors.length; i++) {
const nextPointIndex = neighbors[i];
if (typeof labels[nextPointIndex] === "number") {
// This point was already claimed, ignore it.
continue;
}
if (labels[nextPointIndex] === noiseLabel) {
// Claim this point and move on since noise has no neighbors.
labels[nextPointIndex] = clusterIndex;
continue;
}
// Claim this point as part of this cluster.
labels[nextPointIndex] = clusterIndex;
const newNeighbors = getNeighborsWithinDistance(
points,
distance,
nextPointIndex
);
if (newNeighbors.length >= minPoints) {
// Add on to the neighbors if more are found.
for (const newNeighbor of newNeighbors) {
if (!neighbors.includes(newNeighbor)) {
neighbors.push(newNeighbor);
}
}
}
}
}
const clusters = [];
// Pre-populate the clusters.
for (let i = 0; i < nextClusterIndex; i++) {
clusters[i] = [];
}
// Turn the labels into clusters, adding the noise to the end.
for (let pointIndex = 0; pointIndex < labels.length; pointIndex++) {
const label = labels[pointIndex];
if (typeof label === "number") {
clusters[label].push(pointIndex);
} else if (label === noiseLabel) {
// Add a single cluster.
clusters.push([pointIndex]);
} else {
throw new Error("Logic error. Expected every point to have a label.");
}
}
clusters.sort((a, b) => points[b[0]][1] - points[a[0]][1]);
return clusters;
}
/**
* @param {Vec2[]} points
* @param {number} distance
* @param {number} index,
* @returns {Index[]}
*/
function getNeighborsWithinDistance(points, distance, index) {
let neighbors = [index];
// There is no reason to compute the square root here if we square the
// original distance.
const distanceSquared = distance * distance;
for (let otherIndex = 0; otherIndex < points.length; otherIndex++) {
if (otherIndex === index) {
continue;
}
const a = points[index];
const b = points[otherIndex];
const dx = a[0] - b[0];
const dy = a[1] - b[1];
if (dx * dx + dy * dy < distanceSquared) {
neighbors.push(otherIndex);
}
}
return neighbors;
}
/**
* This class pre-computes the squared distances to allow for efficient distance lookups,
* and it provides a way to look up a distance quantile.
*/
class DistanceSquared {
/** @type {Map<number>} */
#distances = new Map();
#list;
#distancesSorted;
/**
* @param {Vec2[]} list
*/
constructor(list) {
this.#list = list;
for (let aIndex = 0; aIndex < list.length; aIndex++) {
for (let bIndex = aIndex + 1; bIndex < list.length; bIndex++) {
const id = this.#getTupleID(aIndex, bIndex);
const a = this.#list[aIndex];
const b = this.#list[bIndex];
const dx = a[0] - b[0];
const dy = a[1] - b[1];
this.#distances.set(id, dx * dx + dy * dy);
}
}
}
/**
* Returns a unique tuple ID to identify the relationship between two vectors.
*/
#getTupleID(aIndex, bIndex) {
return aIndex < bIndex
? aIndex * this.#list.length + bIndex
: bIndex * this.#list.length + aIndex;
}
/**
* Returns the distance squared between two vectors.
*
* @param {Index} aIndex
* @param {Index} bIndex
* @returns {number} The distance squared
*/
get(aIndex, bIndex) {
return this.#distances.get(this.#getTupleID(aIndex, bIndex));
}
/**
* Returns the quantile squared.
*
* @param {number} percentile - Ranged between 0 - 1
* @returns {number}
*/
quantile(percentile) {
if (!this.#distancesSorted) {
this.#distancesSorted = [...this.#distances.values()].sort(
(a, b) => a - b
);
}
const index = Math.max(
0,
Math.min(
this.#distancesSorted.length - 1,
Math.round(this.#distancesSorted.length * percentile)
)
);
return this.#distancesSorted[index];
}
}
|