summaryrefslogtreecommitdiffstats
path: root/dom/media/MediaDecoderStateMachine.h
blob: 758feb7539511fd31badc5e42402f2c0b1e861c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(MediaDecoderStateMachine_h__)
#  define MediaDecoderStateMachine_h__

#  include "AudioDeviceInfo.h"
#  include "ImageContainer.h"
#  include "MediaDecoder.h"
#  include "MediaDecoderOwner.h"
#  include "MediaDecoderStateMachineBase.h"
#  include "MediaFormatReader.h"
#  include "MediaQueue.h"
#  include "MediaSink.h"
#  include "MediaStatistics.h"
#  include "MediaTimer.h"
#  include "SeekJob.h"
#  include "mozilla/Attributes.h"
#  include "mozilla/ReentrantMonitor.h"
#  include "mozilla/StateMirroring.h"
#  include "nsThreadUtils.h"

namespace mozilla {

class AbstractThread;
class AudioSegment;
class DecodedStream;
class DOMMediaStream;
class ReaderProxy;
class TaskQueue;

extern LazyLogModule gMediaDecoderLog;

DDLoggedTypeDeclName(MediaDecoderStateMachine);

/*

Each media element for a media file has one thread called the "audio thread".

The audio thread  writes the decoded audio data to the audio
hardware. This is done in a separate thread to ensure that the
audio hardware gets a constant stream of data without
interruption due to decoding or display. At some point
AudioStream will be refactored to have a callback interface
where it asks for data and this thread will no longer be
needed.

The element/state machine also has a TaskQueue which runs in a
SharedThreadPool that is shared with all other elements/decoders. The state
machine dispatches tasks to this to call into the MediaDecoderReader to
request decoded audio or video data. The Reader will callback with decoded
sampled when it has them available, and the state machine places the decoded
samples into its queues for the consuming threads to pull from.

The MediaDecoderReader can choose to decode asynchronously, or synchronously
and return requested samples synchronously inside it's Request*Data()
functions via callback. Asynchronous decoding is preferred, and should be
used for any new readers.

Synchronisation of state between the thread is done via a monitor owned
by MediaDecoder.

The lifetime of the audio thread is controlled by the state machine when
it runs on the shared state machine thread. When playback needs to occur
the audio thread is created and an event dispatched to run it. The audio
thread exits when audio playback is completed or no longer required.

A/V synchronisation is handled by the state machine. It examines the audio
playback time and compares this to the next frame in the queue of video
frames. If it is time to play the video frame it is then displayed, otherwise
it schedules the state machine to run again at the time of the next frame.

Frame skipping is done in the following ways:

  1) The state machine will skip all frames in the video queue whose
     display time is less than the current audio time. This ensures
     the correct frame for the current time is always displayed.

  2) The decode tasks will stop decoding interframes and read to the
     next keyframe if it determines that decoding the remaining
     interframes will cause playback issues. It detects this by:
       a) If the amount of audio data in the audio queue drops
          below a threshold whereby audio may start to skip.
       b) If the video queue drops below a threshold where it
          will be decoding video data that won't be displayed due
          to the decode thread dropping the frame immediately.
     TODO: In future we should only do this when the Reader is decoding
           synchronously.

When hardware accelerated graphics is not available, YCbCr conversion
is done on the decode task queue when video frames are decoded.

The decode task queue pushes decoded audio and videos frames into two
separate queues - one for audio and one for video. These are kept
separate to make it easy to constantly feed audio data to the audio
hardware while allowing frame skipping of video data. These queues are
threadsafe, and neither the decode, audio, or state machine should
be able to monopolize them, and cause starvation of the other threads.

Both queues are bounded by a maximum size. When this size is reached
the decode tasks will no longer request video or audio depending on the
queue that has reached the threshold. If both queues are full, no more
decode tasks will be dispatched to the decode task queue, so other
decoders will have an opportunity to run.

During playback the audio thread will be idle (via a Wait() on the
monitor) if the audio queue is empty. Otherwise it constantly pops
audio data off the queue and plays it with a blocking write to the audio
hardware (via AudioStream).

*/
class MediaDecoderStateMachine
    : public MediaDecoderStateMachineBase,
      public DecoderDoctorLifeLogger<MediaDecoderStateMachine> {
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaDecoderStateMachine, override)

  using TrackSet = MediaFormatReader::TrackSet;

 public:
  using FrameID = mozilla::layers::ImageContainer::FrameID;
  MediaDecoderStateMachine(MediaDecoder* aDecoder, MediaFormatReader* aReader);

  nsresult Init(MediaDecoder* aDecoder) override;

  // Enumeration for the valid decoding states
  enum State {
    DECODER_STATE_DECODING_METADATA,
    DECODER_STATE_DORMANT,
    DECODER_STATE_DECODING_FIRSTFRAME,
    DECODER_STATE_DECODING,
    DECODER_STATE_LOOPING_DECODING,
    DECODER_STATE_SEEKING_ACCURATE,
    DECODER_STATE_SEEKING_FROMDORMANT,
    DECODER_STATE_SEEKING_NEXTFRAMESEEKING,
    DECODER_STATE_SEEKING_VIDEOONLY,
    DECODER_STATE_BUFFERING,
    DECODER_STATE_COMPLETED,
    DECODER_STATE_SHUTDOWN
  };

  RefPtr<GenericPromise> RequestDebugInfo(
      dom::MediaDecoderStateMachineDebugInfo& aInfo) override;

  size_t SizeOfVideoQueue() const override;

  size_t SizeOfAudioQueue() const override;

  // Sets the video decode mode. Used by the suspend-video-decoder feature.
  void SetVideoDecodeMode(VideoDecodeMode aMode) override;

  RefPtr<GenericPromise> InvokeSetSink(
      const RefPtr<AudioDeviceInfo>& aSink) override;

  void InvokeSuspendMediaSink() override;
  void InvokeResumeMediaSink() override;

  bool IsCDMProxySupported(CDMProxy* aProxy) override;

 private:
  class StateObject;
  class DecodeMetadataState;
  class DormantState;
  class DecodingFirstFrameState;
  class DecodingState;
  class LoopingDecodingState;
  class SeekingState;
  class AccurateSeekingState;
  class NextFrameSeekingState;
  class NextFrameSeekingFromDormantState;
  class VideoOnlySeekingState;
  class BufferingState;
  class CompletedState;
  class ShutdownState;

  static const char* ToStateStr(State aState);
  const char* ToStateStr();

  void GetDebugInfo(dom::MediaDecoderStateMachineDebugInfo& aInfo);

  // Initialization that needs to happen on the task queue. This is the first
  // task that gets run on the task queue, and is dispatched from the MDSM
  // constructor immediately after the task queue is created.
  void InitializationTask(MediaDecoder* aDecoder) override;

  RefPtr<MediaDecoder::SeekPromise> Seek(const SeekTarget& aTarget) override;

  RefPtr<ShutdownPromise> Shutdown() override;

  RefPtr<ShutdownPromise> FinishShutdown();

  // Update the playback position. This can result in a timeupdate event
  // and an invalidate of the frame being dispatched asynchronously if
  // there is no such event currently queued.
  // Only called on the decoder thread. Must be called with
  // the decode monitor held.
  void UpdatePlaybackPosition(const media::TimeUnit& aTime);

  // Schedules the shared state machine thread to run the state machine.
  void ScheduleStateMachine();

  // Invokes ScheduleStateMachine to run in |aTime|,
  // unless it's already scheduled to run earlier, in which case the
  // request is discarded.
  void ScheduleStateMachineIn(const media::TimeUnit& aTime);

  bool HaveEnoughDecodedAudio() const;
  bool HaveEnoughDecodedVideo() const;

  // The check is used to store more video frames than usual when playing 4K+
  // video.
  bool IsVideoDataEnoughComparedWithAudio() const;

  // Returns true if we're currently playing. The decoder monitor must
  // be held.
  bool IsPlaying() const;

  // Sets mMediaSeekable to false.
  void SetMediaNotSeekable();

  // Resets all states related to decoding and aborts all pending requests
  // to the decoders.
  void ResetDecode(const TrackSet& aTracks = TrackSet(TrackInfo::kAudioTrack,
                                                      TrackInfo::kVideoTrack));

  void SetVideoDecodeModeInternal(VideoDecodeMode aMode);

  // Set new sink device and restart MediaSink if playback is started.
  // Returned promise will be resolved with true if the playback is
  // started and false if playback is stopped after setting the new sink.
  // Returned promise will be rejected with value NS_ERROR_ABORT
  // if the action fails or it is not supported.
  // If there are multiple pending requests only the last one will be
  // executed, for all previous requests the promise will be resolved
  // with true or false similar to above.
  RefPtr<GenericPromise> SetSink(const RefPtr<AudioDeviceInfo>& aDevice);

  // Shutdown MediaSink on suspend to clean up resources.
  void SuspendMediaSink();
  // Create a new MediaSink, it must have been stopped first.
  void ResumeMediaSink();

 protected:
  virtual ~MediaDecoderStateMachine();

  void BufferedRangeUpdated() override;
  void VolumeChanged() override;
  void PreservesPitchChanged() override;
  void PlayStateChanged() override;
  void LoopingChanged() override;
  void UpdateSecondaryVideoContainer() override;

  void ReaderSuspendedChanged();

  // Inserts a sample into the Audio/Video queue.
  // aSample must not be null.
  void PushAudio(AudioData* aSample);
  void PushVideo(VideoData* aSample);

  void OnAudioPopped(const RefPtr<AudioData>& aSample);
  void OnVideoPopped(const RefPtr<VideoData>& aSample);

  void AudioAudibleChanged(bool aAudible);

  void SetPlaybackRate(double aPlaybackRate) override;
  void SetIsLiveStream(bool aIsLiveStream) override {
    mIsLiveStream = aIsLiveStream;
  }
  void SetCanPlayThrough(bool aCanPlayThrough) override {
    mCanPlayThrough = aCanPlayThrough;
  }
  void SetFragmentEndTime(const media::TimeUnit& aEndTime) override {
    // A negative number means we don't have a fragment end time at all.
    mFragmentEndTime = aEndTime >= media::TimeUnit::Zero()
                           ? aEndTime
                           : media::TimeUnit::Invalid();
  }

  void StreamNameChanged();
  void UpdateOutputCaptured();
  void OutputTracksChanged();
  void OutputPrincipalChanged();

  MediaQueue<AudioData>& AudioQueue() { return mAudioQueue; }
  MediaQueue<VideoData>& VideoQueue() { return mVideoQueue; }

  const MediaQueue<AudioData>& AudioQueue() const { return mAudioQueue; }
  const MediaQueue<VideoData>& VideoQueue() const { return mVideoQueue; }

  // True if we are low in decoded audio/video data.
  // May not be invoked when mReader->UseBufferingHeuristics() is false.
  bool HasLowDecodedData();

  bool HasLowDecodedAudio();

  bool HasLowDecodedVideo();

  bool OutOfDecodedAudio();

  bool OutOfDecodedVideo() {
    MOZ_ASSERT(OnTaskQueue());
    return IsVideoDecoding() && VideoQueue().GetSize() <= 1;
  }

  // Returns true if we're running low on buffered data.
  bool HasLowBufferedData();

  // Returns true if we have less than aThreshold of buffered data available.
  bool HasLowBufferedData(const media::TimeUnit& aThreshold);

  // Return the current time, either the audio clock if available (if the media
  // has audio, and the playback is possible), or a clock for the video.
  // Called on the state machine thread.
  // If aTimeStamp is non-null, set *aTimeStamp to the TimeStamp corresponding
  // to the returned stream time.
  media::TimeUnit GetClock(TimeStamp* aTimeStamp = nullptr) const;

  // Update only the state machine's current playback position (and duration,
  // if unknown).  Does not update the playback position on the decoder or
  // media element -- use UpdatePlaybackPosition for that.  Called on the state
  // machine thread, caller must hold the decoder lock.
  void UpdatePlaybackPositionInternal(const media::TimeUnit& aTime);

  // Update playback position and trigger next update by default time period.
  // Called on the state machine thread.
  void UpdatePlaybackPositionPeriodically();

  MediaSink* CreateAudioSink();

  // Always create mediasink which contains an AudioSink or DecodedStream
  // inside.
  already_AddRefed<MediaSink> CreateMediaSink();

  // Stops the media sink and shut it down.
  // The decoder monitor must be held with exactly one lock count.
  // Called on the state machine thread.
  void StopMediaSink();

  // Create and start the media sink.
  // The decoder monitor must be held with exactly one lock count.
  // Called on the state machine thread.
  // If start fails an NS_ERROR_FAILURE is returned.
  nsresult StartMediaSink();

  // Notification method invoked when mIsVisible changes.
  void VisibilityChanged();

  // Sets internal state which causes playback of media to pause.
  // The decoder monitor must be held.
  void StopPlayback();

  // If the conditions are right, sets internal state which causes playback
  // of media to begin or resume.
  // Must be called with the decode monitor held.
  void MaybeStartPlayback();

  void EnqueueFirstFrameLoadedEvent();

  // Start a task to decode audio.
  void RequestAudioData();

  // Start a task to decode video.
  // @param aRequestNextVideoKeyFrame
  // If aRequestNextKeyFrame is true, will request data for the next keyframe
  // after aCurrentTime.
  void RequestVideoData(const media::TimeUnit& aCurrentTime,
                        bool aRequestNextKeyFrame = false);

  void WaitForData(MediaData::Type aType);

  // Returns the "media time". This is the absolute time which the media
  // playback has reached. i.e. this returns values in the range
  // [mStartTime, mEndTime], and mStartTime will not be 0 if the media does
  // not start at 0. Note this is different than the "current playback
  // position", which is in the range [0,duration].
  media::TimeUnit GetMediaTime() const {
    MOZ_ASSERT(OnTaskQueue());
    return mCurrentPosition;
  }

  // Returns an upper bound on the number of microseconds of audio that is
  // decoded and playable. This is the sum of the number of usecs of audio which
  // is decoded and in the reader's audio queue, and the usecs of unplayed audio
  // which has been pushed to the audio hardware for playback. Note that after
  // calling this, the audio hardware may play some of the audio pushed to
  // hardware, so this can only be used as a upper bound. The decoder monitor
  // must be held when calling this. Called on the decode thread.
  media::TimeUnit GetDecodedAudioDuration() const;

  void FinishDecodeFirstFrame();

  // Performs one "cycle" of the state machine.
  void RunStateMachine();

  bool IsStateMachineScheduled() const;

  // These return true if the respective stream's decode has not yet reached
  // the end of stream.
  bool IsAudioDecoding();
  bool IsVideoDecoding();

 private:
  // Resolved by the MediaSink to signal that all audio/video outstanding
  // work is complete and identify which part(a/v) of the sink is shutting down.
  void OnMediaSinkAudioComplete();
  void OnMediaSinkVideoComplete();

  // Rejected by the MediaSink to signal errors for audio/video.
  void OnMediaSinkAudioError(nsresult aResult);
  void OnMediaSinkVideoError();

  // State-watching manager.
  WatchManager<MediaDecoderStateMachine> mWatchManager;

  // True if we've dispatched a task to run the state machine but the task has
  // yet to run.
  bool mDispatchedStateMachine;

  // Used to dispatch another round schedule with specific target time.
  DelayedScheduler mDelayedScheduler;

  // Queue of audio frames. This queue is threadsafe, and is accessed from
  // the audio, decoder, state machine, and main threads.
  MediaQueue<AudioData> mAudioQueue;
  // Queue of video frames. This queue is threadsafe, and is accessed from
  // the decoder, state machine, and main threads.
  MediaQueue<VideoData> mVideoQueue;

  UniquePtr<StateObject> mStateObj;

  media::TimeUnit Duration() const {
    MOZ_ASSERT(OnTaskQueue());
    return mDuration.Ref().ref();
  }

  // FrameID which increments every time a frame is pushed to our queue.
  FrameID mCurrentFrameID;

  // Media Fragment end time.
  media::TimeUnit mFragmentEndTime = media::TimeUnit::Invalid();

  // The media sink resource.  Used on the state machine thread.
  RefPtr<MediaSink> mMediaSink;

  // The end time of the last audio frame that's been pushed onto the media sink
  // in microseconds. This will approximately be the end time
  // of the audio stream, unless another frame is pushed to the hardware.
  media::TimeUnit AudioEndTime() const;

  // The end time of the last rendered video frame that's been sent to
  // compositor.
  media::TimeUnit VideoEndTime() const;

  // The end time of the last decoded audio frame. This signifies the end of
  // decoded audio data. Used to check if we are low in decoded data.
  media::TimeUnit mDecodedAudioEndTime;

  // The end time of the last decoded video frame. Used to check if we are low
  // on decoded video data.
  media::TimeUnit mDecodedVideoEndTime;

  // If we've got more than this number of decoded video frames waiting in
  // the video queue, we will not decode any more video frames until some have
  // been consumed by the play state machine thread.
  // Must hold monitor.
  uint32_t GetAmpleVideoFrames() const;

  // Our "ample" audio threshold. Once we've this much audio decoded, we
  // pause decoding.
  media::TimeUnit mAmpleAudioThreshold;

  const char* AudioRequestStatus() const;
  const char* VideoRequestStatus() const;

  void OnSuspendTimerResolved();
  void CancelSuspendTimer();

  bool IsInSeamlessLooping() const;

  bool mCanPlayThrough = false;

  bool mIsLiveStream = false;

  // True if all audio frames are already rendered.
  bool mAudioCompleted = false;

  // True if all video frames are already rendered.
  bool mVideoCompleted = false;

  // True if video decoding is suspended.
  bool mVideoDecodeSuspended;

  // Track enabling video decode suspension via timer
  DelayedScheduler mVideoDecodeSuspendTimer;

  // Track the current video decode mode.
  VideoDecodeMode mVideoDecodeMode;

  // Track the complete & error for audio/video separately
  MozPromiseRequestHolder<MediaSink::EndedPromise> mMediaSinkAudioEndedPromise;
  MozPromiseRequestHolder<MediaSink::EndedPromise> mMediaSinkVideoEndedPromise;

  MediaEventListener mAudioQueueListener;
  MediaEventListener mVideoQueueListener;
  MediaEventListener mAudibleListener;
  MediaEventListener mOnMediaNotSeekable;

  const bool mIsMSE;

  const bool mShouldResistFingerprinting;

  bool mSeamlessLoopingAllowed;

  // If media was in looping and had reached to the end before, then we need
  // to adjust sample time from clock time to media time.
  void AdjustByLooping(media::TimeUnit& aTime) const;

  // These are used for seamless looping. When looping has been enable at least
  // once, `mOriginalDecodedDuration` would be set to the larger duration
  // between two tracks.
  media::TimeUnit mOriginalDecodedDuration;
  Maybe<media::TimeUnit> mAudioTrackDecodedDuration;
  Maybe<media::TimeUnit> mVideoTrackDecodedDuration;

  bool HasLastDecodedData(MediaData::Type aType);

  // Current playback position in the stream in bytes.
  int64_t mPlaybackOffset = 0;

  // For seamless looping video, we don't want to trigger skip-to-next-keyframe
  // after reaching video EOS. Because we've reset the demuxer to 0, and are
  // going to request data from start. If playback hasn't looped back, the media
  // time would still be too large, which makes the reader think the playback is
  // way behind and performs unnecessary skipping. Eg. Media is 10s long,
  // reaching EOS at 8s, requesting data at 9s. Assume media's keyframe interval
  // is 3s, which means keyframes will appear on 0s, 3s, 6s and 9s. If we use
  // current time as a threshold, the reader sees the next key frame is 3s but
  // the threashold is 9s, which usually happens when the decoding is too slow.
  // But that is not the case for us, we should by pass thskip-to-next-keyframe
  // logic until the media loops back.
  bool mBypassingSkipToNextKeyFrameCheck = false;

 private:
  // Audio stream name
  Mirror<nsAutoString> mStreamName;

  // The device used with SetSink, or nullptr if no explicit device has been
  // set.
  Mirror<RefPtr<AudioDeviceInfo>> mSinkDevice;

  // Whether all output should be captured into mOutputTracks, halted, or not
  // captured.
  Mirror<MediaDecoder::OutputCaptureState> mOutputCaptureState;

  // A dummy track used to access the right MediaTrackGraph instance. Needed
  // since there's no guarantee that output tracks are present.
  Mirror<nsMainThreadPtrHandle<SharedDummyTrack>> mOutputDummyTrack;

  // Tracks to capture data into.
  Mirror<CopyableTArray<RefPtr<ProcessedMediaTrack>>> mOutputTracks;

  // PrincipalHandle to feed with data captured into mOutputTracks.
  Mirror<PrincipalHandle> mOutputPrincipal;

  Canonical<CopyableTArray<RefPtr<ProcessedMediaTrack>>> mCanonicalOutputTracks;
  Canonical<PrincipalHandle> mCanonicalOutputPrincipal;

  // Track when MediaSink is supsended. When that happens some actions are
  // restricted like starting the sink or changing sink id. The flag is valid
  // after Initialization. TaskQueue thread only.
  bool mIsMediaSinkSuspended = false;

 public:
  AbstractCanonical<CopyableTArray<RefPtr<ProcessedMediaTrack>>>*
  CanonicalOutputTracks() {
    return &mCanonicalOutputTracks;
  }
  AbstractCanonical<PrincipalHandle>* CanonicalOutputPrincipal() {
    return &mCanonicalOutputPrincipal;
  }
};

}  // namespace mozilla

#endif