1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <cstdint>
#include <cmath>
#include <inttypes.h>
#include <limits>
#include <type_traits>
#include "TimeUnits.h"
#include "Intervals.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Maybe.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/IntegerPrintfMacros.h"
#include "nsDebug.h"
#include "nsPrintfCString.h"
#include "nsStringFwd.h"
namespace mozilla::media {
class TimeIntervals;
} // namespace mozilla::media
namespace mozilla {
namespace media {
TimeUnit TimeUnit::FromSeconds(double aValue, int64_t aBase) {
MOZ_ASSERT(!std::isnan(aValue));
MOZ_ASSERT(aBase > 0);
if (std::isinf(aValue)) {
return aValue > 0 ? FromInfinity() : FromNegativeInfinity();
}
// Warn that a particular value won't be able to be roundtrip at the same
// base -- we can keep this for some time until we're confident this is
// stable.
double inBase = aValue * static_cast<double>(aBase);
if (std::abs(inBase) >
static_cast<double>(std::numeric_limits<int64_t>::max())) {
NS_WARNING(
nsPrintfCString("Warning: base %" PRId64
" is too high to represent %lfs, returning Infinity.",
aBase, aValue)
.get());
if (inBase > 0) {
return TimeUnit::FromInfinity();
}
return TimeUnit::FromNegativeInfinity();
}
// inBase can large enough that it doesn't map to an exact integer, warn in
// this case. This happens if aBase is large, and so the loss of precision is
// likely small.
if (inBase > std::pow(2, std::numeric_limits<double>::digits) - 1) {
NS_WARNING(nsPrintfCString("Warning: base %" PRId64
" is too high to represent %lfs accurately.",
aBase, aValue)
.get());
}
return TimeUnit(static_cast<int64_t>(inBase), aBase);
}
TimeUnit TimeUnit::FromInfinity() { return TimeUnit(INT64_MAX); }
TimeUnit TimeUnit::FromNegativeInfinity() { return TimeUnit(INT64_MIN); }
TimeUnit TimeUnit::FromTimeDuration(const TimeDuration& aDuration) {
// This could be made to choose the base
return TimeUnit(AssertedCast<int64_t>(aDuration.ToMicroseconds()),
USECS_PER_S);
}
TimeUnit TimeUnit::Invalid() {
TimeUnit ret;
ret.mTicks = CheckedInt64(INT64_MAX);
// Force an overflow to render the CheckedInt invalid.
ret.mTicks += 1;
return ret;
}
int64_t TimeUnit::ToMilliseconds() const { return ToCommonUnit(MSECS_PER_S); }
int64_t TimeUnit::ToMicroseconds() const { return ToCommonUnit(USECS_PER_S); }
int64_t TimeUnit::ToNanoseconds() const { return ToCommonUnit(NSECS_PER_S); }
int64_t TimeUnit::ToTicksAtRate(int64_t aRate) const {
// Common case
if (aRate == mBase) {
return mTicks.value();
}
// Approximation
return mTicks.value() * aRate / mBase;
}
double TimeUnit::ToSeconds() const {
if (IsPosInf()) {
return PositiveInfinity<double>();
}
if (IsNegInf()) {
return NegativeInfinity<double>();
}
return static_cast<double>(mTicks.value()) / static_cast<double>(mBase);
}
nsCString TimeUnit::ToString() const {
nsCString dump;
if (mTicks.isValid()) {
dump += nsPrintfCString("{%" PRId64 ",%" PRId64 "}", mTicks.value(), mBase);
} else {
dump += nsLiteralCString("{invalid}"_ns);
}
return dump;
}
TimeDuration TimeUnit::ToTimeDuration() const {
return TimeDuration::FromSeconds(ToSeconds());
}
bool TimeUnit::IsInfinite() const { return IsPosInf() || IsNegInf(); }
bool TimeUnit::IsPositive() const { return mTicks.value() > 0; }
bool TimeUnit::IsPositiveOrZero() const { return mTicks.value() >= 0; }
bool TimeUnit::IsZero() const { return mTicks.value() == 0; }
bool TimeUnit::IsNegative() const { return mTicks.value() < 0; }
// Returns true if the fractions are equal when converted to the smallest
// base.
bool TimeUnit::EqualsAtLowestResolution(const TimeUnit& aOther) const {
MOZ_ASSERT(IsValid() && aOther.IsValid());
if (aOther.mBase == mBase) {
return mTicks == aOther.mTicks;
}
if (mBase > aOther.mBase) {
TimeUnit thisInBase = ToBase(aOther.mBase);
return thisInBase.mTicks == aOther.mTicks;
}
TimeUnit otherInBase = aOther.ToBase(mBase);
return otherInBase.mTicks == mTicks;
}
// Strict equality -- the fractions must be exactly equal
bool TimeUnit::operator==(const TimeUnit& aOther) const {
MOZ_ASSERT(IsValid() && aOther.IsValid());
if (aOther.mBase == mBase) {
return mTicks == aOther.mTicks;
}
// debatable mathematically
if ((IsPosInf() && aOther.IsPosInf()) || (IsNegInf() && aOther.IsNegInf())) {
return true;
}
if ((IsPosInf() && !aOther.IsPosInf()) ||
(IsNegInf() && !aOther.IsNegInf())) {
return false;
}
CheckedInt<int64_t> lhs = mTicks * aOther.mBase;
CheckedInt<int64_t> rhs = aOther.mTicks * mBase;
if (lhs.isValid() && rhs.isValid()) {
return lhs == rhs;
}
// Reduce the fractions and try again
const TimeUnit a = Reduced();
const TimeUnit b = aOther.Reduced();
lhs = a.mTicks * b.mBase;
rhs = b.mTicks * a.mBase;
if (lhs.isValid() && rhs.isValid()) {
return lhs.value() == rhs.value();
}
// last ditch, convert the reduced fractions to doubles
double lhsFloating =
static_cast<double>(a.mTicks.value()) * static_cast<double>(a.mBase);
double rhsFloating =
static_cast<double>(b.mTicks.value()) * static_cast<double>(b.mBase);
return lhsFloating == rhsFloating;
}
bool TimeUnit::operator!=(const TimeUnit& aOther) const {
MOZ_ASSERT(IsValid() && aOther.IsValid());
return !(aOther == *this);
}
bool TimeUnit::operator>=(const TimeUnit& aOther) const {
MOZ_ASSERT(IsValid() && aOther.IsValid());
if (aOther.mBase == mBase) {
return mTicks.value() >= aOther.mTicks.value();
}
if ((!IsPosInf() && aOther.IsPosInf()) ||
(IsNegInf() && !aOther.IsNegInf())) {
return false;
}
if ((IsPosInf() && !aOther.IsPosInf()) ||
(!IsNegInf() && aOther.IsNegInf())) {
return true;
}
CheckedInt<int64_t> lhs = mTicks * aOther.mBase;
CheckedInt<int64_t> rhs = aOther.mTicks * mBase;
if (lhs.isValid() && rhs.isValid()) {
return lhs.value() >= rhs.value();
}
// Reduce the fractions and try again
const TimeUnit a = Reduced();
const TimeUnit b = aOther.Reduced();
lhs = a.mTicks * b.mBase;
rhs = b.mTicks * a.mBase;
if (lhs.isValid() && rhs.isValid()) {
return lhs.value() >= rhs.value();
}
// last ditch, convert the reduced fractions to doubles
return ToSeconds() >= aOther.ToSeconds();
}
bool TimeUnit::operator>(const TimeUnit& aOther) const {
return !(*this <= aOther);
}
bool TimeUnit::operator<=(const TimeUnit& aOther) const {
MOZ_ASSERT(IsValid() && aOther.IsValid());
if (aOther.mBase == mBase) {
return mTicks.value() <= aOther.mTicks.value();
}
if ((!IsPosInf() && aOther.IsPosInf()) ||
(IsNegInf() && !aOther.IsNegInf())) {
return true;
}
if ((IsPosInf() && !aOther.IsPosInf()) ||
(!IsNegInf() && aOther.IsNegInf())) {
return false;
}
CheckedInt<int64_t> lhs = mTicks * aOther.mBase;
CheckedInt<int64_t> rhs = aOther.mTicks * mBase;
if (lhs.isValid() && rhs.isValid()) {
return lhs.value() <= rhs.value();
}
// Reduce the fractions and try again
const TimeUnit a = Reduced();
const TimeUnit b = aOther.Reduced();
lhs = a.mTicks * b.mBase;
rhs = b.mTicks * a.mBase;
if (lhs.isValid() && rhs.isValid()) {
return lhs.value() <= rhs.value();
}
// last ditch, convert the reduced fractions to doubles
return ToSeconds() <= aOther.ToSeconds();
}
bool TimeUnit::operator<(const TimeUnit& aOther) const {
return !(*this >= aOther);
}
TimeUnit TimeUnit::operator%(const TimeUnit& aOther) const {
MOZ_ASSERT(IsValid() && aOther.IsValid());
if (aOther.mBase == mBase) {
return TimeUnit(mTicks % aOther.mTicks, mBase);
}
// This path can be made better if need be.
double a = ToSeconds();
double b = aOther.ToSeconds();
return TimeUnit::FromSeconds(fmod(a, b), mBase);
}
TimeUnit TimeUnit::operator+(const TimeUnit& aOther) const {
if (IsInfinite() || aOther.IsInfinite()) {
// When adding at least one infinite value, the result is either
// +/-Inf, or NaN. So do the calculation in floating point for
// simplicity.
double result = ToSeconds() + aOther.ToSeconds();
return std::isnan(result) ? TimeUnit::Invalid() : FromSeconds(result);
}
if (aOther.mBase == mBase) {
return TimeUnit(mTicks + aOther.mTicks, mBase);
}
if (aOther.IsZero()) {
return *this;
}
if (IsZero()) {
return aOther;
}
double error;
TimeUnit inBase = aOther.ToBase(mBase, error);
if (error == 0.0) {
return *this + inBase;
}
// Last ditch: not exact
double a = ToSeconds();
double b = aOther.ToSeconds();
return TimeUnit::FromSeconds(a + b, mBase);
}
TimeUnit TimeUnit::operator-(const TimeUnit& aOther) const {
if (IsInfinite() || aOther.IsInfinite()) {
// When subtracting at least one infinite value, the result is either
// +/-Inf, or NaN. So do the calculation in floating point for
// simplicity.
double result = ToSeconds() - aOther.ToSeconds();
return std::isnan(result) ? TimeUnit::Invalid() : FromSeconds(result);
}
if (aOther.mBase == mBase) {
return TimeUnit(mTicks - aOther.mTicks, mBase);
}
if (aOther.IsZero()) {
return *this;
}
if (IsZero()) {
return TimeUnit(-aOther.mTicks, aOther.mBase);
}
double error = 0.0;
TimeUnit inBase = aOther.ToBase(mBase, error);
if (error == 0) {
return *this - inBase;
}
// Last ditch: not exact
double a = ToSeconds();
double b = aOther.ToSeconds();
return TimeUnit::FromSeconds(a - b, mBase);
}
TimeUnit& TimeUnit::operator+=(const TimeUnit& aOther) {
if (aOther.mBase == mBase) {
mTicks += aOther.mTicks;
return *this;
}
*this = *this + aOther;
return *this;
}
TimeUnit& TimeUnit::operator-=(const TimeUnit& aOther) {
if (aOther.mBase == mBase) {
mTicks -= aOther.mTicks;
return *this;
}
*this = *this - aOther;
return *this;
}
TimeUnit TimeUnit::MultDouble(double aVal) const {
double multiplied = AssertedCast<double>(mTicks.value()) * aVal;
// Check is the result of the multiplication can be represented exactly as
// an integer, in a double.
if (multiplied > std::pow(2, std::numeric_limits<double>::digits) - 1) {
printf_stderr("TimeUnit tick count after multiplication %" PRId64
" * %lf is too"
" high for the result to be exact",
mTicks.value(), aVal);
MOZ_CRASH();
}
// static_cast is ok, the magnitude of the number has been checked just above.
return TimeUnit(static_cast<int64_t>(multiplied), mBase);
}
bool TimeUnit::IsValid() const { return mTicks.isValid(); }
bool TimeUnit::IsPosInf() const {
return mTicks.isValid() && mTicks.value() == INT64_MAX;
}
bool TimeUnit::IsNegInf() const {
return mTicks.isValid() && mTicks.value() == INT64_MIN;
}
int64_t TimeUnit::ToCommonUnit(int64_t aRatio) const {
CheckedInt<int64_t> rv = mTicks;
// Avoid the risk overflowing in common cases, e.g. converting a TimeUnit
// with a base of 1e9 back to nanoseconds.
if (mBase == aRatio) {
return rv.value();
}
// Avoid overflowing in other common cases, e.g. converting a TimeUnit with
// a base of 1e9 to microseconds: the denominator is divisible by the target
// unit so we can reorder the computation and keep the number within int64_t
// range.
if (aRatio < mBase && (mBase % aRatio) == 0) {
int64_t exactDivisor = mBase / aRatio;
rv /= exactDivisor;
return rv.value();
}
rv *= aRatio;
rv /= mBase;
if (rv.isValid()) {
return rv.value();
}
// Last ditch, perform the computation in floating point.
double ratioFloating = AssertedCast<double>(aRatio);
double baseFloating = AssertedCast<double>(mBase);
double ticksFloating = static_cast<double>(mTicks.value());
double approx = ticksFloating * (ratioFloating / baseFloating);
// Clamp to a valid range. If this is clamped it's outside any usable time
// value even in nanoseconds (thousands of years).
if (approx > static_cast<double>(std::numeric_limits<int64_t>::max())) {
return std::numeric_limits<int64_t>::max();
}
if (approx < static_cast<double>(std::numeric_limits<int64_t>::lowest())) {
return std::numeric_limits<int64_t>::lowest();
}
return static_cast<int64_t>(approx);
}
// Reduce a TimeUnit to the smallest possible ticks and base. This is useful
// to comparison with big time values that can otherwise overflow.
TimeUnit TimeUnit::Reduced() const {
int64_t gcd = GCD(mTicks.value(), mBase);
return TimeUnit(mTicks.value() / gcd, mBase / gcd);
}
double RoundToMicrosecondResolution(double aSeconds) {
return std::round(aSeconds * USECS_PER_S) / USECS_PER_S;
}
TimeRanges TimeRanges::ToMicrosecondResolution() const {
TimeRanges output;
for (const auto& interval : mIntervals) {
TimeRange reducedPrecision{RoundToMicrosecondResolution(interval.mStart),
RoundToMicrosecondResolution(interval.mEnd),
RoundToMicrosecondResolution(interval.mFuzz)};
output += reducedPrecision;
}
return output;
}
}; // namespace media
} // namespace mozilla
|