summaryrefslogtreecommitdiffstats
path: root/dom/media/webm/EbmlComposer.cpp
blob: e3f04fd89b0dcc9f8eceb5982c1d92b51df3d86f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "EbmlComposer.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/EndianUtils.h"
#include "libmkv/EbmlIDs.h"
#include "libmkv/EbmlWriter.h"
#include "libmkv/WebMElement.h"
#include "prtime.h"
#include "limits.h"

namespace mozilla {

// Timecode scale in nanoseconds
constexpr unsigned long TIME_CODE_SCALE = 1000000;
// The WebM header size without audio CodecPrivateData
constexpr int32_t DEFAULT_HEADER_SIZE = 1024;
// Number of milliseconds after which we flush audio-only clusters
constexpr int32_t FLUSH_AUDIO_ONLY_AFTER_MS = 1000;

void EbmlComposer::GenerateHeader() {
  MOZ_RELEASE_ASSERT(!mMetadataFinished);
  MOZ_RELEASE_ASSERT(mHasAudio || mHasVideo);

  // Write the EBML header.
  EbmlGlobal ebml;
  // The WEbM header default size usually smaller than 1k.
  auto buffer =
      MakeUnique<uint8_t[]>(DEFAULT_HEADER_SIZE + mCodecPrivateData.Length());
  ebml.buf = buffer.get();
  ebml.offset = 0;
  writeHeader(&ebml);
  {
    EbmlLoc segEbmlLoc, ebmlLocseg, ebmlLoc;
    Ebml_StartSubElement(&ebml, &segEbmlLoc, Segment);
    {
      Ebml_StartSubElement(&ebml, &ebmlLocseg, SeekHead);
      // Todo: We don't know the exact sizes of encoded data and
      // ignore this section.
      Ebml_EndSubElement(&ebml, &ebmlLocseg);
      writeSegmentInformation(&ebml, &ebmlLoc, TIME_CODE_SCALE, 0);
      {
        EbmlLoc trackLoc;
        Ebml_StartSubElement(&ebml, &trackLoc, Tracks);
        {
          // Video
          if (mWidth > 0 && mHeight > 0) {
            writeVideoTrack(&ebml, 0x1, 0, "V_VP8", mWidth, mHeight,
                            mDisplayWidth, mDisplayHeight);
          }
          // Audio
          if (mCodecPrivateData.Length() > 0) {
            // Extract the pre-skip from mCodecPrivateData
            // then convert it to nanoseconds.
            // For more details see
            // https://tools.ietf.org/html/rfc7845#section-4.2
            uint64_t codecDelay = (uint64_t)LittleEndian::readUint16(
                                      mCodecPrivateData.Elements() + 10) *
                                  PR_NSEC_PER_SEC / 48000;
            // Fixed 80ms, convert into nanoseconds.
            uint64_t seekPreRoll = 80 * PR_NSEC_PER_MSEC;
            writeAudioTrack(&ebml, 0x2, 0x0, "A_OPUS", mSampleFreq, mChannels,
                            codecDelay, seekPreRoll,
                            mCodecPrivateData.Elements(),
                            mCodecPrivateData.Length());
          }
        }
        Ebml_EndSubElement(&ebml, &trackLoc);
      }
    }
    // The Recording length is unknown and
    // ignore write the whole Segment element size
  }
  MOZ_ASSERT(ebml.offset <= DEFAULT_HEADER_SIZE + mCodecPrivateData.Length(),
             "write more data > EBML_BUFFER_SIZE");
  auto block = mBuffer.AppendElement();
  block->SetLength(ebml.offset);
  memcpy(block->Elements(), ebml.buf, ebml.offset);
  mMetadataFinished = true;
}

nsresult EbmlComposer::WriteSimpleBlock(EncodedFrame* aFrame) {
  MOZ_RELEASE_ASSERT(mMetadataFinished);
  auto frameType = aFrame->mFrameType;
  const bool isVP8IFrame = (frameType == EncodedFrame::FrameType::VP8_I_FRAME);
  const bool isVP8PFrame = (frameType == EncodedFrame::FrameType::VP8_P_FRAME);
  const bool isOpus = (frameType == EncodedFrame::FrameType::OPUS_AUDIO_FRAME);

  MOZ_ASSERT_IF(isVP8IFrame, mHasVideo);
  MOZ_ASSERT_IF(isVP8PFrame, mHasVideo);
  MOZ_ASSERT_IF(isOpus, mHasAudio);

  if (isVP8PFrame && !mHasWrittenCluster) {
    // We ensure there is a cluster header and an I-frame prior to any P-frame.
    return NS_ERROR_INVALID_ARG;
  }

  int64_t timeCode = aFrame->mTime.ToMicroseconds() / PR_USEC_PER_MSEC -
                     mCurrentClusterTimecode;

  const bool needClusterHeader =
      !mHasWrittenCluster ||
      (!mHasVideo && timeCode >= FLUSH_AUDIO_ONLY_AFTER_MS) || isVP8IFrame;

  auto block = mBuffer.AppendElement();
  block->SetLength(aFrame->mFrameData->Length() + DEFAULT_HEADER_SIZE);

  EbmlGlobal ebml;
  ebml.offset = 0;
  ebml.buf = block->Elements();

  if (needClusterHeader) {
    mHasWrittenCluster = true;
    EbmlLoc ebmlLoc;
    // This starts the Cluster element. Note that we never end this element
    // through Ebml_EndSubElement. What the ending would allow us to do is write
    // the full length of the cluster in the element header. That would also
    // force us to keep the entire cluster in memory until we know where it
    // ends. Now it instead ends through the start of the next cluster. This
    // allows us to stream the muxed data with much lower latency than if we
    // would have to wait for clusters to end.
    Ebml_StartSubElement(&ebml, &ebmlLoc, Cluster);
    // if timeCode didn't under/overflow before, it shouldn't after this
    mCurrentClusterTimecode = aFrame->mTime.ToMicroseconds() / PR_USEC_PER_MSEC;
    Ebml_SerializeUnsigned(&ebml, Timecode, mCurrentClusterTimecode);

    // Can't under-/overflow now
    timeCode = 0;
  }

  if (MOZ_UNLIKELY(timeCode < SHRT_MIN || timeCode > SHRT_MAX)) {
    MOZ_CRASH_UNSAFE_PRINTF(
        "Invalid cluster timecode! audio=%d, video=%d, timeCode=%" PRId64
        "ms, currentClusterTimecode=%" PRIu64 "ms",
        mHasAudio, mHasVideo, timeCode, mCurrentClusterTimecode);
  }

  writeSimpleBlock(&ebml, isOpus ? 0x2 : 0x1, static_cast<short>(timeCode),
                   isVP8IFrame, 0, 0,
                   (unsigned char*)aFrame->mFrameData->Elements(),
                   aFrame->mFrameData->Length());
  MOZ_ASSERT(ebml.offset <= DEFAULT_HEADER_SIZE + aFrame->mFrameData->Length(),
             "write more data > EBML_BUFFER_SIZE");
  block->SetLength(ebml.offset);

  return NS_OK;
}

void EbmlComposer::SetVideoConfig(uint32_t aWidth, uint32_t aHeight,
                                  uint32_t aDisplayWidth,
                                  uint32_t aDisplayHeight) {
  MOZ_RELEASE_ASSERT(!mMetadataFinished);
  MOZ_ASSERT(aWidth > 0, "Width should > 0");
  MOZ_ASSERT(aHeight > 0, "Height should > 0");
  MOZ_ASSERT(aDisplayWidth > 0, "DisplayWidth should > 0");
  MOZ_ASSERT(aDisplayHeight > 0, "DisplayHeight should > 0");
  mWidth = aWidth;
  mHeight = aHeight;
  mDisplayWidth = aDisplayWidth;
  mDisplayHeight = aDisplayHeight;
  mHasVideo = true;
}

void EbmlComposer::SetAudioConfig(uint32_t aSampleFreq, uint32_t aChannels) {
  MOZ_RELEASE_ASSERT(!mMetadataFinished);
  MOZ_ASSERT(aSampleFreq > 0, "SampleFreq should > 0");
  MOZ_ASSERT(aChannels > 0, "Channels should > 0");
  mSampleFreq = aSampleFreq;
  mChannels = aChannels;
  mHasAudio = true;
}

void EbmlComposer::ExtractBuffer(nsTArray<nsTArray<uint8_t> >* aDestBufs,
                                 uint32_t aFlag) {
  if (!mMetadataFinished) {
    return;
  }
  aDestBufs->AppendElements(std::move(mBuffer));
  MOZ_ASSERT(mBuffer.IsEmpty());
}

}  // namespace mozilla