1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/pdf/SkPDFBitmap.h"
#include "include/codec/SkEncodedImageFormat.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkData.h"
#include "include/core/SkExecutor.h"
#include "include/core/SkImage.h"
#include "include/core/SkStream.h"
#include "include/private/SkColorData.h"
#include "include/private/base/SkTo.h"
#include "src/core/SkImageInfoPriv.h"
#include "src/pdf/SkDeflate.h"
#include "src/pdf/SkJpegInfo.h"
#include "src/pdf/SkPDFDocumentPriv.h"
#include "src/pdf/SkPDFTypes.h"
#include "src/pdf/SkPDFUtils.h"
////////////////////////////////////////////////////////////////////////////////
// write a single byte to a stream n times.
static void fill_stream(SkWStream* out, char value, size_t n) {
char buffer[4096];
memset(buffer, value, sizeof(buffer));
for (size_t i = 0; i < n / sizeof(buffer); ++i) {
out->write(buffer, sizeof(buffer));
}
out->write(buffer, n % sizeof(buffer));
}
/* It is necessary to average the color component of transparent
pixels with their surrounding neighbors since the PDF renderer may
separately re-sample the alpha and color channels when the image is
not displayed at its native resolution. Since an alpha of zero
gives no information about the color component, the pathological
case is a white image with sharp transparency bounds - the color
channel goes to black, and the should-be-transparent pixels are
rendered as grey because of the separate soft mask and color
resizing. e.g.: gm/bitmappremul.cpp */
static SkColor get_neighbor_avg_color(const SkPixmap& bm, int xOrig, int yOrig) {
SkASSERT(kBGRA_8888_SkColorType == bm.colorType());
unsigned r = 0, g = 0, b = 0, n = 0;
// Clamp the range to the edge of the bitmap.
int ymin = std::max(0, yOrig - 1);
int ymax = std::min(yOrig + 1, bm.height() - 1);
int xmin = std::max(0, xOrig - 1);
int xmax = std::min(xOrig + 1, bm.width() - 1);
for (int y = ymin; y <= ymax; ++y) {
const SkColor* scanline = bm.addr32(0, y);
for (int x = xmin; x <= xmax; ++x) {
SkColor color = scanline[x];
if (color != SK_ColorTRANSPARENT) {
r += SkColorGetR(color);
g += SkColorGetG(color);
b += SkColorGetB(color);
n++;
}
}
}
return n > 0 ? SkColorSetRGB(SkToU8(r / n), SkToU8(g / n), SkToU8(b / n))
: SK_ColorTRANSPARENT;
}
namespace {
enum class SkPDFStreamFormat { DCT, Flate, Uncompressed };
}
template <typename T>
static void emit_image_stream(SkPDFDocument* doc,
SkPDFIndirectReference ref,
T writeStream,
SkISize size,
const char* colorSpace,
SkPDFIndirectReference sMask,
int length,
SkPDFStreamFormat format) {
SkPDFDict pdfDict("XObject");
pdfDict.insertName("Subtype", "Image");
pdfDict.insertInt("Width", size.width());
pdfDict.insertInt("Height", size.height());
pdfDict.insertName("ColorSpace", colorSpace);
if (sMask) {
pdfDict.insertRef("SMask", sMask);
}
pdfDict.insertInt("BitsPerComponent", 8);
#ifdef SK_PDF_BASE85_BINARY
auto filters = SkPDFMakeArray();
filters->appendName("ASCII85Decode");
switch (format) {
case SkPDFStreamFormat::DCT: filters->appendName("DCTDecode"); break;
case SkPDFStreamFormat::Flate: filters->appendName("FlateDecode"); break;
case SkPDFStreamFormat::Uncompressed: break;
}
pdfDict.insertObject("Filter", std::move(filters));
#else
switch (format) {
case SkPDFStreamFormat::DCT: pdfDict.insertName("Filter", "DCTDecode"); break;
case SkPDFStreamFormat::Flate: pdfDict.insertName("Filter", "FlateDecode"); break;
case SkPDFStreamFormat::Uncompressed: break;
}
#endif
if (format == SkPDFStreamFormat::DCT) {
pdfDict.insertInt("ColorTransform", 0);
}
pdfDict.insertInt("Length", length);
doc->emitStream(pdfDict, std::move(writeStream), ref);
}
static void do_deflated_alpha(const SkPixmap& pm, SkPDFDocument* doc, SkPDFIndirectReference ref) {
SkPDF::Metadata::CompressionLevel compressionLevel = doc->metadata().fCompressionLevel;
SkPDFStreamFormat format = compressionLevel == SkPDF::Metadata::CompressionLevel::None
? SkPDFStreamFormat::Uncompressed
: SkPDFStreamFormat::Flate;
SkDynamicMemoryWStream buffer;
SkWStream* stream = &buffer;
std::optional<SkDeflateWStream> deflateWStream;
if (format == SkPDFStreamFormat::Flate) {
deflateWStream.emplace(&buffer, SkToInt(compressionLevel));
stream = &*deflateWStream;
}
if (kAlpha_8_SkColorType == pm.colorType()) {
SkASSERT(pm.rowBytes() == (size_t)pm.width());
stream->write(pm.addr8(), pm.width() * pm.height());
} else {
SkASSERT(pm.alphaType() == kUnpremul_SkAlphaType);
SkASSERT(pm.colorType() == kBGRA_8888_SkColorType);
SkASSERT(pm.rowBytes() == (size_t)pm.width() * 4);
const uint32_t* ptr = pm.addr32();
const uint32_t* stop = ptr + pm.height() * pm.width();
uint8_t byteBuffer[4092];
uint8_t* bufferStop = byteBuffer + std::size(byteBuffer);
uint8_t* dst = byteBuffer;
while (ptr != stop) {
*dst++ = 0xFF & ((*ptr++) >> SK_BGRA_A32_SHIFT);
if (dst == bufferStop) {
stream->write(byteBuffer, sizeof(byteBuffer));
dst = byteBuffer;
}
}
stream->write(byteBuffer, dst - byteBuffer);
}
if (deflateWStream) {
deflateWStream->finalize();
}
#ifdef SK_PDF_BASE85_BINARY
SkPDFUtils::Base85Encode(buffer.detachAsStream(), &buffer);
#endif
int length = SkToInt(buffer.bytesWritten());
emit_image_stream(doc, ref, [&buffer](SkWStream* stream) { buffer.writeToAndReset(stream); },
pm.info().dimensions(), "DeviceGray", SkPDFIndirectReference(),
length, format);
}
static void do_deflated_image(const SkPixmap& pm,
SkPDFDocument* doc,
bool isOpaque,
SkPDFIndirectReference ref) {
SkPDFIndirectReference sMask;
if (!isOpaque) {
sMask = doc->reserveRef();
}
SkPDF::Metadata::CompressionLevel compressionLevel = doc->metadata().fCompressionLevel;
SkPDFStreamFormat format = compressionLevel == SkPDF::Metadata::CompressionLevel::None
? SkPDFStreamFormat::Uncompressed
: SkPDFStreamFormat::Flate;
SkDynamicMemoryWStream buffer;
SkWStream* stream = &buffer;
std::optional<SkDeflateWStream> deflateWStream;
if (format == SkPDFStreamFormat::Flate) {
deflateWStream.emplace(&buffer, SkToInt(compressionLevel));
stream = &*deflateWStream;
}
const char* colorSpace = "DeviceGray";
switch (pm.colorType()) {
case kAlpha_8_SkColorType:
fill_stream(stream, '\x00', pm.width() * pm.height());
break;
case kGray_8_SkColorType:
SkASSERT(sMask.fValue = -1);
SkASSERT(pm.rowBytes() == (size_t)pm.width());
stream->write(pm.addr8(), pm.width() * pm.height());
break;
default:
colorSpace = "DeviceRGB";
SkASSERT(pm.alphaType() == kUnpremul_SkAlphaType);
SkASSERT(pm.colorType() == kBGRA_8888_SkColorType);
SkASSERT(pm.rowBytes() == (size_t)pm.width() * 4);
uint8_t byteBuffer[3072];
static_assert(std::size(byteBuffer) % 3 == 0, "");
uint8_t* bufferStop = byteBuffer + std::size(byteBuffer);
uint8_t* dst = byteBuffer;
for (int y = 0; y < pm.height(); ++y) {
const SkColor* src = pm.addr32(0, y);
for (int x = 0; x < pm.width(); ++x) {
SkColor color = *src++;
if (SkColorGetA(color) == SK_AlphaTRANSPARENT) {
color = get_neighbor_avg_color(pm, x, y);
}
*dst++ = SkColorGetR(color);
*dst++ = SkColorGetG(color);
*dst++ = SkColorGetB(color);
if (dst == bufferStop) {
stream->write(byteBuffer, sizeof(byteBuffer));
dst = byteBuffer;
}
}
}
stream->write(byteBuffer, dst - byteBuffer);
}
if (deflateWStream) {
deflateWStream->finalize();
}
#ifdef SK_PDF_BASE85_BINARY
SkPDFUtils::Base85Encode(buffer.detachAsStream(), &buffer);
#endif
int length = SkToInt(buffer.bytesWritten());
emit_image_stream(doc, ref, [&buffer](SkWStream* stream) { buffer.writeToAndReset(stream); },
pm.info().dimensions(), colorSpace, sMask, length, format);
if (!isOpaque) {
do_deflated_alpha(pm, doc, sMask);
}
}
static bool do_jpeg(sk_sp<SkData> data, SkPDFDocument* doc, SkISize size,
SkPDFIndirectReference ref) {
SkISize jpegSize;
SkEncodedInfo::Color jpegColorType;
SkEncodedOrigin exifOrientation;
if (!SkGetJpegInfo(data->data(), data->size(), &jpegSize,
&jpegColorType, &exifOrientation)) {
return false;
}
bool yuv = jpegColorType == SkEncodedInfo::kYUV_Color;
bool goodColorType = yuv || jpegColorType == SkEncodedInfo::kGray_Color;
if (jpegSize != size // Safety check.
|| !goodColorType
|| kTopLeft_SkEncodedOrigin != exifOrientation) {
return false;
}
#ifdef SK_PDF_BASE85_BINARY
SkDynamicMemoryWStream buffer;
SkPDFUtils::Base85Encode(SkMemoryStream::MakeDirect(data->data(), data->size()), &buffer);
data = buffer.detachAsData();
#endif
emit_image_stream(doc, ref,
[&data](SkWStream* dst) { dst->write(data->data(), data->size()); },
jpegSize, yuv ? "DeviceRGB" : "DeviceGray",
SkPDFIndirectReference(), SkToInt(data->size()), SkPDFStreamFormat::DCT);
return true;
}
static SkBitmap to_pixels(const SkImage* image) {
SkBitmap bm;
int w = image->width(),
h = image->height();
switch (image->colorType()) {
case kAlpha_8_SkColorType:
bm.allocPixels(SkImageInfo::MakeA8(w, h));
break;
case kGray_8_SkColorType:
bm.allocPixels(SkImageInfo::Make(w, h, kGray_8_SkColorType, kOpaque_SkAlphaType));
break;
default: {
// TODO: makeColorSpace(sRGB) or actually tag the images
SkAlphaType at = bm.isOpaque() ? kOpaque_SkAlphaType : kUnpremul_SkAlphaType;
bm.allocPixels(SkImageInfo::Make(w, h, kBGRA_8888_SkColorType, at));
}
}
// TODO: support GPU images in PDFs
if (!image->readPixels(nullptr, bm.pixmap(), 0, 0)) {
bm.eraseColor(SkColorSetARGB(0xFF, 0, 0, 0));
}
return bm;
}
void serialize_image(const SkImage* img,
int encodingQuality,
SkPDFDocument* doc,
SkPDFIndirectReference ref) {
SkASSERT(img);
SkASSERT(doc);
SkASSERT(encodingQuality >= 0);
SkISize dimensions = img->dimensions();
if (sk_sp<SkData> data = img->refEncodedData()) {
if (do_jpeg(std::move(data), doc, dimensions, ref)) {
return;
}
}
SkBitmap bm = to_pixels(img);
const SkPixmap& pm = bm.pixmap();
bool isOpaque = pm.isOpaque() || pm.computeIsOpaque();
if (encodingQuality <= 100 && isOpaque) {
if (sk_sp<SkData> data = img->encodeToData(SkEncodedImageFormat::kJPEG, encodingQuality)) {
if (do_jpeg(std::move(data), doc, dimensions, ref)) {
return;
}
}
}
do_deflated_image(pm, doc, isOpaque, ref);
}
SkPDFIndirectReference SkPDFSerializeImage(const SkImage* img,
SkPDFDocument* doc,
int encodingQuality) {
SkASSERT(img);
SkASSERT(doc);
SkPDFIndirectReference ref = doc->reserveRef();
if (SkExecutor* executor = doc->executor()) {
SkRef(img);
doc->incrementJobCount();
executor->add([img, encodingQuality, doc, ref]() {
serialize_image(img, encodingQuality, doc, ref);
SkSafeUnref(img);
doc->signalJobComplete();
});
return ref;
}
serialize_image(img, encodingQuality, doc, ref);
return ref;
}
|