summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/gregocal.cpp
blob: 5fd71d496c84c6d901d86644082513dbae1bbedb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 1997-2016, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*
* File GREGOCAL.CPP
*
* Modification History:
*
*   Date        Name        Description
*   02/05/97    clhuang     Creation.
*   03/28/97    aliu        Made highly questionable fix to computeFields to
*                           handle DST correctly.
*   04/22/97    aliu        Cleaned up code drastically.  Added monthLength().
*                           Finished unimplemented parts of computeTime() for
*                           week-based date determination.  Removed quetionable
*                           fix and wrote correct fix for computeFields() and
*                           daylight time handling.  Rewrote inDaylightTime()
*                           and computeFields() to handle sensitive Daylight to
*                           Standard time transitions correctly.
*   05/08/97    aliu        Added code review changes.  Fixed isLeapYear() to
*                           not cutover.
*   08/12/97    aliu        Added equivalentTo.  Misc other fixes.  Updated
*                           add() from Java source.
*    07/28/98    stephen        Sync up with JDK 1.2
*    09/14/98    stephen        Changed type of kOneDay, kOneWeek to double.
*                            Fixed bug in roll() 
*   10/15/99    aliu        Fixed j31, incorrect WEEK_OF_YEAR computation.
*   10/15/99    aliu        Fixed j32, cannot set date to Feb 29 2000 AD.
*                           {JDK bug 4210209 4209272}
*   11/15/99    weiv        Added YEAR_WOY and DOW_LOCAL computation
*                           to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
*   12/09/99    aliu        Fixed j81, calculation errors and roll bugs
*                           in year of cutover.
*   01/24/2000  aliu        Revised computeJulianDay for YEAR YEAR_WOY WOY.
********************************************************************************
*/

#include "unicode/utypes.h"
#include <float.h>

#if !UCONFIG_NO_FORMATTING

#include "unicode/gregocal.h"
#include "gregoimp.h"
#include "umutex.h"
#include "uassert.h"

// *****************************************************************************
// class GregorianCalendar
// *****************************************************************************

/**
* Note that the Julian date used here is not a true Julian date, since
* it is measured from midnight, not noon.  This value is the Julian
* day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
*/

static const int16_t kNumDays[]
= {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
static const int16_t kLeapNumDays[]
= {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
static const int8_t kMonthLength[]
= {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
static const int8_t kLeapMonthLength[]
= {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based

// setTimeInMillis() limits the Julian day range to +/-7F000000.
// This would seem to limit the year range to:
//  ms=+183882168921600000  jd=7f000000  December 20, 5828963 AD
//  ms=-184303902528000000  jd=81000000  September 20, 5838270 BC
// HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
// range limit on the year field is smaller (~ +/-140000). [alan 3.0]

static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = {
    // Minimum  Greatest    Least  Maximum
    //           Minimum  Maximum
    {        0,        0,        1,        1}, // ERA
    {        1,        1,   140742,   144683}, // YEAR
    {        0,        0,       11,       11}, // MONTH
    {        1,        1,       52,       53}, // WEEK_OF_YEAR
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
    {        1,        1,       28,       31}, // DAY_OF_MONTH
    {        1,        1,      365,      366}, // DAY_OF_YEAR
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
    {       -1,       -1,        4,        5}, // DAY_OF_WEEK_IN_MONTH
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
    {  -140742,  -140742,   140742,   144683}, // YEAR_WOY
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
    {  -140742,  -140742,   140742,   144683}, // EXTENDED_YEAR
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
    {        0,        0,       11,       11}, // ORDINAL_MONTH
};

/*
* <pre>
*                            Greatest       Least 
* Field name        Minimum   Minimum     Maximum     Maximum
* ----------        -------   -------     -------     -------
* ERA                     0         0           1           1
* YEAR                    1         1      140742      144683
* MONTH                   0         0          11          11
* WEEK_OF_YEAR            1         1          52          53
* WEEK_OF_MONTH           0         0           4           6
* DAY_OF_MONTH            1         1          28          31
* DAY_OF_YEAR             1         1         365         366
* DAY_OF_WEEK             1         1           7           7
* DAY_OF_WEEK_IN_MONTH   -1        -1           4           5
* AM_PM                   0         0           1           1
* HOUR                    0         0          11          11
* HOUR_OF_DAY             0         0          23          23
* MINUTE                  0         0          59          59
* SECOND                  0         0          59          59
* MILLISECOND             0         0         999         999
* ZONE_OFFSET           -12*      -12*         12*         12*
* DST_OFFSET              0         0           1*          1*
* YEAR_WOY                1         1      140742      144683
* DOW_LOCAL               1         1           7           7
* </pre>
* (*) In units of one-hour
*/

#if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
#include <stdio.h>
#endif

U_NAMESPACE_BEGIN

UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar)

// 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
// Note that only Italy and other Catholic countries actually
// observed this cutover.  Most other countries followed in
// the next few centuries, some as late as 1928. [LIU]
// in Java, -12219292800000L
//const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
static const uint32_t kCutoverJulianDay = 2299161;
static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY;
//static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay);

// -------------------------------------

GregorianCalendar::GregorianCalendar(UErrorCode& status)
:   Calendar(status),
fGregorianCutover(kPapalCutover),
fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
fIsGregorian(true), fInvertGregorian(false)
{
    setTimeInMillis(getNow(), status);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status)
:   Calendar(zone, Locale::getDefault(), status),
fGregorianCutover(kPapalCutover),
fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
fIsGregorian(true), fInvertGregorian(false)
{
    setTimeInMillis(getNow(), status);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status)
:   Calendar(zone, Locale::getDefault(), status),
fGregorianCutover(kPapalCutover),
fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
fIsGregorian(true), fInvertGregorian(false)
{
    setTimeInMillis(getNow(), status);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status)
:   Calendar(TimeZone::forLocaleOrDefault(aLocale), aLocale, status),
fGregorianCutover(kPapalCutover),
fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
fIsGregorian(true), fInvertGregorian(false)
{
    setTimeInMillis(getNow(), status);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale,
                                     UErrorCode& status)
                                     :   Calendar(zone, aLocale, status),
                                     fGregorianCutover(kPapalCutover),
                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
                                     fIsGregorian(true), fInvertGregorian(false)
{
    setTimeInMillis(getNow(), status);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale,
                                     UErrorCode& status)
                                     :   Calendar(zone, aLocale, status),
                                     fGregorianCutover(kPapalCutover),
                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
                                     fIsGregorian(true), fInvertGregorian(false)
{
    setTimeInMillis(getNow(), status);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
                                     UErrorCode& status)
                                     :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
                                     fGregorianCutover(kPapalCutover),
                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
                                     fIsGregorian(true), fInvertGregorian(false)
{
    set(UCAL_ERA, AD);
    set(UCAL_YEAR, year);
    set(UCAL_MONTH, month);
    set(UCAL_DATE, date);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
                                     int32_t hour, int32_t minute, UErrorCode& status)
                                     :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
                                     fGregorianCutover(kPapalCutover),
                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
                                     fIsGregorian(true), fInvertGregorian(false)
{
    set(UCAL_ERA, AD);
    set(UCAL_YEAR, year);
    set(UCAL_MONTH, month);
    set(UCAL_DATE, date);
    set(UCAL_HOUR_OF_DAY, hour);
    set(UCAL_MINUTE, minute);
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
                                     int32_t hour, int32_t minute, int32_t second,
                                     UErrorCode& status)
                                     :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
                                     fGregorianCutover(kPapalCutover),
                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
                                     fIsGregorian(true), fInvertGregorian(false)
{
    set(UCAL_ERA, AD);
    set(UCAL_YEAR, year);
    set(UCAL_MONTH, month);
    set(UCAL_DATE, date);
    set(UCAL_HOUR_OF_DAY, hour);
    set(UCAL_MINUTE, minute);
    set(UCAL_SECOND, second);
}

// -------------------------------------

GregorianCalendar::~GregorianCalendar()
{
}

// -------------------------------------

GregorianCalendar::GregorianCalendar(const GregorianCalendar &source)
:   Calendar(source),
fGregorianCutover(source.fGregorianCutover),
fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear),
fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian)
{
}

// -------------------------------------

GregorianCalendar* GregorianCalendar::clone() const
{
    return new GregorianCalendar(*this);
}

// -------------------------------------

GregorianCalendar &
GregorianCalendar::operator=(const GregorianCalendar &right)
{
    if (this != &right)
    {
        Calendar::operator=(right);
        fGregorianCutover = right.fGregorianCutover;
        fNormalizedGregorianCutover = right.fNormalizedGregorianCutover;
        fGregorianCutoverYear = right.fGregorianCutoverYear;
        fCutoverJulianDay = right.fCutoverJulianDay;
    }
    return *this;
}

// -------------------------------------

UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const
{
    // Calendar override.
    return Calendar::isEquivalentTo(other) &&
        fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover;
}

// -------------------------------------

void
GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status)
{
    if (U_FAILURE(status)) 
        return;

    // Precompute two internal variables which we use to do the actual
    // cutover computations.  These are the normalized cutover, which is the
    // midnight at or before the cutover, and the cutover year.  The
    // normalized cutover is in pure date milliseconds; it contains no time
    // of day or timezone component, and it used to compare against other
    // pure date values.
    double cutoverDay = ClockMath::floorDivide(date, (double)kOneDay);

    // Handle the rare case of numeric overflow where the user specifies a time
    // outside of INT32_MIN .. INT32_MAX number of days.
    
    if (cutoverDay <= INT32_MIN) {
        cutoverDay = INT32_MIN;
        fGregorianCutover = fNormalizedGregorianCutover = cutoverDay * kOneDay;
    } else if (cutoverDay >= INT32_MAX) {
        cutoverDay = INT32_MAX;
        fGregorianCutover = fNormalizedGregorianCutover = cutoverDay * kOneDay;
    } else {
        fNormalizedGregorianCutover = cutoverDay * kOneDay;
        fGregorianCutover = date;
    }

    // Normalize the year so BC values are represented as 0 and negative
    // values.
    GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status);
    /* test for nullptr */
    if (cal == 0) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    if(U_FAILURE(status))
        return;
    cal->setTime(date, status);
    fGregorianCutoverYear = cal->get(UCAL_YEAR, status);
    if (cal->get(UCAL_ERA, status) == BC) 
        fGregorianCutoverYear = 1 - fGregorianCutoverYear;
    fCutoverJulianDay = (int32_t)cutoverDay;
    delete cal;
}


void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) {
    int32_t eyear, month, dayOfMonth, dayOfYear, unusedRemainder;


    if(U_FAILURE(status)) { 
        return; 
    }

#if defined (U_DEBUG_CAL)
    fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n", 
        __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay);
#endif


    if (julianDay >= fCutoverJulianDay) {
        month = getGregorianMonth();
        dayOfMonth = getGregorianDayOfMonth();
        dayOfYear = getGregorianDayOfYear();
        eyear = getGregorianYear();
    } else {
        // The Julian epoch day (not the same as Julian Day)
        // is zero on Saturday December 30, 0 (Gregorian).
        int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2);
		eyear = (int32_t) ClockMath::floorDivide((4.0*julianEpochDay) + 1464.0, (int32_t) 1461, &unusedRemainder);

        // Compute the Julian calendar day number for January 1, eyear
        int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4);
        dayOfYear = (julianEpochDay - january1); // 0-based

        // Julian leap years occurred historically every 4 years starting
        // with 8 AD.  Before 8 AD the spacing is irregular; every 3 years
        // from 45 BC to 9 BC, and then none until 8 AD.  However, we don't
        // implement this historical detail; instead, we implement the
        // computationally cleaner proleptic calendar, which assumes
        // consistent 4-year cycles throughout time.
        UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0)

        // Common Julian/Gregorian calculation
        int32_t correction = 0;
        int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
        if (dayOfYear >= march1) {
            correction = isLeap ? 1 : 2;
        }
        month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
        dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM
        ++dayOfYear;
#if defined (U_DEBUG_CAL)
        //     fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
        //           fprintf(stderr, "%s:%d:  greg's HCF %d -> %d/%d/%d not %d/%d/%d\n", 
        //                   __FILE__, __LINE__,julianDay,
        //          eyear,month,dayOfMonth,
        //          getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth()  );
        fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n", 
            __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay);
#endif

    }

    // [j81] if we are after the cutover in its year, shift the day of the year
    if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) {
        //from handleComputeMonthStart
        int32_t gregShift = Grego::gregorianShift(eyear);
#if defined (U_DEBUG_CAL)
        fprintf(stderr, "%s:%d:  gregorian shift %d :::  doy%d => %d [cut=%d]\n",
            __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay);
#endif
        dayOfYear += gregShift;
    }

    internalSet(UCAL_MONTH, month);
    internalSet(UCAL_ORDINAL_MONTH, month);
    internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
    internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
    internalSet(UCAL_EXTENDED_YEAR, eyear);
    int32_t era = AD;
    if (eyear < 1) {
        era = BC;
        eyear = 1 - eyear;
    }
    internalSet(UCAL_ERA, era);
    internalSet(UCAL_YEAR, eyear);
}


// -------------------------------------

UDate
GregorianCalendar::getGregorianChange() const
{
    return fGregorianCutover;
}

// -------------------------------------

UBool 
GregorianCalendar::isLeapYear(int32_t year) const
{
    // MSVC complains bitterly if we try to use Grego::isLeapYear here
    // NOTE: year&0x3 == year%4
    return (year >= fGregorianCutoverYear ?
        (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
    ((year&0x3) == 0)); // Julian
}

// -------------------------------------

int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField) 
{
    fInvertGregorian = false;

    int32_t jd = Calendar::handleComputeJulianDay(bestField);

    if((bestField == UCAL_WEEK_OF_YEAR) &&  // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
        (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) && 
        jd >= fCutoverJulianDay) { 
            fInvertGregorian = true;  // So that the Julian Jan 1 will be used in handleComputeMonthStart
            return Calendar::handleComputeJulianDay(bestField);
        }


        // The following check handles portions of the cutover year BEFORE the
        // cutover itself happens.
        //if ((fIsGregorian==true) != (jd >= fCutoverJulianDay)) {  /*  cutoverJulianDay)) { */
        if ((fIsGregorian) != (jd >= fCutoverJulianDay)) {  /*  cutoverJulianDay)) { */
#if defined (U_DEBUG_CAL)
            fprintf(stderr, "%s:%d: jd [invert] %d\n", 
                __FILE__, __LINE__, jd);
#endif
            fInvertGregorian = true;
            jd = Calendar::handleComputeJulianDay(bestField);
#if defined (U_DEBUG_CAL)
            fprintf(stderr, "%s:%d:  fIsGregorian %s, fInvertGregorian %s - ", 
                __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
            fprintf(stderr, " jd NOW %d\n", 
                jd);
#endif
        } else {
#if defined (U_DEBUG_CAL)
            fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n", 
                __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField);
#endif
        }

        if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) {
            int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR));
            if (bestField == UCAL_DAY_OF_YEAR) {
#if defined (U_DEBUG_CAL)
                fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n", 
                    __FILE__, __LINE__, fFields[bestField],jd, gregShift);
#endif
                jd -= gregShift;
            } else if ( bestField == UCAL_WEEK_OF_MONTH ) {
                int32_t weekShift = 14;
#if defined (U_DEBUG_CAL)
                fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n", 
                    __FILE__, __LINE__, jd, weekShift);
#endif
                jd += weekShift; // shift by weeks for week based fields.
            }
        }

        return jd;
}

int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month,

                                                   UBool /* useMonth */) const
{
    GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const

    // If the month is out of range, adjust it into range, and
    // modify the extended year value accordingly.
    if (month < 0 || month > 11) {
        eyear += ClockMath::floorDivide(month, 12, &month);
    }

    UBool isLeap = eyear%4 == 0;
    int64_t y = (int64_t)eyear-1;
    int64_t julianDay = 365*y + ClockMath::floorDivide(y, (int64_t)4) + (kJan1_1JulianDay - 3);

    nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear);
#if defined (U_DEBUG_CAL)
    fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n", 
        __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
#endif
    if (fInvertGregorian) {
        nonConstThis->fIsGregorian = !fIsGregorian;
    }
    if (fIsGregorian) {
        isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0));
        // Add 2 because Gregorian calendar starts 2 days after
        // Julian calendar
        int32_t gregShift = Grego::gregorianShift(eyear);
#if defined (U_DEBUG_CAL)
        fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n", 
            __FILE__, __LINE__, eyear, month, julianDay, gregShift);
#endif
        julianDay += gregShift;
    }

    // At this point julianDay indicates the day BEFORE the first
    // day of January 1, <eyear> of either the Julian or Gregorian
    // calendar.

    if (month != 0) {
        julianDay += isLeap?kLeapNumDays[month]:kNumDays[month];
    }

    return static_cast<int32_t>(julianDay);
}

int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month)  const
{
    // If the month is out of range, adjust it into range, and
    // modify the extended year value accordingly.
    if (month < 0 || month > 11) {
        extendedYear += ClockMath::floorDivide(month, 12, &month);
    }

    return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month];
}

int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const {
    return isLeapYear(eyear) ? 366 : 365;
}


int32_t
GregorianCalendar::monthLength(int32_t month) const
{
    int32_t year = internalGet(UCAL_EXTENDED_YEAR);
    return handleGetMonthLength(year, month);
}

// -------------------------------------

int32_t
GregorianCalendar::monthLength(int32_t month, int32_t year) const
{
    return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month];
}

// -------------------------------------

int32_t
GregorianCalendar::yearLength(int32_t year) const
{
    return isLeapYear(year) ? 366 : 365;
}

// -------------------------------------

int32_t
GregorianCalendar::yearLength() const
{
    return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365;
}

// -------------------------------------

/**
* After adjustments such as add(MONTH), add(YEAR), we don't want the
* month to jump around.  E.g., we don't want Jan 31 + 1 month to go to Mar
* 3, we want it to go to Feb 28.  Adjustments which might run into this
* problem call this method to retain the proper month.
*/
void 
GregorianCalendar::pinDayOfMonth() 
{
    int32_t monthLen = monthLength(internalGetMonth());
    int32_t dom = internalGet(UCAL_DATE);
    if(dom > monthLen) 
        set(UCAL_DATE, monthLen);
}

// -------------------------------------


UBool
GregorianCalendar::validateFields() const
{
    for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) {
        // Ignore DATE and DAY_OF_YEAR which are handled below
        if (field != UCAL_DATE &&
            field != UCAL_DAY_OF_YEAR &&
            isSet((UCalendarDateFields)field) &&
            ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field))
            return false;
    }

    // Values differ in Least-Maximum and Maximum should be handled
    // specially.
    if (isSet(UCAL_DATE)) {
        int32_t date = internalGet(UCAL_DATE);
        if (date < getMinimum(UCAL_DATE) ||
            date > monthLength(internalGetMonth())) {
                return false;
            }
    }

    if (isSet(UCAL_DAY_OF_YEAR)) {
        int32_t days = internalGet(UCAL_DAY_OF_YEAR);
        if (days < 1 || days > yearLength()) {
            return false;
        }
    }

    // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
    // We've checked against minimum and maximum above already.
    if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) &&
        0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) {
            return false;
        }

        return true;
}

// -------------------------------------

UBool
GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const
{
    return value >= getMinimum(field) && value <= getMaximum(field);
}

// -------------------------------------

UDate 
GregorianCalendar::getEpochDay(UErrorCode& status) 
{
    complete(status);
    // Divide by 1000 (convert to seconds) in order to prevent overflow when
    // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
    double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000;

    return ClockMath::floorDivide(wallSec, kOneDay/1000.0);
}

// -------------------------------------


// -------------------------------------

/**
* Compute the julian day number of the day BEFORE the first day of
* January 1, year 1 of the given calendar.  If julianDay == 0, it
* specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
* or Gregorian).
*/
double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian,
                                                 int32_t year, UBool& isLeap)
{
    isLeap = year%4 == 0;
    int32_t y = year - 1;
    double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);

    if (isGregorian) {
        isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
        // Add 2 because Gregorian calendar starts 2 days after Julian calendar
        julianDay += Grego::gregorianShift(year);
    }

    return julianDay;
}

// /**
//  * Compute the day of week, relative to the first day of week, from
//  * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields.  This is
//  * equivalent to get(DOW_LOCAL) - 1.
//  */
// int32_t GregorianCalendar::computeRelativeDOW() const {
//     int32_t relDow = 0;
//     if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
//         relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
//     } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
//         relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
//         if (relDow < 0) relDow += 7;
//     }
//     return relDow;
// }

// /**
//  * Compute the day of week, relative to the first day of week,
//  * from 0..6 of the given julian day.
//  */
// int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
//   int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
//     if (relDow < 0) {
//         relDow += 7;
//     }
//     return relDow;
// }

// /**
//  * Compute the DOY using the WEEK_OF_YEAR field and the julian day
//  * of the day BEFORE January 1 of a year (a return value from
//  * computeJulianDayOfYear).
//  */
// int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
//     // Compute DOY from day of week plus week of year

//     // Find the day of the week for the first of this year.  This
//     // is zero-based, with 0 being the locale-specific first day of
//     // the week.  Add 1 to get first day of year.
//     int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);

//     return
//         // Compute doy of first (relative) DOW of WOY 1
//         (((7 - fdy) < getMinimalDaysInFirstWeek())
//          ? (8 - fdy) : (1 - fdy))

//         // Adjust for the week number.
//         + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))

//         // Adjust for the DOW
//         + computeRelativeDOW();
// }

// -------------------------------------

double 
GregorianCalendar::millisToJulianDay(UDate millis)
{
    return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay);
}

// -------------------------------------

UDate
GregorianCalendar::julianDayToMillis(double julian)
{
    return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay);
}

// -------------------------------------

int32_t
GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b) 
{
    return (((stamp_a != kUnset && stamp_b != kUnset) 
        ? uprv_max(stamp_a, stamp_b)
        : (int32_t)kUnset));
}

// -------------------------------------

/**
* Roll a field by a signed amount.
* Note: This will be made public later. [LIU]
*/

void 
GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
    roll((UCalendarDateFields) field, amount, status); 
}

void
GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) UPRV_NO_SANITIZE_UNDEFINED {
    if((amount == 0) || U_FAILURE(status)) {
        return;
    }

    // J81 processing. (gregorian cutover)
    UBool inCutoverMonth = false;
    int32_t cMonthLen=0; // 'c' for cutover; in days
    int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen)
    double cMonthStart=0.0; // in ms

    // Common code - see if we're in the cutover month of the cutover year
    if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) {
        switch (field) {
        case UCAL_DAY_OF_MONTH:
        case UCAL_WEEK_OF_MONTH:
            {
                int32_t max = monthLength(internalGetMonth());
                UDate t = internalGetTime();
                // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
                // additional 10 if we are after the cutover. Thus the monthStart
                // value will be correct iff we actually are in the cutover month.
                cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0);
                cMonthStart = t - ((cDayOfMonth - 1) * kOneDay);
                // A month containing the cutover is 10 days shorter.
                if ((cMonthStart < fGregorianCutover) &&
                    (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) {
                        inCutoverMonth = true;
                    }
            }
            break;
        default:
            ;
        }
    }

    switch (field) {
    case UCAL_WEEK_OF_YEAR: {
        // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
        // week.  Also, rolling the week of the year can have seemingly
        // strange effects simply because the year of the week of year
        // may be different from the calendar year.  For example, the
        // date Dec 28, 1997 is the first day of week 1 of 1998 (if
        // weeks start on Sunday and the minimal days in first week is
        // <= 3).
        int32_t woy = get(UCAL_WEEK_OF_YEAR, status);
        // Get the ISO year, which matches the week of year.  This
        // may be one year before or after the calendar year.
        int32_t isoYear = get(UCAL_YEAR_WOY, status);
        int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR);
        if (internalGetMonth() == UCAL_JANUARY) {
            if (woy >= 52) {
                isoDoy += handleGetYearLength(isoYear);
            }
        } else {
            if (woy == 1) {
                isoDoy -= handleGetYearLength(isoYear - 1);
            }
        }
        woy += amount;
        // Do fast checks to avoid unnecessary computation:
        if (woy < 1 || woy > 52) {
            // Determine the last week of the ISO year.
            // We do this using the standard formula we use
            // everywhere in this file.  If we can see that the
            // days at the end of the year are going to fall into
            // week 1 of the next year, we drop the last week by
            // subtracting 7 from the last day of the year.
            int32_t lastDoy = handleGetYearLength(isoYear);
            int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) -
                getFirstDayOfWeek()) % 7;
            if (lastRelDow < 0) lastRelDow += 7;
            if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7;
            int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1);
            woy = ((woy + lastWoy - 1) % lastWoy) + 1;
        }
        set(UCAL_WEEK_OF_YEAR, woy);
        set(UCAL_YEAR_WOY,isoYear);
        return;
                            }

    case UCAL_DAY_OF_MONTH:
        if( !inCutoverMonth ) { 
            Calendar::roll(field, amount, status);
            return;
        } else {
            // [j81] 1582 special case for DOM
            // The default computation works except when the current month
            // contains the Gregorian cutover.  We handle this special case
            // here.  [j81 - aliu]
            double monthLen = cMonthLen * kOneDay;
            double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart +
                amount * kOneDay, monthLen);
            if (msIntoMonth < 0) {
                msIntoMonth += monthLen;
            }
#if defined (U_DEBUG_CAL)
            fprintf(stderr, "%s:%d: roll DOM %d  -> %.0lf ms  \n", 
                __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth);
#endif
            setTimeInMillis(cMonthStart + msIntoMonth, status);
            return;
        }

    case UCAL_WEEK_OF_MONTH:
        if( !inCutoverMonth ) { 
            Calendar::roll(field, amount, status);
            return;
        } else {
#if defined (U_DEBUG_CAL)
            fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n", 
                __FILE__, __LINE__,amount);
#endif
            // NOTE: following copied from  the old
            //     GregorianCalendar::roll( WEEK_OF_MONTH )  code 

            // This is tricky, because during the roll we may have to shift
            // to a different day of the week.  For example:

            //    s  m  t  w  r  f  s
            //          1  2  3  4  5
            //    6  7  8  9 10 11 12

            // When rolling from the 6th or 7th back one week, we go to the
            // 1st (assuming that the first partial week counts).  The same
            // thing happens at the end of the month.

            // The other tricky thing is that we have to figure out whether
            // the first partial week actually counts or not, based on the
            // minimal first days in the week.  And we have to use the
            // correct first day of the week to delineate the week
            // boundaries.

            // Here's our algorithm.  First, we find the real boundaries of
            // the month.  Then we discard the first partial week if it
            // doesn't count in this locale.  Then we fill in the ends with
            // phantom days, so that the first partial week and the last
            // partial week are full weeks.  We then have a nice square
            // block of weeks.  We do the usual rolling within this block,
            // as is done elsewhere in this method.  If we wind up on one of
            // the phantom days that we added, we recognize this and pin to
            // the first or the last day of the month.  Easy, eh?

            // Another wrinkle: To fix jitterbug 81, we have to make all this
            // work in the oddball month containing the Gregorian cutover.
            // This month is 10 days shorter than usual, and also contains
            // a discontinuity in the days; e.g., the default cutover month
            // is Oct 1582, and goes from day of month 4 to day of month 15.

            // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
            // in this locale.  We have dow in 0..6.
            int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
            if (dow < 0) 
                dow += 7;

            // Find the day of month, compensating for cutover discontinuity.
            int32_t dom = cDayOfMonth;

            // Find the day of the week (normalized for locale) for the first
            // of the month.
            int32_t fdm = (dow - dom + 1) % 7;
            if (fdm < 0) 
                fdm += 7;

            // Get the first day of the first full week of the month,
            // including phantom days, if any.  Figure out if the first week
            // counts or not; if it counts, then fill in phantom days.  If
            // not, advance to the first real full week (skip the partial week).
            int32_t start;
            if ((7 - fdm) < getMinimalDaysInFirstWeek())
                start = 8 - fdm; // Skip the first partial week
            else
                start = 1 - fdm; // This may be zero or negative

            // Get the day of the week (normalized for locale) for the last
            // day of the month.
            int32_t monthLen = cMonthLen;
            int32_t ldm = (monthLen - dom + dow) % 7;
            // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.

            // Get the limit day for the blocked-off rectangular month; that
            // is, the day which is one past the last day of the month,
            // after the month has already been filled in with phantom days
            // to fill out the last week.  This day has a normalized DOW of 0.
            int32_t limit = monthLen + 7 - ldm;

            // Now roll between start and (limit - 1).
            int32_t gap = limit - start;
            int32_t newDom = (dom + amount*7 - start) % gap;
            if (newDom < 0) 
                newDom += gap;
            newDom += start;

            // Finally, pin to the real start and end of the month.
            if (newDom < 1) 
                newDom = 1;
            if (newDom > monthLen) 
                newDom = monthLen;

            // Set the DAY_OF_MONTH.  We rely on the fact that this field
            // takes precedence over everything else (since all other fields
            // are also set at this point).  If this fact changes (if the
            // disambiguation algorithm changes) then we will have to unset
            // the appropriate fields here so that DAY_OF_MONTH is attended
            // to.

            // If we are in the cutover month, manipulate ms directly.  Don't do
            // this in general because it doesn't work across DST boundaries
            // (details, details).  This takes care of the discontinuity.
            setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status);                
            return;
        }

    default:
        Calendar::roll(field, amount, status);
        return;
    }
}

// -------------------------------------


/**
* Return the minimum value that this field could have, given the current date.
* For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
* @param field    the time field.
* @return         the minimum value that this field could have, given the current date.
* @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
*/
int32_t GregorianCalendar::getActualMinimum(EDateFields field) const
{
    return getMinimum((UCalendarDateFields)field);
}

int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const
{
    return getMinimum((UCalendarDateFields)field);
}

/**
* Return the minimum value that this field could have, given the current date.
* For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
* @param field    the time field.
* @return         the minimum value that this field could have, given the current date.
* @draft ICU 2.6.
*/
int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const
{
    return getMinimum(field);
}


// ------------------------------------

/**
* Old year limits were least max 292269054, max 292278994.
*/

/**
* @stable ICU 2.0
*/
int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
    return kGregorianCalendarLimits[field][limitType];
}

/**
* Return the maximum value that this field could have, given the current date.
* For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
* maximum would be 28; for "Feb 3, 1996" it s 29.  Similarly for a Hebrew calendar,
* for some years the actual maximum for MONTH is 12, and for others 13.
* @stable ICU 2.0
*/
int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
{
    /* It is a known limitation that the code here (and in getActualMinimum)
    * won't behave properly at the extreme limits of GregorianCalendar's
    * representable range (except for the code that handles the YEAR
    * field).  That's because the ends of the representable range are at
    * odd spots in the year.  For calendars with the default Gregorian
    * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
    * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
    * zones.  As a result, if the calendar is set to Aug 1 292278994 AD,
    * the actual maximum of DAY_OF_MONTH is 17, not 30.  If the date is Mar
    * 31 in that year, the actual maximum month might be Jul, whereas is
    * the date is Mar 15, the actual maximum might be Aug -- depending on
    * the precise semantics that are desired.  Similar considerations
    * affect all fields.  Nonetheless, this effect is sufficiently arcane
    * that we permit it, rather than complicating the code to handle such
    * intricacies. - liu 8/20/98

    * UPDATE: No longer true, since we have pulled in the limit values on
    * the year. - Liu 11/6/00 */

    switch (field) {

    case UCAL_YEAR:
        /* The year computation is no different, in principle, from the
        * others, however, the range of possible maxima is large.  In
        * addition, the way we know we've exceeded the range is different.
        * For these reasons, we use the special case code below to handle
        * this field.
        *
        * The actual maxima for YEAR depend on the type of calendar:
        *
        *     Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
        *     Julian    = Dec  2, 292269055 BC - Jan  3, 292272993 AD
        *     Hybrid    = Dec  2, 292269055 BC - Aug 17, 292278994 AD
        *
        * We know we've exceeded the maximum when either the month, date,
        * time, or era changes in response to setting the year.  We don't
        * check for month, date, and time here because the year and era are
        * sufficient to detect an invalid year setting.  NOTE: If code is
        * added to check the month and date in the future for some reason,
        * Feb 29 must be allowed to shift to Mar 1 when setting the year.
        */
        {
            if(U_FAILURE(status)) return 0;
            Calendar *cal = clone();
            if(!cal) {
                status = U_MEMORY_ALLOCATION_ERROR;
                return 0;
            }

            cal->setLenient(true);

            int32_t era = cal->get(UCAL_ERA, status);
            UDate d = cal->getTime(status);

            /* Perform a binary search, with the invariant that lowGood is a
            * valid year, and highBad is an out of range year.
            */
            int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1];
            int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1;
            while ((lowGood + 1) < highBad) {
                int32_t y = (lowGood + highBad) / 2;
                cal->set(UCAL_YEAR, y);
                if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) {
                    lowGood = y;
                } else {
                    highBad = y;
                    cal->setTime(d, status); // Restore original fields
                }
            }

            delete cal;
            return lowGood;
        }

    default:
        return Calendar::getActualMaximum(field,status);
    }
}


int32_t GregorianCalendar::handleGetExtendedYear() {
    // the year to return
    int32_t year = kEpochYear;

    // year field to use
    int32_t yearField = UCAL_EXTENDED_YEAR;

    // There are three separate fields which could be used to
    // derive the proper year.  Use the one most recently set.
    if (fStamp[yearField] < fStamp[UCAL_YEAR])
        yearField = UCAL_YEAR;
    if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY])
        yearField = UCAL_YEAR_WOY;

    // based on the "best" year field, get the year
    switch(yearField) {
    case UCAL_EXTENDED_YEAR:
        year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear);
        break;

    case UCAL_YEAR:
        {
            // The year defaults to the epoch start, the era to AD
            int32_t era = internalGet(UCAL_ERA, AD);
            if (era == BC) {
                year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year
            } else {
                year = internalGet(UCAL_YEAR, kEpochYear);
            }
        }
        break;

    case UCAL_YEAR_WOY:
        year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR));
#if defined (U_DEBUG_CAL)
        //    if(internalGet(UCAL_YEAR_WOY) != year) {
        fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] ->  %d\n", 
            __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year);
        //}
#endif
        break;

    default:
        year = kEpochYear;
    }
    return year;
}

int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy)
{
    // convert year to extended form
    int32_t era = internalGet(UCAL_ERA, AD);
    if(era == BC) {
        yearWoy = 1 - yearWoy;
    }
    return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy);
}


// -------------------------------------

/**
* Return the ERA.  We need a special method for this because the
* default ERA is AD, but a zero (unset) ERA is BC.
*/
int32_t
GregorianCalendar::internalGetEra() const {
    return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD;
}

const char *
GregorianCalendar::getType() const {
    //static const char kGregorianType = "gregorian";

    return "gregorian";
}

/**
 * The system maintains a static default century start date and Year.  They are
 * initialized the first time they are used.  Once the system default century date 
 * and year are set, they do not change.
 */
static UDate           gSystemDefaultCenturyStart       = DBL_MIN;
static int32_t         gSystemDefaultCenturyStartYear   = -1;
static icu::UInitOnce  gSystemDefaultCenturyInit        {};


UBool GregorianCalendar::haveDefaultCentury() const
{
    return true;
}

static void U_CALLCONV
initializeSystemDefaultCentury()
{
    // initialize systemDefaultCentury and systemDefaultCenturyYear based
    // on the current time.  They'll be set to 80 years before
    // the current time.
    UErrorCode status = U_ZERO_ERROR;
    GregorianCalendar calendar(status);
    if (U_SUCCESS(status)) {
        calendar.setTime(Calendar::getNow(), status);
        calendar.add(UCAL_YEAR, -80, status);

        gSystemDefaultCenturyStart = calendar.getTime(status);
        gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
    }
    // We have no recourse upon failure unless we want to propagate the failure
    // out.
}

UDate GregorianCalendar::defaultCenturyStart() const {
    // lazy-evaluate systemDefaultCenturyStart
    umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
    return gSystemDefaultCenturyStart;
}

int32_t GregorianCalendar::defaultCenturyStartYear() const {
    // lazy-evaluate systemDefaultCenturyStartYear
    umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
    return gSystemDefaultCenturyStartYear;
}

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_FORMATTING */

//eof