summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/gregoimp.cpp
blob: 31b5aeed8354fc5bc6176c234af948366555c597 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
 **********************************************************************
 * Copyright (c) 2003-2008, International Business Machines
 * Corporation and others.  All Rights Reserved.
 **********************************************************************
 * Author: Alan Liu
 * Created: September 2 2003
 * Since: ICU 2.8
 **********************************************************************
 */

#include "gregoimp.h"

#if !UCONFIG_NO_FORMATTING

#include "unicode/ucal.h"
#include "uresimp.h"
#include "cstring.h"
#include "uassert.h"

U_NAMESPACE_BEGIN

int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
    return (numerator >= 0) ?
        numerator / denominator : ((numerator + 1) / denominator) - 1;
}

int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) {
    return (numerator >= 0) ?
        numerator / denominator : ((numerator + 1) / denominator) - 1;
}

int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
                          int32_t* remainder) {
    // For an integer n and representable ⌊x/n⌋, ⌊RN(x/n)⌋=⌊x/n⌋, where RN is
    // rounding to nearest.
    double quotient = uprv_floor(numerator / denominator);
    if (remainder != nullptr) {
      // For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the
      // expression `(int32_t) (x + n)` evaluated with rounding to nearest
      // differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to
      // n+⌈x⌉ = ⌊x+n⌋ + 1.  Rewriting it as ⌊x⌋+n makes the addition exact.
      *remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator));
    }
    return (int32_t) quotient;
}

double ClockMath::floorDivide(double dividend, double divisor,
                         double* remainder) {
    // Only designed to work for positive divisors
    U_ASSERT(divisor > 0);
    double quotient = floorDivide(dividend, divisor);
    double r = dividend - (quotient * divisor);
    // N.B. For certain large dividends, on certain platforms, there
    // is a bug such that the quotient is off by one.  If you doubt
    // this to be true, set a breakpoint below and run cintltst.
    if (r < 0 || r >= divisor) {
        // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
        // machine (too high by one).  4.1792057231752762e+024 /
        // 86400000.0 is wrong the other way (too low).
        double q = quotient;
        quotient += (r < 0) ? -1 : +1;
        if (q == quotient) {
            // For quotients > ~2^53, we won't be able to add or
            // subtract one, since the LSB of the mantissa will be >
            // 2^0; that is, the exponent (base 2) will be larger than
            // the length, in bits, of the mantissa.  In that case, we
            // can't give a correct answer, so we set the remainder to
            // zero.  This has the desired effect of making extreme
            // values give back an approximate answer rather than
            // crashing.  For example, UDate values above a ~10^25
            // might all have a time of midnight.
            r = 0;
        } else {
            r = dividend - (quotient * divisor);
        }
    }
    U_ASSERT(0 <= r && r < divisor);
    if (remainder != nullptr) {
        *remainder = r;
    }
    return quotient;
}

const int32_t JULIAN_1_CE    = 1721426; // January 1, 1 CE Gregorian
const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian

const int16_t Grego::DAYS_BEFORE[24] =
    {0,31,59,90,120,151,181,212,243,273,304,334,
     0,31,60,91,121,152,182,213,244,274,305,335};

const int8_t Grego::MONTH_LENGTH[24] =
    {31,28,31,30,31,30,31,31,30,31,30,31,
     31,29,31,30,31,30,31,31,30,31,30,31};

double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {

    int32_t y = year - 1;

    double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
        ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal
        DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom

    return julian - JULIAN_1970_CE; // JD => epoch day
}

void Grego::dayToFields(double day, int32_t& year, int32_t& month,
                        int32_t& dom, int32_t& dow, int32_t& doy) {

    // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
    day += JULIAN_1970_CE - JULIAN_1_CE;

    // Convert from the day number to the multiple radix
    // representation.  We use 400-year, 100-year, and 4-year cycles.
    // For example, the 4-year cycle has 4 years + 1 leap day; giving
    // 1461 == 365*4 + 1 days.
    int32_t n400 = ClockMath::floorDivide(day, 146097, &doy); // 400-year cycle length
    int32_t n100 = ClockMath::floorDivide(doy, 36524, &doy); // 100-year cycle length
    int32_t n4   = ClockMath::floorDivide(doy, 1461, &doy); // 4-year cycle length
    int32_t n1   = ClockMath::floorDivide(doy, 365, &doy);
    year = 400*n400 + 100*n100 + 4*n4 + n1;
    if (n100 == 4 || n1 == 4) {
        doy = 365; // Dec 31 at end of 4- or 400-year cycle
    } else {
        ++year;
    }
    
    UBool isLeap = isLeapYear(year);
    
    // Gregorian day zero is a Monday.
    dow = (int32_t) uprv_fmod(day + 1, 7);
    dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;

    // Common Julian/Gregorian calculation
    int32_t correction = 0;
    int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
    if (doy >= march1) {
        correction = isLeap ? 1 : 2;
    }
    month = (12 * (doy + correction) + 6) / 367; // zero-based month
    dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
    doy++; // one-based doy
}

void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
                        int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
    double millisInDay;
    double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, &millisInDay);
    mid = (int32_t)millisInDay;
    dayToFields(day, year, month, dom, dow, doy);
}

int32_t Grego::dayOfWeek(double day) {
    int32_t dow;
    ClockMath::floorDivide(day + int{UCAL_THURSDAY}, 7, &dow);
    return (dow == 0) ? UCAL_SATURDAY : dow;
}

int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
    int32_t weekInMonth = (dom + 6)/7;
    if (weekInMonth == 4) {
        if (dom + 7 > monthLength(year, month)) {
            weekInMonth = -1;
        }
    } else if (weekInMonth == 5) {
        weekInMonth = -1;
    }
    return weekInMonth;
}

U_NAMESPACE_END

#endif
//eof