1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef vm_NativeObject_h
#define vm_NativeObject_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Maybe.h"
#include <algorithm>
#include <stdint.h>
#include "NamespaceImports.h"
#include "gc/Barrier.h"
#include "gc/MaybeRooted.h"
#include "gc/ZoneAllocator.h"
#include "js/shadow/Object.h" // JS::shadow::Object
#include "js/shadow/Zone.h" // JS::shadow::Zone
#include "js/Value.h"
#include "vm/GetterSetter.h"
#include "vm/JSAtom.h"
#include "vm/JSObject.h"
#include "vm/Shape.h"
#include "vm/StringType.h"
namespace js {
class PropertyResult;
namespace gc {
class TenuringTracer;
} // namespace gc
#ifdef ENABLE_RECORD_TUPLE
// Defined in vm/RecordTupleShared.{h,cpp}. We cannot include that file
// because it causes circular dependencies.
extern bool IsExtendedPrimitiveWrapper(const JSObject& obj);
#endif
/*
* To really poison a set of values, using 'magic' or 'undefined' isn't good
* enough since often these will just be ignored by buggy code (see bug 629974)
* in debug builds and crash in release builds. Instead, we use a safe-for-crash
* pointer.
*/
static MOZ_ALWAYS_INLINE void Debug_SetValueRangeToCrashOnTouch(Value* beg,
Value* end) {
#ifdef DEBUG
for (Value* v = beg; v != end; ++v) {
*v = js::PoisonedObjectValue(0x48);
}
#endif
}
static MOZ_ALWAYS_INLINE void Debug_SetValueRangeToCrashOnTouch(Value* vec,
size_t len) {
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch(vec, vec + len);
#endif
}
static MOZ_ALWAYS_INLINE void Debug_SetValueRangeToCrashOnTouch(
GCPtr<Value>* vec, size_t len) {
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch((Value*)vec, len);
#endif
}
static MOZ_ALWAYS_INLINE void Debug_SetSlotRangeToCrashOnTouch(HeapSlot* vec,
uint32_t len) {
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch((Value*)vec, len);
#endif
}
static MOZ_ALWAYS_INLINE void Debug_SetSlotRangeToCrashOnTouch(HeapSlot* begin,
HeapSlot* end) {
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch((Value*)begin, end - begin);
#endif
}
class ArrayObject;
/*
* ES6 20130308 draft 8.4.2.4 ArraySetLength.
*
* |id| must be "length", |desc| is the new non-accessor descriptor, and
* |result| receives an error code if the change is invalid.
*/
extern bool ArraySetLength(JSContext* cx, Handle<ArrayObject*> obj, HandleId id,
Handle<PropertyDescriptor> desc,
ObjectOpResult& result);
/*
* [SMDOC] NativeObject Elements layout
*
* Elements header used for native objects. The elements component of such
* objects offers an efficient representation for all or some of the indexed
* properties of the object, using a flat array of Values rather than a shape
* hierarchy stored in the object's slots. This structure is immediately
* followed by an array of elements, with the elements member in an object
* pointing to the beginning of that array (the end of this structure). See
* below for usage of this structure.
*
* The sets of properties represented by an object's elements and slots
* are disjoint. The elements contain only indexed properties, while the slots
* can contain both named and indexed properties; any indexes in the slots are
* distinct from those in the elements. If isIndexed() is false for an object,
* all indexed properties (if any) are stored in the dense elements.
*
* Indexes will be stored in the object's slots instead of its elements in
* the following case:
* - there are more than MIN_SPARSE_INDEX slots total and the load factor
* (COUNT / capacity) is less than 0.25
* - a property is defined that has non-default property attributes.
*
* We track these pieces of metadata for dense elements:
* - The length property as a uint32_t, accessible for array objects with
* ArrayObject::{length,setLength}(). This is unused for non-arrays.
* - The number of element slots (capacity), gettable with
* getDenseCapacity().
* - The array's initialized length, accessible with
* getDenseInitializedLength().
*
* Holes in the array are represented by MagicValue(JS_ELEMENTS_HOLE) values.
* These indicate indexes which are not dense properties of the array. The
* property may, however, be held by the object's properties.
*
* The capacity and length of an object's elements are almost entirely
* unrelated! In general the length may be greater than, less than, or equal
* to the capacity. The first case occurs with |new Array(100)|. The length
* is 100, but the capacity remains 0 (indices below length and above capacity
* must be treated as holes) until elements between capacity and length are
* set. The other two cases are common, depending upon the number of elements
* in an array and the underlying allocator used for element storage.
*
* The only case in which the capacity and length of an object's elements are
* related is when the object is an array with non-writable length. In this
* case the capacity is always less than or equal to the length. This permits
* JIT code to optimize away the check for non-writable length when assigning
* to possibly out-of-range elements: such code already has to check for
* |index < capacity|, and fallback code checks for non-writable length.
*
* The initialized length of an object specifies the number of elements that
* have been initialized. All elements above the initialized length are
* holes in the object, and the memory for all elements between the initialized
* length and capacity is left uninitialized. The initialized length is some
* value less than or equal to both the object's length and the object's
* capacity.
*
* There is flexibility in exactly the value the initialized length must hold,
* e.g. if an array has length 5, capacity 10, completely empty, it is valid
* for the initialized length to be any value between zero and 5, as long as
* the in memory values below the initialized length have been initialized with
* a hole value. However, in such cases we want to keep the initialized length
* as small as possible: if the object is known to have no hole values below
* its initialized length, then it is "packed" and can be accessed much faster
* by JIT code.
*
* Elements do not track property creation order, so enumerating the elements
* of an object does not necessarily visit indexes in the order they were
* created.
*
*
* [SMDOC] NativeObject shifted elements optimization
*
* Shifted elements
* ----------------
* It's pretty common to use an array as a queue, like this:
*
* while (arr.length > 0)
* foo(arr.shift());
*
* To ensure we don't get quadratic behavior on this, elements can be 'shifted'
* in memory. tryShiftDenseElements does this by incrementing elements_ to point
* to the next element and moving the ObjectElements header in memory (so it's
* stored where the shifted Value used to be).
*
* Shifted elements can be moved when we grow the array, when the array is
* made non-extensible (for simplicity, shifted elements are not supported on
* objects that are non-extensible, have copy-on-write elements, or on arrays
* with non-writable length).
*/
class ObjectElements {
public:
enum Flags : uint16_t {
// Elements are stored inline in the object allocation.
// An object allocated with the FIXED flag set can have the flag unset later
// if `growElements()` is called to increase the capacity beyond what was
// initially allocated. Once the flag is unset, it will remain so for the
// rest of the lifetime of the object.
FIXED = 0x1,
// Present only if these elements correspond to an array with
// non-writable length; never present for non-arrays.
NONWRITABLE_ARRAY_LENGTH = 0x2,
#ifdef ENABLE_RECORD_TUPLE
// Records, Tuples and Boxes must be atomized before being hashed. We store
// the "is atomized" flag here for tuples, and in fixed slots for records
// and boxes.
TUPLE_IS_ATOMIZED = 0x4,
#endif
// For TypedArrays only: this TypedArray's storage is mapping shared
// memory. This is a static property of the TypedArray, set when it
// is created and never changed.
SHARED_MEMORY = 0x8,
// These elements are not extensible. If this flag is set, the object's
// Shape must also have the NotExtensible flag. This exists on
// ObjectElements in addition to Shape to simplify JIT code.
NOT_EXTENSIBLE = 0x10,
// These elements are set to integrity level "sealed". If this flag is
// set, the NOT_EXTENSIBLE flag must be set as well.
SEALED = 0x20,
// These elements are set to integrity level "frozen". If this flag is
// set, the SEALED flag must be set as well.
//
// This flag must only be set if the Shape has the FrozenElements flag.
// The Shape flag ensures a shape guard can be used to guard against frozen
// elements. The ObjectElements flag is convenient for JIT code and
// ObjectElements assertions.
FROZEN = 0x40,
// If this flag is not set, the elements are guaranteed to contain no hole
// values (the JS_ELEMENTS_HOLE MagicValue) in [0, initializedLength).
NON_PACKED = 0x80,
// If this flag is not set, there's definitely no for-in iterator that
// covers these dense elements so elements can be deleted without calling
// SuppressDeletedProperty. This is used by fast paths for various Array
// builtins. See also NativeObject::denseElementsMaybeInIteration.
MAYBE_IN_ITERATION = 0x100,
};
// The flags word stores both the flags and the number of shifted elements.
// Allow shifting 2047 elements before actually moving the elements.
static const size_t NumShiftedElementsBits = 11;
static const size_t MaxShiftedElements = (1 << NumShiftedElementsBits) - 1;
static const size_t NumShiftedElementsShift = 32 - NumShiftedElementsBits;
static const size_t FlagsMask = (1 << NumShiftedElementsShift) - 1;
static_assert(MaxShiftedElements == 2047,
"MaxShiftedElements should match the comment");
private:
friend class ::JSObject;
friend class ArrayObject;
friend class NativeObject;
friend class gc::TenuringTracer;
#ifdef ENABLE_RECORD_TUPLE
friend class TupleType;
#endif
friend bool js::SetIntegrityLevel(JSContext* cx, HandleObject obj,
IntegrityLevel level);
friend bool ArraySetLength(JSContext* cx, Handle<ArrayObject*> obj,
HandleId id, Handle<PropertyDescriptor> desc,
ObjectOpResult& result);
// The NumShiftedElementsBits high bits of this are used to store the
// number of shifted elements, the other bits are available for the flags.
// See Flags enum above.
uint32_t flags;
/*
* Number of initialized elements. This is <= the capacity, and for arrays
* is <= the length. Memory for elements above the initialized length is
* uninitialized, but values between the initialized length and the proper
* length are conceptually holes.
*/
uint32_t initializedLength;
/* Number of allocated slots. */
uint32_t capacity;
/* 'length' property of array objects, unused for other objects. */
uint32_t length;
bool hasNonwritableArrayLength() const {
return flags & NONWRITABLE_ARRAY_LENGTH;
}
void setNonwritableArrayLength() {
// See ArrayObject::setNonWritableLength.
MOZ_ASSERT(capacity == initializedLength);
MOZ_ASSERT(numShiftedElements() == 0);
flags |= NONWRITABLE_ARRAY_LENGTH;
}
#ifdef ENABLE_RECORD_TUPLE
void setTupleIsAtomized() { flags |= TUPLE_IS_ATOMIZED; }
bool tupleIsAtomized() const { return flags & TUPLE_IS_ATOMIZED; }
#endif
void addShiftedElements(uint32_t count) {
MOZ_ASSERT(count < capacity);
MOZ_ASSERT(count < initializedLength);
MOZ_ASSERT(!(
flags & (NONWRITABLE_ARRAY_LENGTH | NOT_EXTENSIBLE | SEALED | FROZEN)));
uint32_t numShifted = numShiftedElements() + count;
MOZ_ASSERT(numShifted <= MaxShiftedElements);
flags = (numShifted << NumShiftedElementsShift) | (flags & FlagsMask);
capacity -= count;
initializedLength -= count;
}
void unshiftShiftedElements(uint32_t count) {
MOZ_ASSERT(count > 0);
MOZ_ASSERT(!(
flags & (NONWRITABLE_ARRAY_LENGTH | NOT_EXTENSIBLE | SEALED | FROZEN)));
uint32_t numShifted = numShiftedElements();
MOZ_ASSERT(count <= numShifted);
numShifted -= count;
flags = (numShifted << NumShiftedElementsShift) | (flags & FlagsMask);
capacity += count;
initializedLength += count;
}
void clearShiftedElements() {
flags &= FlagsMask;
MOZ_ASSERT(numShiftedElements() == 0);
}
void markNonPacked() { flags |= NON_PACKED; }
void markMaybeInIteration() { flags |= MAYBE_IN_ITERATION; }
bool maybeInIteration() { return flags & MAYBE_IN_ITERATION; }
void setNotExtensible() {
MOZ_ASSERT(!isNotExtensible());
flags |= NOT_EXTENSIBLE;
}
bool isNotExtensible() { return flags & NOT_EXTENSIBLE; }
void seal() {
MOZ_ASSERT(isNotExtensible());
MOZ_ASSERT(!isSealed());
MOZ_ASSERT(!isFrozen());
flags |= SEALED;
}
void freeze() {
MOZ_ASSERT(isNotExtensible());
MOZ_ASSERT(isSealed());
MOZ_ASSERT(!isFrozen());
flags |= FROZEN;
}
bool isFrozen() const { return flags & FROZEN; }
public:
constexpr ObjectElements(uint32_t capacity, uint32_t length)
: flags(0), initializedLength(0), capacity(capacity), length(length) {}
enum class SharedMemory { IsShared };
constexpr ObjectElements(uint32_t capacity, uint32_t length,
SharedMemory shmem)
: flags(SHARED_MEMORY),
initializedLength(0),
capacity(capacity),
length(length) {}
HeapSlot* elements() {
return reinterpret_cast<HeapSlot*>(uintptr_t(this) +
sizeof(ObjectElements));
}
const HeapSlot* elements() const {
return reinterpret_cast<const HeapSlot*>(uintptr_t(this) +
sizeof(ObjectElements));
}
static ObjectElements* fromElements(HeapSlot* elems) {
return reinterpret_cast<ObjectElements*>(uintptr_t(elems) -
sizeof(ObjectElements));
}
bool isSharedMemory() const { return flags & SHARED_MEMORY; }
static int offsetOfFlags() {
return int(offsetof(ObjectElements, flags)) - int(sizeof(ObjectElements));
}
static int offsetOfInitializedLength() {
return int(offsetof(ObjectElements, initializedLength)) -
int(sizeof(ObjectElements));
}
static int offsetOfCapacity() {
return int(offsetof(ObjectElements, capacity)) -
int(sizeof(ObjectElements));
}
static int offsetOfLength() {
return int(offsetof(ObjectElements, length)) - int(sizeof(ObjectElements));
}
static void PrepareForPreventExtensions(JSContext* cx, NativeObject* obj);
static void PreventExtensions(NativeObject* obj);
[[nodiscard]] static bool FreezeOrSeal(JSContext* cx,
Handle<NativeObject*> obj,
IntegrityLevel level);
bool isSealed() const { return flags & SEALED; }
bool isPacked() const { return !(flags & NON_PACKED); }
JS::PropertyAttributes elementAttributes() const {
if (isFrozen()) {
return {JS::PropertyAttribute::Enumerable};
}
if (isSealed()) {
return {JS::PropertyAttribute::Enumerable,
JS::PropertyAttribute::Writable};
}
return {JS::PropertyAttribute::Configurable,
JS::PropertyAttribute::Enumerable, JS::PropertyAttribute::Writable};
}
uint32_t numShiftedElements() const {
uint32_t numShifted = flags >> NumShiftedElementsShift;
MOZ_ASSERT_IF(numShifted > 0,
!(flags & (NONWRITABLE_ARRAY_LENGTH | NOT_EXTENSIBLE |
SEALED | FROZEN)));
return numShifted;
}
uint32_t numAllocatedElements() const {
return VALUES_PER_HEADER + capacity + numShiftedElements();
}
// This is enough slots to store an object of this class. See the static
// assertion below.
static const size_t VALUES_PER_HEADER = 2;
};
static_assert(ObjectElements::VALUES_PER_HEADER * sizeof(HeapSlot) ==
sizeof(ObjectElements),
"ObjectElements doesn't fit in the given number of slots");
/*
* Slots header used for native objects. The header stores the capacity and the
* slot data follows in memory.
*/
class alignas(HeapSlot) ObjectSlots {
uint32_t capacity_;
uint32_t dictionarySlotSpan_;
uint64_t maybeUniqueId_;
public:
// Special values for maybeUniqueId_ to indicate no unique ID is present.
static constexpr uint64_t NoUniqueIdInDynamicSlots = 0;
static constexpr uint64_t NoUniqueIdInSharedEmptySlots = 1;
static constexpr uint64_t LastNoUniqueIdValue = NoUniqueIdInSharedEmptySlots;
static constexpr size_t VALUES_PER_HEADER = 2;
static inline size_t allocCount(size_t slotCount) {
static_assert(sizeof(ObjectSlots) ==
ObjectSlots::VALUES_PER_HEADER * sizeof(HeapSlot));
#ifdef MOZ_VALGRIND
if (slotCount == 0) {
// Add an extra unused slot so that NativeObject::slots_ always points
// into the allocation otherwise valgrind thinks this is a leak.
slotCount = 1;
}
#endif
return slotCount + VALUES_PER_HEADER;
}
static inline size_t allocSize(size_t slotCount) {
return allocCount(slotCount) * sizeof(HeapSlot);
}
static ObjectSlots* fromSlots(HeapSlot* slots) {
MOZ_ASSERT(slots);
return reinterpret_cast<ObjectSlots*>(uintptr_t(slots) -
sizeof(ObjectSlots));
}
static constexpr size_t offsetOfCapacity() {
return offsetof(ObjectSlots, capacity_);
}
static constexpr size_t offsetOfDictionarySlotSpan() {
return offsetof(ObjectSlots, dictionarySlotSpan_);
}
static constexpr size_t offsetOfMaybeUniqueId() {
return offsetof(ObjectSlots, maybeUniqueId_);
}
static constexpr size_t offsetOfSlots() { return sizeof(ObjectSlots); }
constexpr explicit ObjectSlots(uint32_t capacity, uint32_t dictionarySlotSpan,
uint64_t maybeUniqueId);
constexpr uint32_t capacity() const { return capacity_; }
constexpr uint32_t dictionarySlotSpan() const { return dictionarySlotSpan_; }
bool isSharedEmptySlots() const {
return maybeUniqueId_ == NoUniqueIdInSharedEmptySlots;
}
constexpr bool hasUniqueId() const {
return maybeUniqueId_ > LastNoUniqueIdValue;
}
uint64_t uniqueId() const {
MOZ_ASSERT(hasUniqueId());
return maybeUniqueId_;
}
uintptr_t maybeUniqueId() const { return hasUniqueId() ? maybeUniqueId_ : 0; }
void setUniqueId(uint64_t uid) {
MOZ_ASSERT(uid > LastNoUniqueIdValue);
MOZ_ASSERT(!isSharedEmptySlots());
maybeUniqueId_ = uid;
}
void setDictionarySlotSpan(uint32_t span) { dictionarySlotSpan_ = span; }
HeapSlot* slots() const {
return reinterpret_cast<HeapSlot*>(uintptr_t(this) + sizeof(ObjectSlots));
}
};
/*
* Shared singletons for objects with no elements.
* emptyObjectElementsShared is used only for TypedArrays, when the TA
* maps shared memory.
*/
extern HeapSlot* const emptyObjectElements;
extern HeapSlot* const emptyObjectElementsShared;
/*
* Shared singletons for objects with no dynamic slots.
*/
extern HeapSlot* const emptyObjectSlots;
extern HeapSlot* const emptyObjectSlotsForDictionaryObject[];
class AutoCheckShapeConsistency;
class GCMarker;
// Operations which change an object's dense elements can either succeed, fail,
// or be unable to complete. The latter is used when the object's elements must
// become sparse instead. The enum below is used for such operations.
enum class DenseElementResult { Failure, Success, Incomplete };
// Stores a slot offset in bytes relative to either the NativeObject* address
// (if isFixedSlot) or to NativeObject::slots_ (if !isFixedSlot).
class TaggedSlotOffset {
uint32_t bits_ = 0;
public:
static constexpr size_t OffsetShift = 1;
static constexpr size_t IsFixedSlotFlag = 0b1;
static constexpr size_t MaxOffset = SHAPE_MAXIMUM_SLOT * sizeof(Value);
static_assert((uint64_t(MaxOffset) << OffsetShift) <= UINT32_MAX,
"maximum slot offset must fit in TaggedSlotOffset");
constexpr TaggedSlotOffset() = default;
TaggedSlotOffset(uint32_t offset, bool isFixedSlot)
: bits_((offset << OffsetShift) | isFixedSlot) {
MOZ_ASSERT(offset <= MaxOffset);
}
uint32_t offset() const { return bits_ >> OffsetShift; }
bool isFixedSlot() const { return bits_ & IsFixedSlotFlag; }
bool operator==(const TaggedSlotOffset& other) const {
return bits_ == other.bits_;
}
bool operator!=(const TaggedSlotOffset& other) const {
return !(*this == other);
}
};
/*
* [SMDOC] NativeObject layout
*
* NativeObject specifies the internal implementation of a native object.
*
* Native objects use ShapedObject::shape to record property information. Two
* native objects with the same shape are guaranteed to have the same number of
* fixed slots.
*
* Native objects extend the base implementation of an object with storage for
* the object's named properties and indexed elements.
*
* These are stored separately from one another. Objects are followed by a
* variable-sized array of values for inline storage, which may be used by
* either properties of native objects (fixed slots), by elements (fixed
* elements), or by other data for certain kinds of objects, such as
* ArrayBufferObjects and TypedArrayObjects.
*
* Named property storage can be split between fixed slots and a dynamically
* allocated array (the slots member). For an object with N fixed slots, shapes
* with slots [0..N-1] are stored in the fixed slots, and the remainder are
* stored in the dynamic array. If all properties fit in the fixed slots, the
* 'slots_' member is nullptr.
*
* Elements are indexed via the 'elements_' member. This member can point to
* either the shared emptyObjectElements and emptyObjectElementsShared
* singletons, into the inline value array (the address of the third value, to
* leave room for a ObjectElements header;in this case numFixedSlots() is zero)
* or to a dynamically allocated array.
*
* Slots and elements may both be non-empty. The slots may be either names or
* indexes; no indexed property will be in both the slots and elements.
*/
class NativeObject : public JSObject {
protected:
/* Slots for object properties. */
js::HeapSlot* slots_;
/* Slots for object dense elements. */
js::HeapSlot* elements_;
friend class ::JSObject;
private:
static void staticAsserts() {
static_assert(sizeof(NativeObject) == sizeof(JSObject_Slots0),
"native object size must match GC thing size");
static_assert(sizeof(NativeObject) == sizeof(JS::shadow::Object),
"shadow interface must match actual implementation");
static_assert(sizeof(NativeObject) % sizeof(Value) == 0,
"fixed slots after an object must be aligned");
static_assert(offsetOfShape() == offsetof(JS::shadow::Object, shape),
"shadow type must match actual type");
static_assert(
offsetof(NativeObject, slots_) == offsetof(JS::shadow::Object, slots),
"shadow slots must match actual slots");
static_assert(
offsetof(NativeObject, elements_) == offsetof(JS::shadow::Object, _1),
"shadow placeholder must match actual elements");
static_assert(MAX_FIXED_SLOTS <= Shape::FIXED_SLOTS_MAX,
"verify numFixedSlots() bitfield is big enough");
static_assert(sizeof(NativeObject) + MAX_FIXED_SLOTS * sizeof(Value) ==
JSObject::MAX_BYTE_SIZE,
"inconsistent maximum object size");
// Sanity check NativeObject size is what we expect.
#ifdef JS_64BIT
static_assert(sizeof(NativeObject) == 3 * sizeof(void*));
#else
static_assert(sizeof(NativeObject) == 4 * sizeof(void*));
#endif
}
public:
NativeShape* shape() const { return &JSObject::shape()->asNative(); }
SharedShape* sharedShape() const { return &shape()->asShared(); }
DictionaryShape* dictionaryShape() const { return &shape()->asDictionary(); }
PropertyInfoWithKey getLastProperty() const {
return shape()->lastProperty();
}
HeapSlotArray getDenseElements() const { return HeapSlotArray(elements_); }
const Value& getDenseElement(uint32_t idx) const {
MOZ_ASSERT(idx < getDenseInitializedLength());
return elements_[idx];
}
bool containsDenseElement(uint32_t idx) const {
return idx < getDenseInitializedLength() &&
!elements_[idx].isMagic(JS_ELEMENTS_HOLE);
}
uint32_t getDenseInitializedLength() const {
return getElementsHeader()->initializedLength;
}
uint32_t getDenseCapacity() const { return getElementsHeader()->capacity; }
bool isSharedMemory() const { return getElementsHeader()->isSharedMemory(); }
// Update the object's shape and allocate slots if needed to match the shape's
// slot span.
MOZ_ALWAYS_INLINE bool setShapeAndAddNewSlots(JSContext* cx,
SharedShape* newShape,
uint32_t oldSpan,
uint32_t newSpan);
// Methods optimized for adding/removing a single slot. Must only be used for
// non-dictionary objects.
MOZ_ALWAYS_INLINE bool setShapeAndAddNewSlot(JSContext* cx,
SharedShape* newShape,
uint32_t slot);
void setShapeAndRemoveLastSlot(JSContext* cx, SharedShape* newShape,
uint32_t slot);
MOZ_ALWAYS_INLINE bool canReuseShapeForNewProperties(
NativeShape* newShape) const {
NativeShape* oldShape = shape();
MOZ_ASSERT(oldShape->propMapLength() == 0,
"object must have no properties");
MOZ_ASSERT(newShape->propMapLength() > 0,
"new shape must have at least one property");
if (oldShape->numFixedSlots() != newShape->numFixedSlots()) {
return false;
}
if (oldShape->isDictionary() || newShape->isDictionary()) {
return false;
}
if (oldShape->base() != newShape->base()) {
return false;
}
MOZ_ASSERT(oldShape->getObjectClass() == newShape->getObjectClass());
MOZ_ASSERT(oldShape->proto() == newShape->proto());
MOZ_ASSERT(oldShape->realm() == newShape->realm());
// We only handle the common case where the old shape has no object flags
// (expected because it's an empty object) and the new shape has just the
// HasEnumerable flag that we can copy safely.
if (!oldShape->objectFlags().isEmpty()) {
return false;
}
MOZ_ASSERT(newShape->hasObjectFlag(ObjectFlag::HasEnumerable));
return newShape->objectFlags() == ObjectFlags({ObjectFlag::HasEnumerable});
}
// Newly-created TypedArrays that map a SharedArrayBuffer are
// marked as shared by giving them an ObjectElements that has the
// ObjectElements::SHARED_MEMORY flag set.
void setIsSharedMemory() {
MOZ_ASSERT(elements_ == emptyObjectElements);
elements_ = emptyObjectElementsShared;
}
inline bool isInWholeCellBuffer() const;
static inline NativeObject* create(JSContext* cx, gc::AllocKind kind,
gc::Heap heap, Handle<SharedShape*> shape,
gc::AllocSite* site = nullptr);
#ifdef DEBUG
static void enableShapeConsistencyChecks();
#endif
protected:
#ifdef DEBUG
friend class js::AutoCheckShapeConsistency;
void checkShapeConsistency();
#else
void checkShapeConsistency() {}
#endif
void maybeFreeDictionaryPropSlots(JSContext* cx, DictionaryPropMap* map,
uint32_t mapLength);
[[nodiscard]] static bool toDictionaryMode(JSContext* cx,
Handle<NativeObject*> obj);
private:
inline void setEmptyDynamicSlots(uint32_t dictonarySlotSpan);
inline void setDictionaryModeSlotSpan(uint32_t span);
friend class gc::TenuringTracer;
// Given a slot range from |start| to |end| exclusive, call |fun| with
// pointers to the corresponding fixed slot and/or dynamic slot ranges.
template <typename Fun>
void forEachSlotRangeUnchecked(uint32_t start, uint32_t end, const Fun& fun) {
MOZ_ASSERT(end >= start);
uint32_t nfixed = numFixedSlots();
if (start < nfixed) {
HeapSlot* fixedStart = &fixedSlots()[start];
HeapSlot* fixedEnd = &fixedSlots()[std::min(nfixed, end)];
fun(fixedStart, fixedEnd);
start = nfixed;
}
if (end > nfixed) {
HeapSlot* dynStart = &slots_[start - nfixed];
HeapSlot* dynEnd = &slots_[end - nfixed];
fun(dynStart, dynEnd);
}
}
template <typename Fun>
void forEachSlotRange(uint32_t start, uint32_t end, const Fun& fun) {
MOZ_ASSERT(slotInRange(end, SENTINEL_ALLOWED));
forEachSlotRangeUnchecked(start, end, fun);
}
protected:
friend class DictionaryPropMap;
friend class GCMarker;
friend class Shape;
void invalidateSlotRange(uint32_t start, uint32_t end) {
#ifdef DEBUG
forEachSlotRange(start, end, [](HeapSlot* slotsStart, HeapSlot* slotsEnd) {
Debug_SetSlotRangeToCrashOnTouch(slotsStart, slotsEnd);
});
#endif /* DEBUG */
}
void initFixedSlots(uint32_t numSlots) {
MOZ_ASSERT(numSlots == numUsedFixedSlots());
HeapSlot* slots = fixedSlots();
for (uint32_t i = 0; i < numSlots; i++) {
slots[i].initAsUndefined();
}
}
void initDynamicSlots(uint32_t numSlots) {
MOZ_ASSERT(numSlots == sharedShape()->slotSpan() - numFixedSlots());
HeapSlot* slots = slots_;
for (uint32_t i = 0; i < numSlots; i++) {
slots[i].initAsUndefined();
}
}
void initSlots(uint32_t nfixed, uint32_t slotSpan) {
initFixedSlots(std::min(nfixed, slotSpan));
if (slotSpan > nfixed) {
initDynamicSlots(slotSpan - nfixed);
}
}
#ifdef DEBUG
enum SentinelAllowed{SENTINEL_NOT_ALLOWED, SENTINEL_ALLOWED};
/*
* Check that slot is in range for the object's allocated slots.
* If sentinelAllowed then slot may equal the slot capacity.
*/
bool slotInRange(uint32_t slot,
SentinelAllowed sentinel = SENTINEL_NOT_ALLOWED) const;
/*
* Check whether a slot is a fixed slot.
*/
bool slotIsFixed(uint32_t slot) const;
/*
* Check whether the supplied number of fixed slots is correct.
*/
bool isNumFixedSlots(uint32_t nfixed) const;
#endif
/*
* Minimum size for dynamically allocated slots in normal Objects.
* ArrayObjects don't use this limit and can have a lower slot capacity,
* since they normally don't have a lot of slots.
*/
static const uint32_t SLOT_CAPACITY_MIN = 8 - ObjectSlots::VALUES_PER_HEADER;
/*
* Minimum size for dynamically allocated elements in normal Objects.
*/
static const uint32_t ELEMENT_CAPACITY_MIN =
8 - ObjectElements::VALUES_PER_HEADER;
HeapSlot* fixedSlots() const {
return reinterpret_cast<HeapSlot*>(uintptr_t(this) + sizeof(NativeObject));
}
public:
inline void initEmptyDynamicSlots();
[[nodiscard]] static bool generateNewDictionaryShape(
JSContext* cx, Handle<NativeObject*> obj);
// The maximum number of slots in an object.
// |MAX_SLOTS_COUNT * sizeof(JS::Value)| shouldn't overflow
// int32_t (see slotsSizeMustNotOverflow).
static const uint32_t MAX_SLOTS_COUNT = (1 << 28) - 1;
static void slotsSizeMustNotOverflow() {
static_assert(
NativeObject::MAX_SLOTS_COUNT <= INT32_MAX / sizeof(JS::Value),
"every caller of this method requires that a slot "
"number (or slot count) count multiplied by "
"sizeof(Value) can't overflow uint32_t (and sometimes "
"int32_t, too)");
}
uint32_t numFixedSlots() const {
return reinterpret_cast<const JS::shadow::Object*>(this)->numFixedSlots();
}
// Get the number of fixed slots when the shape pointer may have been
// forwarded by a moving GC. You need to use this rather that
// numFixedSlots() in a trace hook if you access an object that is not the
// object being traced, since it may have a stale shape pointer.
inline uint32_t numFixedSlotsMaybeForwarded() const;
uint32_t numUsedFixedSlots() const {
uint32_t nslots = sharedShape()->slotSpan();
return std::min(nslots, numFixedSlots());
}
uint32_t slotSpan() const {
if (inDictionaryMode()) {
return dictionaryModeSlotSpan();
}
MOZ_ASSERT(getSlotsHeader()->dictionarySlotSpan() == 0);
return sharedShape()->slotSpan();
}
uint32_t dictionaryModeSlotSpan() const {
MOZ_ASSERT(inDictionaryMode());
return getSlotsHeader()->dictionarySlotSpan();
}
/* Whether a slot is at a fixed offset from this object. */
bool isFixedSlot(size_t slot) { return slot < numFixedSlots(); }
/* Index into the dynamic slots array to use for a dynamic slot. */
size_t dynamicSlotIndex(size_t slot) {
MOZ_ASSERT(slot >= numFixedSlots());
return slot - numFixedSlots();
}
// Native objects are never proxies. Call isExtensible instead.
bool nonProxyIsExtensible() const = delete;
bool isExtensible() const {
#ifdef ENABLE_RECORD_TUPLE
if (IsExtendedPrimitiveWrapper(*this)) {
return false;
}
#endif
return !hasFlag(ObjectFlag::NotExtensible);
}
/*
* Whether there may be indexed properties on this object, excluding any in
* the object's elements.
*/
bool isIndexed() const { return hasFlag(ObjectFlag::Indexed); }
bool hasInterestingSymbol() const {
return hasFlag(ObjectFlag::HasInterestingSymbol);
}
bool hasEnumerableProperty() const {
return hasFlag(ObjectFlag::HasEnumerable);
}
static bool setHadGetterSetterChange(JSContext* cx,
Handle<NativeObject*> obj) {
return setFlag(cx, obj, ObjectFlag::HadGetterSetterChange);
}
bool hadGetterSetterChange() const {
return hasFlag(ObjectFlag::HadGetterSetterChange);
}
bool allocateInitialSlots(JSContext* cx, uint32_t capacity);
/*
* Grow or shrink slots immediately before changing the slot span.
* The number of allocated slots is not stored explicitly, and changes to
* the slots must track changes in the slot span.
*/
bool growSlots(JSContext* cx, uint32_t oldCapacity, uint32_t newCapacity);
bool growSlotsForNewSlot(JSContext* cx, uint32_t numFixed, uint32_t slot);
void shrinkSlots(JSContext* cx, uint32_t oldCapacity, uint32_t newCapacity);
bool allocateSlots(JSContext* cx, uint32_t newCapacity);
/*
* This method is static because it's called from JIT code. On OOM, returns
* false without leaving a pending exception on the context.
*/
static bool growSlotsPure(JSContext* cx, NativeObject* obj,
uint32_t newCapacity);
/*
* Like growSlotsPure but for dense elements. This will return
* false if we failed to allocate a dense element for some reason (OOM, too
* many dense elements, non-writable array length, etc).
*/
static bool addDenseElementPure(JSContext* cx, NativeObject* obj);
/*
* Indicates whether this object has an ObjectSlots allocation attached. The
* capacity of this can be zero if it is only used to hold a unique ID.
*/
bool hasDynamicSlots() const {
return !getSlotsHeader()->isSharedEmptySlots();
}
/* Compute the number of dynamic slots required for this object. */
MOZ_ALWAYS_INLINE uint32_t calculateDynamicSlots() const;
MOZ_ALWAYS_INLINE uint32_t numDynamicSlots() const;
#ifdef DEBUG
uint32_t outOfLineNumDynamicSlots() const;
#endif
bool empty() const { return shape()->propMapLength() == 0; }
mozilla::Maybe<PropertyInfo> lookup(JSContext* cx, jsid id);
mozilla::Maybe<PropertyInfo> lookup(JSContext* cx, PropertyName* name) {
return lookup(cx, NameToId(name));
}
bool contains(JSContext* cx, jsid id) { return lookup(cx, id).isSome(); }
bool contains(JSContext* cx, PropertyName* name) {
return lookup(cx, name).isSome();
}
bool contains(JSContext* cx, jsid id, PropertyInfo prop) {
mozilla::Maybe<PropertyInfo> found = lookup(cx, id);
return found.isSome() && *found == prop;
}
/* Contextless; can be called from other pure code. */
mozilla::Maybe<PropertyInfo> lookupPure(jsid id);
mozilla::Maybe<PropertyInfo> lookupPure(PropertyName* name) {
return lookupPure(NameToId(name));
}
bool containsPure(jsid id) { return lookupPure(id).isSome(); }
bool containsPure(PropertyName* name) { return containsPure(NameToId(name)); }
bool containsPure(jsid id, PropertyInfo prop) {
mozilla::Maybe<PropertyInfo> found = lookupPure(id);
return found.isSome() && *found == prop;
}
private:
/*
* Allocate and free an object slot.
*
* FIXME: bug 593129 -- slot allocation should be done by object methods
* after calling object-parameter-free shape methods, avoiding coupling
* logic across the object vs. shape module wall.
*/
static bool allocDictionarySlot(JSContext* cx, Handle<NativeObject*> obj,
uint32_t* slotp);
void freeDictionarySlot(uint32_t slot);
static MOZ_ALWAYS_INLINE bool maybeConvertToDictionaryForAdd(
JSContext* cx, Handle<NativeObject*> obj);
public:
// Add a new property. Must only be used when the |id| is not already present
// in the object's shape. Checks for non-extensibility must be done by the
// callers.
static bool addProperty(JSContext* cx, Handle<NativeObject*> obj, HandleId id,
PropertyFlags flags, uint32_t* slotOut);
static bool addProperty(JSContext* cx, Handle<NativeObject*> obj,
Handle<PropertyName*> name, PropertyFlags flags,
uint32_t* slotOut) {
RootedId id(cx, NameToId(name));
return addProperty(cx, obj, id, flags, slotOut);
}
static bool addPropertyInReservedSlot(JSContext* cx,
Handle<NativeObject*> obj, HandleId id,
uint32_t slot, PropertyFlags flags);
static bool addPropertyInReservedSlot(JSContext* cx,
Handle<NativeObject*> obj,
Handle<PropertyName*> name,
uint32_t slot, PropertyFlags flags) {
RootedId id(cx, NameToId(name));
return addPropertyInReservedSlot(cx, obj, id, slot, flags);
}
static bool addCustomDataProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, PropertyFlags flags);
// Change a property with key |id| in this object. The object must already
// have a property (stored in the shape tree) with this |id|.
static bool changeProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, PropertyFlags flags,
uint32_t* slotOut);
static bool changeCustomDataPropAttributes(JSContext* cx,
Handle<NativeObject*> obj,
HandleId id, PropertyFlags flags);
// Remove the property named by id from this object.
static bool removeProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id);
static bool freezeOrSealProperties(JSContext* cx, Handle<NativeObject*> obj,
IntegrityLevel level);
protected:
static bool changeNumFixedSlotsAfterSwap(JSContext* cx,
Handle<NativeObject*> obj,
uint32_t nfixed);
// For use from JSObject::swap.
[[nodiscard]] bool prepareForSwap(JSContext* cx,
MutableHandleValueVector slotValuesOut);
[[nodiscard]] static bool fixupAfterSwap(JSContext* cx,
Handle<NativeObject*> obj,
gc::AllocKind kind,
HandleValueVector slotValues);
public:
// Return true if this object has been converted from shared-immutable
// shapes to object-owned dictionary shapes.
bool inDictionaryMode() const { return shape()->isDictionary(); }
const Value& getSlot(uint32_t slot) const {
MOZ_ASSERT(slotInRange(slot));
uint32_t fixed = numFixedSlots();
if (slot < fixed) {
return fixedSlots()[slot];
}
return slots_[slot - fixed];
}
const HeapSlot* getSlotAddressUnchecked(uint32_t slot) const {
uint32_t fixed = numFixedSlots();
if (slot < fixed) {
return fixedSlots() + slot;
}
return slots_ + (slot - fixed);
}
HeapSlot* getSlotAddressUnchecked(uint32_t slot) {
uint32_t fixed = numFixedSlots();
if (slot < fixed) {
return fixedSlots() + slot;
}
return slots_ + (slot - fixed);
}
HeapSlot* getSlotAddress(uint32_t slot) {
/*
* This can be used to get the address of the end of the slots for the
* object, which may be necessary when fetching zero-length arrays of
* slots (e.g. for callObjVarArray).
*/
MOZ_ASSERT(slotInRange(slot, SENTINEL_ALLOWED));
return getSlotAddressUnchecked(slot);
}
const HeapSlot* getSlotAddress(uint32_t slot) const {
/*
* This can be used to get the address of the end of the slots for the
* object, which may be necessary when fetching zero-length arrays of
* slots (e.g. for callObjVarArray).
*/
MOZ_ASSERT(slotInRange(slot, SENTINEL_ALLOWED));
return getSlotAddressUnchecked(slot);
}
MOZ_ALWAYS_INLINE HeapSlot& getSlotRef(uint32_t slot) {
MOZ_ASSERT(slotInRange(slot));
return *getSlotAddress(slot);
}
MOZ_ALWAYS_INLINE const HeapSlot& getSlotRef(uint32_t slot) const {
MOZ_ASSERT(slotInRange(slot));
return *getSlotAddress(slot);
}
// Check requirements on values stored to this object.
MOZ_ALWAYS_INLINE void checkStoredValue(const Value& v) {
MOZ_ASSERT(IsObjectValueInCompartment(v, compartment()));
MOZ_ASSERT(AtomIsMarked(zoneFromAnyThread(), v));
MOZ_ASSERT_IF(v.isMagic() && v.whyMagic() == JS_ELEMENTS_HOLE,
!denseElementsArePacked());
}
MOZ_ALWAYS_INLINE void setSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(slotInRange(slot));
checkStoredValue(value);
getSlotRef(slot).set(this, HeapSlot::Slot, slot, value);
}
MOZ_ALWAYS_INLINE void initSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(getSlot(slot).isUndefined());
MOZ_ASSERT(slotInRange(slot));
checkStoredValue(value);
initSlotUnchecked(slot, value);
}
MOZ_ALWAYS_INLINE void initSlotUnchecked(uint32_t slot, const Value& value) {
getSlotAddressUnchecked(slot)->init(this, HeapSlot::Slot, slot, value);
}
// Returns the GetterSetter for an accessor property.
GetterSetter* getGetterSetter(uint32_t slot) const {
return getSlot(slot).toGCThing()->as<GetterSetter>();
}
GetterSetter* getGetterSetter(PropertyInfo prop) const {
MOZ_ASSERT(prop.isAccessorProperty());
return getGetterSetter(prop.slot());
}
// Returns the (possibly nullptr) getter or setter object. |prop| and |slot|
// must be (for) an accessor property.
JSObject* getGetter(uint32_t slot) const {
return getGetterSetter(slot)->getter();
}
JSObject* getGetter(PropertyInfo prop) const {
return getGetterSetter(prop)->getter();
}
JSObject* getSetter(PropertyInfo prop) const {
return getGetterSetter(prop)->setter();
}
// Returns true if the property has a non-nullptr getter or setter object.
// |prop| can be any property.
bool hasGetter(PropertyInfo prop) const {
return prop.isAccessorProperty() && getGetter(prop);
}
bool hasSetter(PropertyInfo prop) const {
return prop.isAccessorProperty() && getSetter(prop);
}
// If the property has a non-nullptr getter/setter, return it as ObjectValue.
// Else return |undefined|. |prop| must be an accessor property.
Value getGetterValue(PropertyInfo prop) const {
MOZ_ASSERT(prop.isAccessorProperty());
if (JSObject* getterObj = getGetter(prop)) {
return ObjectValue(*getterObj);
}
return UndefinedValue();
}
Value getSetterValue(PropertyInfo prop) const {
MOZ_ASSERT(prop.isAccessorProperty());
if (JSObject* setterObj = getSetter(prop)) {
return ObjectValue(*setterObj);
}
return UndefinedValue();
}
[[nodiscard]] bool setUniqueId(JSContext* cx, uint64_t uid);
inline bool hasUniqueId() const { return getSlotsHeader()->hasUniqueId(); }
inline uint64_t uniqueId() const { return getSlotsHeader()->uniqueId(); }
inline uint64_t maybeUniqueId() const {
return getSlotsHeader()->maybeUniqueId();
}
bool setOrUpdateUniqueId(JSContext* cx, uint64_t uid);
// MAX_FIXED_SLOTS is the biggest number of fixed slots our GC
// size classes will give an object.
static constexpr uint32_t MAX_FIXED_SLOTS =
JS::shadow::Object::MAX_FIXED_SLOTS;
private:
void prepareElementRangeForOverwrite(size_t start, size_t end) {
MOZ_ASSERT(end <= getDenseInitializedLength());
for (size_t i = start; i < end; i++) {
elements_[i].destroy();
}
}
/*
* Trigger the write barrier on a range of slots that will no longer be
* reachable.
*/
void prepareSlotRangeForOverwrite(size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
getSlotAddressUnchecked(i)->destroy();
}
}
inline void shiftDenseElementsUnchecked(uint32_t count);
// Like getSlotRef, but optimized for reserved slots. This relies on the fact
// that the first reserved slots (up to MAX_FIXED_SLOTS) are always stored in
// fixed slots. This lets the compiler optimize away the branch below when
// |index| is a constant (after inlining).
//
// Note: objects that may be swapped have less predictable slot layouts
// because they could have been swapped with an object with fewer fixed slots.
// Fortunately, the only native objects that can be swapped are DOM objects
// and these shouldn't end up here (asserted below).
MOZ_ALWAYS_INLINE HeapSlot& getReservedSlotRef(uint32_t index) {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
MOZ_ASSERT(slotIsFixed(index) == (index < MAX_FIXED_SLOTS));
MOZ_ASSERT(!ObjectMayBeSwapped(this));
return index < MAX_FIXED_SLOTS ? fixedSlots()[index]
: slots_[index - MAX_FIXED_SLOTS];
}
MOZ_ALWAYS_INLINE const HeapSlot& getReservedSlotRef(uint32_t index) const {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
MOZ_ASSERT(slotIsFixed(index) == (index < MAX_FIXED_SLOTS));
MOZ_ASSERT(!ObjectMayBeSwapped(this));
return index < MAX_FIXED_SLOTS ? fixedSlots()[index]
: slots_[index - MAX_FIXED_SLOTS];
}
public:
MOZ_ALWAYS_INLINE const Value& getReservedSlot(uint32_t index) const {
return getReservedSlotRef(index);
}
MOZ_ALWAYS_INLINE void initReservedSlot(uint32_t index, const Value& v) {
MOZ_ASSERT(getReservedSlot(index).isUndefined());
checkStoredValue(v);
getReservedSlotRef(index).init(this, HeapSlot::Slot, index, v);
}
MOZ_ALWAYS_INLINE void setReservedSlot(uint32_t index, const Value& v) {
checkStoredValue(v);
getReservedSlotRef(index).set(this, HeapSlot::Slot, index, v);
}
// For slots which are known to always be fixed, due to the way they are
// allocated.
HeapSlot& getFixedSlotRef(uint32_t slot) {
MOZ_ASSERT(slotIsFixed(slot));
return fixedSlots()[slot];
}
const Value& getFixedSlot(uint32_t slot) const {
MOZ_ASSERT(slotIsFixed(slot));
return fixedSlots()[slot];
}
const Value& getDynamicSlot(uint32_t dynamicSlotIndex) const {
MOZ_ASSERT(dynamicSlotIndex < outOfLineNumDynamicSlots());
return slots_[dynamicSlotIndex];
}
void setFixedSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(slotIsFixed(slot));
checkStoredValue(value);
fixedSlots()[slot].set(this, HeapSlot::Slot, slot, value);
}
void setDynamicSlot(uint32_t numFixed, uint32_t slot, const Value& value) {
MOZ_ASSERT(numFixedSlots() == numFixed);
MOZ_ASSERT(slot >= numFixed);
MOZ_ASSERT(slot - numFixed < getSlotsHeader()->capacity());
checkStoredValue(value);
slots_[slot - numFixed].set(this, HeapSlot::Slot, slot, value);
}
void initFixedSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(slotIsFixed(slot));
checkStoredValue(value);
fixedSlots()[slot].init(this, HeapSlot::Slot, slot, value);
}
void initDynamicSlot(uint32_t numFixed, uint32_t slot, const Value& value) {
MOZ_ASSERT(numFixedSlots() == numFixed);
MOZ_ASSERT(slot >= numFixed);
MOZ_ASSERT(slot - numFixed < getSlotsHeader()->capacity());
checkStoredValue(value);
slots_[slot - numFixed].init(this, HeapSlot::Slot, slot, value);
}
template <typename T>
T* maybePtrFromReservedSlot(uint32_t slot) const {
Value v = getReservedSlot(slot);
return v.isUndefined() ? nullptr : static_cast<T*>(v.toPrivate());
}
/*
* Calculate the number of dynamic slots to allocate to cover the properties
* in an object with the given number of fixed slots and slot span.
*/
static MOZ_ALWAYS_INLINE uint32_t calculateDynamicSlots(uint32_t nfixed,
uint32_t span,
const JSClass* clasp);
static MOZ_ALWAYS_INLINE uint32_t calculateDynamicSlots(SharedShape* shape);
ObjectSlots* getSlotsHeader() const { return ObjectSlots::fromSlots(slots_); }
/* Elements accessors. */
// The maximum size, in sizeof(Value), of the allocation used for an
// object's dense elements. (This includes space used to store an
// ObjectElements instance.)
// |MAX_DENSE_ELEMENTS_ALLOCATION * sizeof(JS::Value)| shouldn't overflow
// int32_t (see elementsSizeMustNotOverflow).
static const uint32_t MAX_DENSE_ELEMENTS_ALLOCATION = (1 << 28) - 1;
// The maximum number of usable dense elements in an object.
static const uint32_t MAX_DENSE_ELEMENTS_COUNT =
MAX_DENSE_ELEMENTS_ALLOCATION - ObjectElements::VALUES_PER_HEADER;
static void elementsSizeMustNotOverflow() {
static_assert(
NativeObject::MAX_DENSE_ELEMENTS_COUNT <= INT32_MAX / sizeof(JS::Value),
"every caller of this method require that an element "
"count multiplied by sizeof(Value) can't overflow "
"uint32_t (and sometimes int32_t ,too)");
}
ObjectElements* getElementsHeader() const {
return ObjectElements::fromElements(elements_);
}
// Returns a pointer to the first element, including shifted elements.
inline HeapSlot* unshiftedElements() const {
return elements_ - getElementsHeader()->numShiftedElements();
}
// Like getElementsHeader, but returns a pointer to the unshifted header.
// This is mainly useful for free()ing dynamic elements: the pointer
// returned here is the one we got from malloc.
void* getUnshiftedElementsHeader() const {
return ObjectElements::fromElements(unshiftedElements());
}
uint32_t unshiftedIndex(uint32_t index) const {
return index + getElementsHeader()->numShiftedElements();
}
/* Accessors for elements. */
bool ensureElements(JSContext* cx, uint32_t capacity) {
MOZ_ASSERT(isExtensible());
if (capacity > getDenseCapacity()) {
return growElements(cx, capacity);
}
return true;
}
// Try to shift |count| dense elements, see the "Shifted elements" comment.
inline bool tryShiftDenseElements(uint32_t count);
// Try to make space for |count| dense elements at the start of the array.
bool tryUnshiftDenseElements(uint32_t count);
// Move the elements header and all shifted elements to the start of the
// allocated elements space, so that numShiftedElements is 0 afterwards.
void moveShiftedElements();
// If this object has many shifted elements call moveShiftedElements.
void maybeMoveShiftedElements();
static bool goodElementsAllocationAmount(JSContext* cx, uint32_t reqAllocated,
uint32_t length,
uint32_t* goodAmount);
bool growElements(JSContext* cx, uint32_t newcap);
void shrinkElements(JSContext* cx, uint32_t cap);
private:
// Run a post write barrier that encompasses multiple contiguous elements in a
// single step.
inline void elementsRangePostWriteBarrier(uint32_t start, uint32_t count);
public:
void shrinkCapacityToInitializedLength(JSContext* cx);
private:
void setDenseInitializedLengthInternal(uint32_t length) {
MOZ_ASSERT(length <= getDenseCapacity());
MOZ_ASSERT(!denseElementsAreFrozen());
prepareElementRangeForOverwrite(length,
getElementsHeader()->initializedLength);
getElementsHeader()->initializedLength = length;
}
public:
void setDenseInitializedLength(uint32_t length) {
MOZ_ASSERT(isExtensible());
setDenseInitializedLengthInternal(length);
}
void setDenseInitializedLengthMaybeNonExtensible(JSContext* cx,
uint32_t length) {
setDenseInitializedLengthInternal(length);
if (!isExtensible()) {
shrinkCapacityToInitializedLength(cx);
}
}
inline void ensureDenseInitializedLength(uint32_t index, uint32_t extra);
void setDenseElement(uint32_t index, const Value& val) {
MOZ_ASSERT_IF(val.isMagic(), val.whyMagic() != JS_ELEMENTS_HOLE);
setDenseElementUnchecked(index, val);
}
void initDenseElement(uint32_t index, const Value& val) {
MOZ_ASSERT(!val.isMagic(JS_ELEMENTS_HOLE));
initDenseElementUnchecked(index, val);
}
private:
// Note: 'Unchecked' here means we don't assert |val| isn't the hole
// MagicValue.
void initDenseElementUnchecked(uint32_t index, const Value& val) {
MOZ_ASSERT(index < getDenseInitializedLength());
MOZ_ASSERT(isExtensible());
checkStoredValue(val);
elements_[index].init(this, HeapSlot::Element, unshiftedIndex(index), val);
}
void setDenseElementUnchecked(uint32_t index, const Value& val) {
MOZ_ASSERT(index < getDenseInitializedLength());
MOZ_ASSERT(!denseElementsAreFrozen());
checkStoredValue(val);
elements_[index].set(this, HeapSlot::Element, unshiftedIndex(index), val);
}
// Mark the dense elements as possibly containing holes.
inline void markDenseElementsNotPacked();
public:
inline void initDenseElementHole(uint32_t index);
inline void setDenseElementHole(uint32_t index);
inline void removeDenseElementForSparseIndex(uint32_t index);
inline void copyDenseElements(uint32_t dstStart, const Value* src,
uint32_t count);
inline void initDenseElements(const Value* src, uint32_t count);
inline void initDenseElements(NativeObject* src, uint32_t srcStart,
uint32_t count);
// Copy the first `count` dense elements from `src` to `this`, starting at
// `destStart`. The initialized length must already include the new elements.
inline void initDenseElementRange(uint32_t destStart, NativeObject* src,
uint32_t count);
// Store the Values in the range [begin, end) as elements of this array.
//
// Preconditions: This must be a boring ArrayObject with dense initialized
// length 0: no shifted elements, no frozen elements, no fixed "length", not
// indexed, not inextensible, not copy-on-write. Existing capacity is
// optional.
//
// This runs write barriers but does not update types. `end - begin` must
// return the size of the range, which must be >= 0 and fit in an int32_t.
template <typename Iter>
[[nodiscard]] inline bool initDenseElementsFromRange(JSContext* cx,
Iter begin, Iter end);
inline void moveDenseElements(uint32_t dstStart, uint32_t srcStart,
uint32_t count);
inline void reverseDenseElementsNoPreBarrier(uint32_t length);
inline DenseElementResult setOrExtendDenseElements(JSContext* cx,
uint32_t start,
const Value* vp,
uint32_t count);
bool denseElementsAreSealed() const {
return getElementsHeader()->isSealed();
}
bool denseElementsAreFrozen() const {
return hasFlag(ObjectFlag::FrozenElements);
}
bool denseElementsArePacked() const {
return getElementsHeader()->isPacked();
}
void markDenseElementsMaybeInIteration() {
getElementsHeader()->markMaybeInIteration();
}
// Return whether the object's dense elements might be in the midst of for-in
// iteration. We rely on this to be able to safely delete or move dense array
// elements without worrying about updating in-progress iterators.
// See bug 690622.
//
// Note that it's fine to return false if this object is on the prototype of
// another object: SuppressDeletedProperty only suppresses properties deleted
// from the iterated object itself.
inline bool denseElementsHaveMaybeInIterationFlag();
inline bool denseElementsMaybeInIteration();
// Ensures that the object can hold at least index + extra elements. This
// returns DenseElement_Success on success, DenseElement_Failed on failure
// to grow the array, or DenseElement_Incomplete when the object is too
// sparse to grow (this includes the case of index + extra overflow). In
// the last two cases the object is kept intact.
inline DenseElementResult ensureDenseElements(JSContext* cx, uint32_t index,
uint32_t extra);
inline DenseElementResult extendDenseElements(JSContext* cx,
uint32_t requiredCapacity,
uint32_t extra);
/* Small objects are dense, no matter what. */
static const uint32_t MIN_SPARSE_INDEX = 1000;
/*
* Element storage for an object will be sparse if fewer than 1/8 indexes
* are filled in.
*/
static const unsigned SPARSE_DENSITY_RATIO = 8;
/*
* Check if after growing the object's elements will be too sparse.
* newElementsHint is an estimated number of elements to be added.
*/
bool willBeSparseElements(uint32_t requiredCapacity,
uint32_t newElementsHint);
/*
* After adding a sparse index to obj, see if it should be converted to use
* dense elements.
*/
static DenseElementResult maybeDensifySparseElements(
JSContext* cx, Handle<NativeObject*> obj);
static bool densifySparseElements(JSContext* cx, Handle<NativeObject*> obj);
inline HeapSlot* fixedElements() const {
static_assert(2 * sizeof(Value) == sizeof(ObjectElements),
"when elements are stored inline, the first two "
"slots will hold the ObjectElements header");
return &fixedSlots()[2];
}
#ifdef DEBUG
bool canHaveNonEmptyElements();
#endif
void setEmptyElements() { elements_ = emptyObjectElements; }
void initFixedElements(gc::AllocKind kind, uint32_t length);
// Update the elements pointer to use the fixed elements storage. The caller
// is responsible for initializing the elements themselves and setting the
// FIXED flag.
void setFixedElements(uint32_t numShifted = 0) {
MOZ_ASSERT(canHaveNonEmptyElements());
elements_ = fixedElements() + numShifted;
}
inline bool hasDynamicElements() const {
/*
* Note: for objects with zero fixed slots this could potentially give
* a spurious 'true' result, if the end of this object is exactly
* aligned with the end of its arena and dynamic slots are allocated
* immediately afterwards. Such cases cannot occur for dense arrays
* (which have at least two fixed slots) and can only result in a leak.
*/
return !hasEmptyElements() && !hasFixedElements();
}
inline bool hasFixedElements() const {
bool fixed = getElementsHeader()->flags & ObjectElements::FIXED;
MOZ_ASSERT_IF(fixed, unshiftedElements() == fixedElements());
return fixed;
}
inline bool hasEmptyElements() const {
return elements_ == emptyObjectElements ||
elements_ == emptyObjectElementsShared;
}
/*
* Get a pointer to the unused data in the object's allocation immediately
* following this object, for use with objects which allocate a larger size
* class than they need and store non-elements data inline.
*/
inline uint8_t* fixedData(size_t nslots) const;
inline void privatePreWriteBarrier(HeapSlot* pprivate);
// The methods below are used to store GC things in a reserved slot as
// PrivateValues. This is done to bypass the normal tracing code (debugger
// objects use this to store cross-compartment pointers).
//
// WARNING: make sure you REALLY need this and you know what you're doing
// before using these methods!
void setReservedSlotGCThingAsPrivate(uint32_t slot, gc::Cell* cell) {
#ifdef DEBUG
if (IsMarkedBlack(this)) {
JS::AssertCellIsNotGray(cell);
}
#endif
HeapSlot* pslot = getSlotAddress(slot);
Cell* prev = nullptr;
if (!pslot->isUndefined()) {
prev = static_cast<gc::Cell*>(pslot->toPrivate());
privatePreWriteBarrier(pslot);
}
setReservedSlotGCThingAsPrivateUnbarriered(slot, cell);
gc::PostWriteBarrierCell(this, prev, cell);
}
void setReservedSlotGCThingAsPrivateUnbarriered(uint32_t slot,
gc::Cell* cell) {
MOZ_ASSERT(slot < JSCLASS_RESERVED_SLOTS(getClass()));
MOZ_ASSERT(cell);
getReservedSlotRef(slot).unbarrieredSet(PrivateValue(cell));
}
void clearReservedSlotGCThingAsPrivate(uint32_t slot) {
MOZ_ASSERT(slot < JSCLASS_RESERVED_SLOTS(getClass()));
HeapSlot* pslot = &getReservedSlotRef(slot);
if (!pslot->isUndefined()) {
privatePreWriteBarrier(pslot);
pslot->unbarrieredSet(UndefinedValue());
}
}
/* Return the allocKind we would use if we were to tenure this object. */
inline js::gc::AllocKind allocKindForTenure() const;
// Native objects are never wrappers, so a native object always has a realm
// and global.
JS::Realm* realm() const { return nonCCWRealm(); }
inline js::GlobalObject& global() const;
TaggedSlotOffset getTaggedSlotOffset(size_t slot) const {
MOZ_ASSERT(slot < slotSpan());
uint32_t nfixed = numFixedSlots();
if (slot < nfixed) {
return TaggedSlotOffset(getFixedSlotOffset(slot),
/* isFixedSlot = */ true);
}
return TaggedSlotOffset((slot - nfixed) * sizeof(Value),
/* isFixedSlot = */ false);
}
/* JIT Accessors */
static size_t offsetOfElements() { return offsetof(NativeObject, elements_); }
static size_t offsetOfFixedElements() {
return sizeof(NativeObject) + sizeof(ObjectElements);
}
static constexpr size_t getFixedSlotOffset(size_t slot) {
MOZ_ASSERT(slot < MAX_FIXED_SLOTS);
return sizeof(NativeObject) + slot * sizeof(Value);
}
static constexpr size_t getFixedSlotIndexFromOffset(size_t offset) {
MOZ_ASSERT(offset >= sizeof(NativeObject));
offset -= sizeof(NativeObject);
MOZ_ASSERT(offset % sizeof(Value) == 0);
MOZ_ASSERT(offset / sizeof(Value) < MAX_FIXED_SLOTS);
return offset / sizeof(Value);
}
static constexpr size_t getDynamicSlotIndexFromOffset(size_t offset) {
MOZ_ASSERT(offset % sizeof(Value) == 0);
return offset / sizeof(Value);
}
static size_t offsetOfSlots() { return offsetof(NativeObject, slots_); }
};
inline void NativeObject::privatePreWriteBarrier(HeapSlot* pprivate) {
JS::shadow::Zone* shadowZone = this->shadowZoneFromAnyThread();
if (shadowZone->needsIncrementalBarrier() && pprivate->get().toPrivate() &&
getClass()->hasTrace()) {
getClass()->doTrace(shadowZone->barrierTracer(), this);
}
}
/*** Standard internal methods **********************************************/
/*
* These functions should follow the algorithms in ES6 draft rev 29 section 9.1
* ("Ordinary Object Internal Methods"). It's an ongoing project.
*
* Many native objects are not "ordinary" in ES6, so these functions also have
* to serve some of the special needs of Functions (9.2, 9.3, 9.4.1), Arrays
* (9.4.2), Strings (9.4.3), and so on.
*/
extern bool NativeDefineProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id,
Handle<JS::PropertyDescriptor> desc,
ObjectOpResult& result);
extern bool NativeDefineDataProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue value,
unsigned attrs, ObjectOpResult& result);
/* If the result out-param is omitted, throw on failure. */
extern bool NativeDefineAccessorProperty(JSContext* cx,
Handle<NativeObject*> obj, HandleId id,
HandleObject getter,
HandleObject setter, unsigned attrs);
extern bool NativeDefineDataProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue value,
unsigned attrs);
extern bool NativeDefineDataProperty(JSContext* cx, Handle<NativeObject*> obj,
PropertyName* name, HandleValue value,
unsigned attrs);
extern bool NativeHasProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, bool* foundp);
extern bool NativeGetOwnPropertyDescriptor(
JSContext* cx, Handle<NativeObject*> obj, HandleId id,
MutableHandle<mozilla::Maybe<JS::PropertyDescriptor>> desc);
extern bool NativeGetProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleValue receiver, HandleId id,
MutableHandleValue vp);
extern bool NativeGetPropertyNoGC(JSContext* cx, NativeObject* obj,
const Value& receiver, jsid id, Value* vp);
inline bool NativeGetProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, MutableHandleValue vp) {
RootedValue receiver(cx, ObjectValue(*obj));
return NativeGetProperty(cx, obj, receiver, id, vp);
}
extern bool NativeGetElement(JSContext* cx, Handle<NativeObject*> obj,
HandleValue receiver, int32_t index,
MutableHandleValue vp);
bool GetSparseElementHelper(JSContext* cx, Handle<NativeObject*> obj,
int32_t int_id, MutableHandleValue result);
bool SetPropertyByDefining(JSContext* cx, HandleId id, HandleValue v,
HandleValue receiver, ObjectOpResult& result);
bool SetPropertyOnProto(JSContext* cx, HandleObject obj, HandleId id,
HandleValue v, HandleValue receiver,
ObjectOpResult& result);
bool AddOrUpdateSparseElementHelper(JSContext* cx, Handle<NativeObject*> obj,
int32_t int_id, HandleValue v, bool strict);
/*
* Indicates whether an assignment operation is qualified (`x.y = 0`) or
* unqualified (`y = 0`). In strict mode, the latter is an error if no such
* variable already exists.
*
* Used as an argument to NativeSetProperty.
*/
enum QualifiedBool { Unqualified = 0, Qualified = 1 };
template <QualifiedBool Qualified>
extern bool NativeSetProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, HandleValue v, HandleValue receiver,
ObjectOpResult& result);
extern bool NativeSetElement(JSContext* cx, Handle<NativeObject*> obj,
uint32_t index, HandleValue v,
HandleValue receiver, ObjectOpResult& result);
extern bool NativeDeleteProperty(JSContext* cx, Handle<NativeObject*> obj,
HandleId id, ObjectOpResult& result);
/*** SpiderMonkey nonstandard internal methods ******************************/
template <AllowGC allowGC>
extern bool NativeLookupOwnProperty(
JSContext* cx, typename MaybeRooted<NativeObject*, allowGC>::HandleType obj,
typename MaybeRooted<jsid, allowGC>::HandleType id, PropertyResult* propp);
/*
* Get a property from `receiver`, after having already done a lookup and found
* the property on a native object `obj`.
*
* `prop` must be present in obj's shape.
*/
extern bool NativeGetExistingProperty(JSContext* cx, HandleObject receiver,
Handle<NativeObject*> obj, HandleId id,
PropertyInfo prop, MutableHandleValue vp);
/* * */
extern bool GetNameBoundInEnvironment(JSContext* cx, HandleObject env,
HandleId id, MutableHandleValue vp);
} /* namespace js */
template <>
inline bool JSObject::is<js::NativeObject>() const {
return shape()->isNative();
}
namespace js {
// Alternate to JSObject::as<NativeObject>() that tolerates null pointers.
inline NativeObject* MaybeNativeObject(JSObject* obj) {
return obj ? &obj->as<NativeObject>() : nullptr;
}
// Defined in NativeObject-inl.h.
bool IsPackedArray(JSObject* obj);
// Initialize an object's reserved slot with a private value pointing to
// malloc-allocated memory and associate the memory with the object.
//
// This call should be matched with a call to JS::GCContext::free_/delete_ in
// the object's finalizer to free the memory and update the memory accounting.
inline void InitReservedSlot(NativeObject* obj, uint32_t slot, void* ptr,
size_t nbytes, MemoryUse use) {
AddCellMemory(obj, nbytes, use);
obj->initReservedSlot(slot, PrivateValue(ptr));
}
template <typename T>
inline void InitReservedSlot(NativeObject* obj, uint32_t slot, T* ptr,
MemoryUse use) {
InitReservedSlot(obj, slot, ptr, sizeof(T), use);
}
bool AddSlotAndCallAddPropHook(JSContext* cx, Handle<NativeObject*> obj,
HandleValue v, Handle<Shape*> newShape);
} // namespace js
#endif /* vm_NativeObject_h */
|