summaryrefslogtreecommitdiffstats
path: root/layout/generic/ReflowInput.cpp
blob: c8b01fff19916eddbd78f5cb183fa0aeab58e251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* struct containing the input to nsIFrame::Reflow */

#include "mozilla/ReflowInput.h"

#include <algorithm>

#include "CounterStyleManager.h"
#include "LayoutLogging.h"
#include "mozilla/dom/HTMLInputElement.h"
#include "mozilla/StaticPrefs_layout.h"
#include "mozilla/WritingModes.h"
#include "nsBlockFrame.h"
#include "nsCSSAnonBoxes.h"
#include "nsFlexContainerFrame.h"
#include "nsFontInflationData.h"
#include "nsFontMetrics.h"
#include "nsGkAtoms.h"
#include "nsGridContainerFrame.h"
#include "nsIContent.h"
#include "nsIFrame.h"
#include "nsIFrameInlines.h"
#include "nsImageFrame.h"
#include "nsIPercentBSizeObserver.h"
#include "nsLayoutUtils.h"
#include "nsLineBox.h"
#include "nsPresContext.h"
#include "nsStyleConsts.h"
#include "nsTableCellFrame.h"
#include "nsTableFrame.h"
#include "StickyScrollContainer.h"

using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::layout;

static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent) {
  nsIFrame* frameNext = aFrame->GetNextInFlow();
  nsIFrame* parentNext = aParent->GetNextInFlow();
  return frameNext && parentNext && frameNext->GetParent() == parentNext;
}

/**
 * Adjusts the margin for a list (ol, ul), if necessary, depending on
 * font inflation settings. Unfortunately, because bullets from a list are
 * placed in the margin area, we only have ~40px in which to place the
 * bullets. When they are inflated, however, this causes problems, since
 * the text takes up more space than is available in the margin.
 *
 * This method will return a small amount (in app units) by which the
 * margin can be adjusted, so that the space is available for list
 * bullets to be rendered with font inflation enabled.
 */
static nscoord FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame) {
  if (!aFrame->IsBlockFrameOrSubclass()) {
    return 0;
  }

  // We only want to adjust the margins if we're dealing with an ordered list.
  const nsBlockFrame* blockFrame = static_cast<const nsBlockFrame*>(aFrame);
  if (!blockFrame->HasMarker()) {
    return 0;
  }

  float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
  if (inflation <= 1.0f) {
    return 0;
  }

  // The HTML spec states that the default padding for ordered lists
  // begins at 40px, indicating that we have 40px of space to place a
  // bullet. When performing font inflation calculations, we add space
  // equivalent to this, but simply inflated at the same amount as the
  // text, in app units.
  auto margin = nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);

  auto* list = aFrame->StyleList();
  if (!list->mCounterStyle.IsAtom()) {
    return margin;
  }

  nsAtom* type = list->mCounterStyle.AsAtom();
  if (type != nsGkAtoms::none && type != nsGkAtoms::disc &&
      type != nsGkAtoms::circle && type != nsGkAtoms::square &&
      type != nsGkAtoms::disclosure_closed &&
      type != nsGkAtoms::disclosure_open) {
    return margin;
  }

  return 0;
}

SizeComputationInput::SizeComputationInput(nsIFrame* aFrame,
                                           gfxContext* aRenderingContext)
    : mFrame(aFrame),
      mRenderingContext(aRenderingContext),
      mWritingMode(aFrame->GetWritingMode()),
      mIsThemed(aFrame->IsThemed()),
      mComputedMargin(mWritingMode),
      mComputedBorderPadding(mWritingMode),
      mComputedPadding(mWritingMode) {
  MOZ_ASSERT(mFrame);
}

SizeComputationInput::SizeComputationInput(
    nsIFrame* aFrame, gfxContext* aRenderingContext,
    WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize,
    const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding)
    : SizeComputationInput(aFrame, aRenderingContext) {
  MOZ_ASSERT(!mFrame->IsTableColFrame());
  InitOffsets(aContainingBlockWritingMode, aContainingBlockISize,
              mFrame->Type(), {}, aBorder, aPadding);
}

// Initialize a <b>root</b> reflow input with a rendering context to
// use for measuring things.
ReflowInput::ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
                         gfxContext* aRenderingContext,
                         const LogicalSize& aAvailableSpace, InitFlags aFlags)
    : SizeComputationInput(aFrame, aRenderingContext),
      mAvailableSize(aAvailableSpace) {
  MOZ_ASSERT(aRenderingContext, "no rendering context");
  MOZ_ASSERT(aPresContext, "no pres context");
  MOZ_ASSERT(aFrame, "no frame");
  MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");

  if (aFlags.contains(InitFlag::DummyParentReflowInput)) {
    mFlags.mDummyParentReflowInput = true;
  }
  if (aFlags.contains(InitFlag::StaticPosIsCBOrigin)) {
    mFlags.mStaticPosIsCBOrigin = true;
  }

  if (!aFlags.contains(InitFlag::CallerWillInit)) {
    Init(aPresContext);
  }
  // When we encounter a PageContent frame this will be set to true.
  mFlags.mCanHaveClassABreakpoints = false;
}

// Initialize a reflow input for a child frame's reflow. Some state
// is copied from the parent reflow input; the remaining state is
// computed.
ReflowInput::ReflowInput(nsPresContext* aPresContext,
                         const ReflowInput& aParentReflowInput,
                         nsIFrame* aFrame, const LogicalSize& aAvailableSpace,
                         const Maybe<LogicalSize>& aContainingBlockSize,
                         InitFlags aFlags,
                         const StyleSizeOverrides& aSizeOverrides,
                         ComputeSizeFlags aComputeSizeFlags)
    : SizeComputationInput(aFrame, aParentReflowInput.mRenderingContext),
      mParentReflowInput(&aParentReflowInput),
      mFloatManager(aParentReflowInput.mFloatManager),
      mLineLayout(mFrame->IsFrameOfType(nsIFrame::eLineParticipant)
                      ? aParentReflowInput.mLineLayout
                      : nullptr),
      mBreakType(aParentReflowInput.mBreakType),
      mPercentBSizeObserver(
          (aParentReflowInput.mPercentBSizeObserver &&
           aParentReflowInput.mPercentBSizeObserver->NeedsToObserve(*this))
              ? aParentReflowInput.mPercentBSizeObserver
              : nullptr),
      mFlags(aParentReflowInput.mFlags),
      mStyleSizeOverrides(aSizeOverrides),
      mComputeSizeFlags(aComputeSizeFlags),
      mReflowDepth(aParentReflowInput.mReflowDepth + 1),
      mAvailableSize(aAvailableSpace) {
  MOZ_ASSERT(aPresContext, "no pres context");
  MOZ_ASSERT(aFrame, "no frame");
  MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
  MOZ_ASSERT(!mFlags.mSpecialBSizeReflow || !aFrame->IsSubtreeDirty(),
             "frame should be clean when getting special bsize reflow");

  if (mWritingMode.IsOrthogonalTo(aParentReflowInput.GetWritingMode())) {
    // If we're setting up for an orthogonal flow, and the parent reflow input
    // had a constrained ComputedBSize, we can use that as our AvailableISize
    // in preference to leaving it unconstrained.
    if (AvailableISize() == NS_UNCONSTRAINEDSIZE &&
        aParentReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
      SetAvailableISize(aParentReflowInput.ComputedBSize());
    }
  }

  // Note: mFlags was initialized as a copy of aParentReflowInput.mFlags up in
  // this constructor's init list, so the only flags that we need to explicitly
  // initialize here are those that may need a value other than our parent's.
  mFlags.mNextInFlowUntouched =
      aParentReflowInput.mFlags.mNextInFlowUntouched &&
      CheckNextInFlowParenthood(aFrame, aParentReflowInput.mFrame);
  mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
  mFlags.mIsColumnBalancing = false;
  mFlags.mColumnSetWrapperHasNoBSizeLeft = false;
  mFlags.mTreatBSizeAsIndefinite = false;
  mFlags.mDummyParentReflowInput = false;
  mFlags.mStaticPosIsCBOrigin = aFlags.contains(InitFlag::StaticPosIsCBOrigin);
  mFlags.mIOffsetsNeedCSSAlign = mFlags.mBOffsetsNeedCSSAlign = false;

  // aPresContext->IsPaginated() and the named pages pref should have been
  // checked when constructing the root ReflowInput.
  if (aParentReflowInput.mFlags.mCanHaveClassABreakpoints) {
    MOZ_ASSERT(aPresContext->IsPaginated(),
               "mCanHaveClassABreakpoints set during non-paginated reflow.");
  }

  {
    using mozilla::LayoutFrameType;
    switch (mFrame->Type()) {
      case LayoutFrameType::PageContent:
        // PageContent requires paginated reflow.
        MOZ_ASSERT(aPresContext->IsPaginated(),
                   "nsPageContentFrame should not be in non-paginated reflow");
        MOZ_ASSERT(!mFlags.mCanHaveClassABreakpoints,
                   "mFlags.mCanHaveClassABreakpoints should have been "
                   "initalized to false before we found nsPageContentFrame");
        mFlags.mCanHaveClassABreakpoints = true;
        break;
      case LayoutFrameType::Block:          // FALLTHROUGH
      case LayoutFrameType::Canvas:         // FALLTHROUGH
      case LayoutFrameType::FlexContainer:  // FALLTHROUGH
      case LayoutFrameType::GridContainer:
        if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
          // Never allow breakpoints inside of out-of-flow frames.
          mFlags.mCanHaveClassABreakpoints = false;
          break;
        }
        // This frame type can have class A breakpoints, inherit this flag
        // from the parent (this is done for all flags during construction).
        // This also includes Canvas frames, as each PageContent frame always
        // has exactly one child which is a Canvas frame.
        // Do NOT include the subclasses of BlockFrame here, as the ones for
        // which this could be applicable (ColumnSetWrapper and the MathML
        // frames) cannot have class A breakpoints.
        MOZ_ASSERT(mFlags.mCanHaveClassABreakpoints ==
                   aParentReflowInput.mFlags.mCanHaveClassABreakpoints);
        break;
      default:
        mFlags.mCanHaveClassABreakpoints = false;
        break;
    }
  }

  if (aFlags.contains(InitFlag::DummyParentReflowInput) ||
      (mParentReflowInput->mFlags.mDummyParentReflowInput &&
       mFrame->IsTableFrame())) {
    mFlags.mDummyParentReflowInput = true;
  }

  if (!aFlags.contains(InitFlag::CallerWillInit)) {
    Init(aPresContext, aContainingBlockSize);
  }
}

template <typename SizeOrMaxSize>
inline nscoord SizeComputationInput::ComputeISizeValue(
    const WritingMode aWM, const LogicalSize& aContainingBlockSize,
    const LogicalSize& aContentEdgeToBoxSizing, nscoord aBoxSizingToMarginEdge,
    const SizeOrMaxSize& aSize) const {
  return mFrame
      ->ComputeISizeValue(mRenderingContext, aWM, aContainingBlockSize,
                          aContentEdgeToBoxSizing, aBoxSizingToMarginEdge,
                          aSize)
      .mISize;
}

template <typename SizeOrMaxSize>
nscoord SizeComputationInput::ComputeISizeValue(
    const LogicalSize& aContainingBlockSize, StyleBoxSizing aBoxSizing,
    const SizeOrMaxSize& aSize) const {
  WritingMode wm = GetWritingMode();
  const auto borderPadding = ComputedLogicalBorderPadding(wm);
  LogicalSize inside = aBoxSizing == StyleBoxSizing::Border
                           ? borderPadding.Size(wm)
                           : LogicalSize(wm);
  nscoord outside =
      borderPadding.IStartEnd(wm) + ComputedLogicalMargin(wm).IStartEnd(wm);
  outside -= inside.ISize(wm);

  return ComputeISizeValue(wm, aContainingBlockSize, inside, outside, aSize);
}

nscoord SizeComputationInput::ComputeBSizeValue(
    nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
    const LengthPercentage& aSize) const {
  WritingMode wm = GetWritingMode();
  nscoord inside = 0;
  if (aBoxSizing == StyleBoxSizing::Border) {
    inside = ComputedLogicalBorderPadding(wm).BStartEnd(wm);
  }
  return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize, inside, aSize);
}

bool ReflowInput::ShouldReflowAllKids() const {
  // Note that we could make a stronger optimization for IsBResize if
  // we use it in a ShouldReflowChild test that replaces the current
  // checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it
  // were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE.
  // This would need to be combined with a slight change in which
  // frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on.
  return mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) || IsIResize() ||
         (IsBResize() &&
          mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) ||
         mFlags.mIsInLastColumnBalancingReflow;
}

void ReflowInput::SetComputedISize(nscoord aComputedISize,
                                   ResetResizeFlags aFlags) {
  // It'd be nice to assert that |frame| is not in reflow, but this fails
  // because viewport frames reset the computed isize on a copy of their reflow
  // input when reflowing fixed-pos kids.  In that case we actually don't want
  // to mess with the resize flags, because comparing the frame's rect to the
  // munged computed isize is pointless.
  NS_WARNING_ASSERTION(aComputedISize >= 0, "Invalid computed inline-size!");
  if (ComputedISize() != aComputedISize) {
    mComputedSize.ISize(mWritingMode) = std::max(0, aComputedISize);
    if (aFlags == ResetResizeFlags::Yes) {
      InitResizeFlags(mFrame->PresContext(), mFrame->Type());
    }
  }
}

void ReflowInput::SetComputedBSize(nscoord aComputedBSize,
                                   ResetResizeFlags aFlags) {
  // It'd be nice to assert that |frame| is not in reflow, but this fails
  // for the same reason as above.
  NS_WARNING_ASSERTION(aComputedBSize >= 0, "Invalid computed block-size!");
  if (ComputedBSize() != aComputedBSize) {
    mComputedSize.BSize(mWritingMode) = std::max(0, aComputedBSize);
    InitResizeFlags(mFrame->PresContext(), mFrame->Type());
  }
}

void ReflowInput::Init(nsPresContext* aPresContext,
                       const Maybe<LogicalSize>& aContainingBlockSize,
                       const Maybe<LogicalMargin>& aBorder,
                       const Maybe<LogicalMargin>& aPadding) {
  if (AvailableISize() == NS_UNCONSTRAINEDSIZE) {
    // Look up the parent chain for an orthogonal inline limit,
    // and reset AvailableISize() if found.
    for (const ReflowInput* parent = mParentReflowInput; parent != nullptr;
         parent = parent->mParentReflowInput) {
      if (parent->GetWritingMode().IsOrthogonalTo(mWritingMode) &&
          parent->mOrthogonalLimit != NS_UNCONSTRAINEDSIZE) {
        SetAvailableISize(parent->mOrthogonalLimit);
        break;
      }
    }
  }

  LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
                       "have unconstrained inline-size; this should only "
                       "result from very large sizes, not attempts at "
                       "intrinsic inline-size calculation");

  mStylePosition = mFrame->StylePosition();
  mStyleDisplay = mFrame->StyleDisplay();
  mStyleBorder = mFrame->StyleBorder();
  mStyleMargin = mFrame->StyleMargin();

  InitCBReflowInput();

  LayoutFrameType type = mFrame->Type();
  if (type == mozilla::LayoutFrameType::Placeholder) {
    // Placeholders have a no-op Reflow method that doesn't need the rest of
    // this initialization, so we bail out early.
    mComputedSize.SizeTo(mWritingMode, 0, 0);
    return;
  }

  mFlags.mIsReplaced = mFrame->IsFrameOfType(nsIFrame::eReplaced) ||
                       mFrame->IsFrameOfType(nsIFrame::eReplacedContainsBlock);

  InitConstraints(aPresContext, aContainingBlockSize, aBorder, aPadding, type);

  InitResizeFlags(aPresContext, type);
  InitDynamicReflowRoot();

  nsIFrame* parent = mFrame->GetParent();
  if (parent && parent->HasAnyStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE) &&
      !(parent->IsScrollFrame() &&
        parent->StyleDisplay()->mOverflowY != StyleOverflow::Hidden)) {
    mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
  } else if (type == LayoutFrameType::SVGForeignObject) {
    // An SVG foreignObject frame is inherently constrained block-size.
    mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
  } else {
    const auto& bSizeCoord = mStylePosition->BSize(mWritingMode);
    const auto& maxBSizeCoord = mStylePosition->MaxBSize(mWritingMode);
    if ((!bSizeCoord.BehavesLikeInitialValueOnBlockAxis() ||
         !maxBSizeCoord.BehavesLikeInitialValueOnBlockAxis()) &&
        // Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
        (mFrame->GetContent() && !(mFrame->GetContent()->IsAnyOfHTMLElements(
                                     nsGkAtoms::body, nsGkAtoms::html)))) {
      // If our block-size was specified as a percentage, then this could
      // actually resolve to 'auto', based on:
      // http://www.w3.org/TR/CSS21/visudet.html#the-height-property
      nsIFrame* containingBlk = mFrame;
      while (containingBlk) {
        const nsStylePosition* stylePos = containingBlk->StylePosition();
        const auto& bSizeCoord = stylePos->BSize(mWritingMode);
        const auto& maxBSizeCoord = stylePos->MaxBSize(mWritingMode);
        if ((bSizeCoord.IsLengthPercentage() && !bSizeCoord.HasPercent()) ||
            (maxBSizeCoord.IsLengthPercentage() &&
             !maxBSizeCoord.HasPercent())) {
          mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
          break;
        } else if (bSizeCoord.HasPercent() || maxBSizeCoord.HasPercent()) {
          if (!(containingBlk = containingBlk->GetContainingBlock())) {
            // If we've reached the top of the tree, then we don't have
            // a constrained block-size.
            mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
            break;
          }

          continue;
        } else {
          mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
          break;
        }
      }
    } else {
      mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
    }
  }

  if (mParentReflowInput &&
      mParentReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
    // Orthogonal frames are always reflowed with an unconstrained
    // dimension to avoid incomplete reflow across an orthogonal
    // boundary. Normally this is the block-size, but for column sets
    // with auto-height it's the inline-size, so that they can add
    // columns in the container's block direction
    if (type == LayoutFrameType::ColumnSet &&
        mStylePosition->ISize(mWritingMode).IsAuto()) {
      SetComputedISize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
    } else {
      SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
    }
  }

  if (mFrame->GetContainSizeAxes().mBContained) {
    // In the case that a box is size contained in block axis, we want to ensure
    // that it is also monolithic. We do this by setting AvailableBSize() to an
    // unconstrained size to avoid fragmentation.
    SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
  }

  LAYOUT_WARN_IF_FALSE((mStyleDisplay->IsInlineOutsideStyle() &&
                        !mFrame->IsFrameOfType(nsIFrame::eReplaced)) ||
                           type == LayoutFrameType::Text ||
                           ComputedISize() != NS_UNCONSTRAINEDSIZE,
                       "have unconstrained inline-size; this should only "
                       "result from very large sizes, not attempts at "
                       "intrinsic inline-size calculation");
}

static bool MightBeContainingBlockFor(nsIFrame* aMaybeContainingBlock,
                                      nsIFrame* aFrame,
                                      const nsStyleDisplay* aStyleDisplay) {
  // Keep this in sync with nsIFrame::GetContainingBlock.
  if (aFrame->IsAbsolutelyPositioned(aStyleDisplay) &&
      aMaybeContainingBlock == aFrame->GetParent()) {
    return true;
  }
  return aMaybeContainingBlock->IsBlockContainer();
}

void ReflowInput::InitCBReflowInput() {
  if (!mParentReflowInput) {
    mCBReflowInput = nullptr;
    return;
  }
  if (mParentReflowInput->mFlags.mDummyParentReflowInput) {
    mCBReflowInput = mParentReflowInput;
    return;
  }

  // To avoid a long walk up the frame tree check if the parent frame can be a
  // containing block for mFrame.
  if (MightBeContainingBlockFor(mParentReflowInput->mFrame, mFrame,
                                mStyleDisplay) &&
      mParentReflowInput->mFrame ==
          mFrame->GetContainingBlock(0, mStyleDisplay)) {
    // Inner table frames need to use the containing block of the outer
    // table frame.
    if (mFrame->IsTableFrame()) {
      mCBReflowInput = mParentReflowInput->mCBReflowInput;
    } else {
      mCBReflowInput = mParentReflowInput;
    }
  } else {
    mCBReflowInput = mParentReflowInput->mCBReflowInput;
  }
}

/* Check whether CalcQuirkContainingBlockHeight would stop on the
 * given reflow input, using its block as a height.  (essentially
 * returns false for any case in which CalcQuirkContainingBlockHeight
 * has a "continue" in its main loop.)
 *
 * XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
 * this function as well
 */
static bool IsQuirkContainingBlockHeight(const ReflowInput* rs,
                                         LayoutFrameType aFrameType) {
  if (LayoutFrameType::Block == aFrameType ||
      LayoutFrameType::Scroll == aFrameType) {
    // Note: This next condition could change due to a style change,
    // but that would cause a style reflow anyway, which means we're ok.
    if (NS_UNCONSTRAINEDSIZE == rs->ComputedHeight()) {
      if (!rs->mFrame->IsAbsolutelyPositioned(rs->mStyleDisplay)) {
        return false;
      }
    }
  }
  return true;
}

void ReflowInput::InitResizeFlags(nsPresContext* aPresContext,
                                  LayoutFrameType aFrameType) {
  SetBResize(false);
  SetIResize(false);
  mFlags.mIsBResizeForPercentages = false;

  const WritingMode wm = mWritingMode;  // just a shorthand
  // We should report that we have a resize in the inline dimension if
  // *either* the border-box size or the content-box size in that
  // dimension has changed.  It might not actually be necessary to do
  // this if the border-box size has changed and the content-box size
  // has not changed, but since we've historically used the flag to mean
  // border-box size change, continue to do that. It's possible for
  // the content-box size to change without a border-box size change or
  // a style change given (1) a fixed width (possibly fixed by max-width
  // or min-width), box-sizing:border-box, and percentage padding;
  // (2) box-sizing:content-box, M% width, and calc(Npx - M%) padding.
  //
  // However, we don't actually have the information at this point to tell
  // whether the content-box size has changed, since both style data and the
  // UsedPaddingProperty() have already been updated in
  // SizeComputationInput::InitOffsets(). So, we check the HasPaddingChange()
  // bit for the cases where it's possible for the content-box size to have
  // changed without either (a) a change in the border-box size or (b) an
  // nsChangeHint_NeedDirtyReflow change hint due to change in border or
  // padding.
  //
  // We don't clear the HasPaddingChange() bit here, since sometimes we
  // construct reflow input (e.g. in nsBlockFrame::ReflowBlockFrame to compute
  // margin collapsing) without reflowing the frame. Instead, we clear it in
  // nsIFrame::DidReflow().
  bool isIResize =
      // is the border-box resizing?
      mFrame->ISize(wm) !=
          ComputedISize() + ComputedLogicalBorderPadding(wm).IStartEnd(wm) ||
      // or is the content-box resizing?  (see comment above)
      mFrame->HasPaddingChange();

  if (mFrame->HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
      nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
    // Create our font inflation data if we don't have it already, and
    // give it our current width information.
    bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
                 // Avoid running this at the box-to-block interface
                 // (where we shouldn't be inflating anyway, and where
                 // reflow input construction is probably to construct a
                 // dummy parent reflow input anyway).
                 !mFlags.mDummyParentReflowInput;

    if (dirty || (!mFrame->GetParent() && isIResize)) {
      // When font size inflation is enabled, a change in either:
      //  * the effective width of a font inflation flow root
      //  * the width of the frame
      // needs to cause a dirty reflow since they change the font size
      // inflation calculations, which in turn change the size of text,
      // line-heights, etc.  This is relatively similar to a classic
      // case of style change reflow, except that because inflation
      // doesn't affect the intrinsic sizing codepath, there's no need
      // to invalidate intrinsic sizes.
      //
      // Note that this makes horizontal resizing a good bit more
      // expensive.  However, font size inflation is targeted at a set of
      // devices (zoom-and-pan devices) where the main use case for
      // horizontal resizing needing to be efficient (window resizing) is
      // not present.  It does still increase the cost of dynamic changes
      // caused by script where a style or content change in one place
      // causes a resize in another (e.g., rebalancing a table).

      // FIXME: This isn't so great for the cases where
      // ReflowInput::SetComputedWidth is called, if the first time
      // we go through InitResizeFlags we set IsHResize() to true, and then
      // the second time we'd set it to false even without the
      // NS_FRAME_IS_DIRTY bit already set.
      if (mFrame->IsSVGForeignObjectFrame()) {
        // Foreign object frames use dirty bits in a special way.
        mFrame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
        nsIFrame* kid = mFrame->PrincipalChildList().FirstChild();
        if (kid) {
          kid->MarkSubtreeDirty();
        }
      } else {
        mFrame->MarkSubtreeDirty();
      }

      // Mark intrinsic widths on all descendants dirty.  We need to do
      // this (1) since we're changing the size of text and need to
      // clear text runs on text frames and (2) since we actually are
      // changing some intrinsic widths, but only those that live inside
      // of containers.

      // It makes sense to do this for descendants but not ancestors
      // (which is unusual) because we're only changing the unusual
      // inflation-dependent intrinsic widths (i.e., ones computed with
      // nsPresContext::mInflationDisabledForShrinkWrap set to false),
      // which should never affect anything outside of their inflation
      // flow root (or, for that matter, even their inflation
      // container).

      // This is also different from what PresShell::FrameNeedsReflow
      // does because it doesn't go through placeholders.  It doesn't
      // need to because we're actually doing something that cares about
      // frame tree geometry (the width on an ancestor) rather than
      // style.

      AutoTArray<nsIFrame*, 32> stack;
      stack.AppendElement(mFrame);

      do {
        nsIFrame* f = stack.PopLastElement();
        for (const auto& childList : f->ChildLists()) {
          for (nsIFrame* kid : childList.mList) {
            kid->MarkIntrinsicISizesDirty();
            stack.AppendElement(kid);
          }
        }
      } while (stack.Length() != 0);
    }
  }

  SetIResize(!mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) && isIResize);

  // XXX Should we really need to null check mCBReflowInput?  (We do for
  // at least nsBoxFrame).
  if (mFrame->HasBSizeChange()) {
    // When we have an nsChangeHint_UpdateComputedBSize, we'll set a bit
    // on the frame to indicate we're resizing.  This might catch cases,
    // such as a change between auto and a length, where the box doesn't
    // actually resize but children with percentages resize (since those
    // percentages become auto if their containing block is auto).
    SetBResize(true);
    mFlags.mIsBResizeForPercentages = true;
    // We don't clear the HasBSizeChange state here, since sometimes we
    // construct a ReflowInput (e.g. in nsBlockFrame::ReflowBlockFrame to
    // compute margin collapsing) without reflowing the frame. Instead, we
    // clear it in nsIFrame::DidReflow.
  } else if (mCBReflowInput &&
             mCBReflowInput->IsBResizeForPercentagesForWM(wm) &&
             (mStylePosition->BSize(wm).HasPercent() ||
              mStylePosition->MinBSize(wm).HasPercent() ||
              mStylePosition->MaxBSize(wm).HasPercent())) {
    // We have a percentage (or calc-with-percentage) block-size, and the
    // value it's relative to has changed.
    SetBResize(true);
    mFlags.mIsBResizeForPercentages = true;
  } else if (aFrameType == LayoutFrameType::TableCell &&
             (mFlags.mSpecialBSizeReflow ||
              mFrame->FirstInFlow()->HasAnyStateBits(
                  NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
             mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
    // Need to set the bit on the cell so that
    // mCBReflowInput->IsBResize() is set correctly below when
    // reflowing descendant.
    SetBResize(true);
    mFlags.mIsBResizeForPercentages = true;
  } else if (mCBReflowInput && mFrame->IsBlockWrapper()) {
    // XXX Is this problematic for relatively positioned inlines acting
    // as containing block for absolutely positioned elements?
    // Possibly; in that case we should at least be checking
    // IsSubtreeDirty(), I'd think.
    SetBResize(mCBReflowInput->IsBResizeForWM(wm));
    mFlags.mIsBResizeForPercentages =
        mCBReflowInput->IsBResizeForPercentagesForWM(wm);
  } else if (ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
    // We have an 'auto' block-size.
    if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
        mCBReflowInput) {
      // FIXME: This should probably also check IsIResize().
      SetBResize(mCBReflowInput->IsBResizeForWM(wm));
    } else {
      SetBResize(IsIResize());
    }
    SetBResize(IsBResize() || mFrame->IsSubtreeDirty());
  } else {
    // We have a non-'auto' block-size, i.e., a length.  Set the BResize
    // flag to whether the size is actually different.
    SetBResize(mFrame->BSize(wm) !=
               ComputedBSize() +
                   ComputedLogicalBorderPadding(wm).BStartEnd(wm));
  }

  bool dependsOnCBBSize = (mStylePosition->BSizeDependsOnContainer(wm) &&
                           // FIXME: condition this on not-abspos?
                           !mStylePosition->BSize(wm).IsAuto()) ||
                          mStylePosition->MinBSizeDependsOnContainer(wm) ||
                          mStylePosition->MaxBSizeDependsOnContainer(wm) ||
                          mStylePosition->mOffset.GetBStart(wm).HasPercent() ||
                          !mStylePosition->mOffset.GetBEnd(wm).IsAuto();

  // If mFrame is a flex item, and mFrame's block axis is the flex container's
  // main axis (e.g. in a column-oriented flex container with same
  // writing-mode), then its block-size depends on its CB size, if its
  // flex-basis has a percentage.
  if (mFrame->IsFlexItem() &&
      !nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame)) {
    const auto& flexBasis = mStylePosition->mFlexBasis;
    dependsOnCBBSize |= (flexBasis.IsSize() && flexBasis.AsSize().HasPercent());
  }

  if (mFrame->StyleText()->mLineHeight.IsMozBlockHeight()) {
    // line-height depends on block bsize
    mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
    // but only on containing blocks if this frame is not a suitable block
    dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(mFrame);
  }

  // If we're the descendant of a table cell that performs special bsize
  // reflows and we could be the child that requires them, always set
  // the block-axis resize in case this is the first pass before the
  // special bsize reflow.  However, don't do this if it actually is
  // the special bsize reflow, since in that case it will already be
  // set correctly above if we need it set.
  if (!IsBResize() && mCBReflowInput &&
      (mCBReflowInput->mFrame->IsTableCellFrame() ||
       mCBReflowInput->mFlags.mHeightDependsOnAncestorCell) &&
      !mCBReflowInput->mFlags.mSpecialBSizeReflow && dependsOnCBBSize) {
    SetBResize(true);
    mFlags.mHeightDependsOnAncestorCell = true;
  }

  // Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.

  // It would be nice to check that |ComputedBSize != NS_UNCONSTRAINEDSIZE|
  // &&ed with the percentage bsize check.  However, this doesn't get
  // along with table special bsize reflows, since a special bsize
  // reflow (a quirk that makes such percentage height work on children
  // of table cells) can cause not just a single percentage height to
  // become fixed, but an entire descendant chain of percentage height
  // to become fixed.
  if (dependsOnCBBSize && mCBReflowInput) {
    const ReflowInput* rs = this;
    bool hitCBReflowInput = false;
    do {
      rs = rs->mParentReflowInput;
      if (!rs) {
        break;
      }

      if (rs->mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
        break;  // no need to go further
      }
      rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);

      // Keep track of whether we've hit the containing block, because
      // we need to go at least that far.
      if (rs == mCBReflowInput) {
        hitCBReflowInput = true;
      }

      // XXX What about orthogonal flows? It doesn't make sense to
      // keep propagating this bit across an orthogonal boundary,
      // where the meaning of BSize changes. Bug 1175517.
    } while (!hitCBReflowInput ||
             (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
              !IsQuirkContainingBlockHeight(rs, rs->mFrame->Type())));
    // Note: We actually don't need to set the
    // NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
    // where we hit the early break statements in
    // CalcQuirkContainingBlockHeight. But it doesn't hurt
    // us to set the bit in these cases.
  }
  if (mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
    // If we're reflowing everything, then we'll find out if we need
    // to re-set this.
    mFrame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
  }
}

void ReflowInput::InitDynamicReflowRoot() {
  if (mFrame->CanBeDynamicReflowRoot()) {
    mFrame->AddStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
  } else {
    mFrame->RemoveStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
  }
}

bool ReflowInput::ShouldApplyAutomaticMinimumOnBlockAxis() const {
  MOZ_ASSERT(!mFrame->IsFrameOfType(nsIFrame::eReplacedSizing));
  return mFlags.mIsBSizeSetByAspectRatio &&
         !mStyleDisplay->IsScrollableOverflow() &&
         mStylePosition->MinBSize(GetWritingMode()).IsAuto();
}

bool ReflowInput::IsInFragmentedContext() const {
  // We consider mFrame with a prev-in-flow being in a fragmented context
  // because nsColumnSetFrame can reflow its last column with an unconstrained
  // available block-size.
  return AvailableBSize() != NS_UNCONSTRAINEDSIZE || mFrame->GetPrevInFlow();
}

/* static */
LogicalMargin ReflowInput::ComputeRelativeOffsets(WritingMode aWM,
                                                  nsIFrame* aFrame,
                                                  const LogicalSize& aCBSize) {
  LogicalMargin offsets(aWM);
  const nsStylePosition* position = aFrame->StylePosition();

  // Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
  // moves the boxes to the end of the line, and 'inlineEnd' moves the
  // boxes to the start of the line. The computed values are always:
  // inlineStart=-inlineEnd
  const auto& inlineStart = position->mOffset.GetIStart(aWM);
  const auto& inlineEnd = position->mOffset.GetIEnd(aWM);
  bool inlineStartIsAuto = inlineStart.IsAuto();
  bool inlineEndIsAuto = inlineEnd.IsAuto();

  // If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
  // over-constrained and we ignore one of them
  if (!inlineStartIsAuto && !inlineEndIsAuto) {
    inlineEndIsAuto = true;
  }

  if (inlineStartIsAuto) {
    if (inlineEndIsAuto) {
      // If both are 'auto' (their initial values), the computed values are 0
      offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
    } else {
      // 'inlineEnd' isn't 'auto' so compute its value
      offsets.IEnd(aWM) =
          nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineEnd);

      // Computed value for 'inlineStart' is minus the value of 'inlineEnd'
      offsets.IStart(aWM) = -offsets.IEnd(aWM);
    }

  } else {
    NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");

    // 'InlineStart' isn't 'auto' so compute its value
    offsets.IStart(aWM) =
        nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineStart);

    // Computed value for 'inlineEnd' is minus the value of 'inlineStart'
    offsets.IEnd(aWM) = -offsets.IStart(aWM);
  }

  // Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
  // and 'blockEnd' properties move relatively positioned elements in
  // the block progression direction. They also must be each other's
  // negative
  const auto& blockStart = position->mOffset.GetBStart(aWM);
  const auto& blockEnd = position->mOffset.GetBEnd(aWM);
  bool blockStartIsAuto = blockStart.IsAuto();
  bool blockEndIsAuto = blockEnd.IsAuto();

  // Check for percentage based values and a containing block block-size
  // that depends on the content block-size. Treat them like 'auto'
  if (NS_UNCONSTRAINEDSIZE == aCBSize.BSize(aWM)) {
    if (blockStart.HasPercent()) {
      blockStartIsAuto = true;
    }
    if (blockEnd.HasPercent()) {
      blockEndIsAuto = true;
    }
  }

  // If neither is 'auto', 'block-end' is ignored
  if (!blockStartIsAuto && !blockEndIsAuto) {
    blockEndIsAuto = true;
  }

  if (blockStartIsAuto) {
    if (blockEndIsAuto) {
      // If both are 'auto' (their initial values), the computed values are 0
      offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
    } else {
      // 'blockEnd' isn't 'auto' so compute its value
      offsets.BEnd(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
          aCBSize.BSize(aWM), blockEnd);

      // Computed value for 'blockStart' is minus the value of 'blockEnd'
      offsets.BStart(aWM) = -offsets.BEnd(aWM);
    }

  } else {
    NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");

    // 'blockStart' isn't 'auto' so compute its value
    offsets.BStart(aWM) = nsLayoutUtils::ComputeBSizeDependentValue(
        aCBSize.BSize(aWM), blockStart);

    // Computed value for 'blockEnd' is minus the value of 'blockStart'
    offsets.BEnd(aWM) = -offsets.BStart(aWM);
  }

  // Convert the offsets to physical coordinates and store them on the frame
  const nsMargin physicalOffsets = offsets.GetPhysicalMargin(aWM);
  if (nsMargin* prop =
          aFrame->GetProperty(nsIFrame::ComputedOffsetProperty())) {
    *prop = physicalOffsets;
  } else {
    aFrame->AddProperty(nsIFrame::ComputedOffsetProperty(),
                        new nsMargin(physicalOffsets));
  }

  NS_ASSERTION(offsets.IStart(aWM) == -offsets.IEnd(aWM) &&
                   offsets.BStart(aWM) == -offsets.BEnd(aWM),
               "ComputeRelativeOffsets should return valid results!");

  return offsets;
}

/* static */
void ReflowInput::ApplyRelativePositioning(nsIFrame* aFrame,
                                           const nsMargin& aComputedOffsets,
                                           nsPoint* aPosition) {
  if (!aFrame->IsRelativelyOrStickyPositioned()) {
    NS_ASSERTION(!aFrame->HasProperty(nsIFrame::NormalPositionProperty()),
                 "We assume that changing the 'position' property causes "
                 "frame reconstruction.  If that ever changes, this code "
                 "should call "
                 "aFrame->RemoveProperty(nsIFrame::NormalPositionProperty())");
    return;
  }

  // Store the normal position
  aFrame->SetProperty(nsIFrame::NormalPositionProperty(), *aPosition);

  const nsStyleDisplay* display = aFrame->StyleDisplay();
  if (StylePositionProperty::Relative == display->mPosition) {
    *aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
  } else if (StylePositionProperty::Sticky == display->mPosition &&
             !aFrame->GetNextContinuation() && !aFrame->GetPrevContinuation() &&
             !aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) {
    // Sticky positioning for elements with multiple frames needs to be
    // computed all at once. We can't safely do that here because we might be
    // partway through (re)positioning the frames, so leave it until the scroll
    // container reflows and calls StickyScrollContainer::UpdatePositions.
    // For single-frame sticky positioned elements, though, go ahead and apply
    // it now to avoid unnecessary overflow updates later.
    StickyScrollContainer* ssc =
        StickyScrollContainer::GetStickyScrollContainerForFrame(aFrame);
    if (ssc) {
      *aPosition = ssc->ComputePosition(aFrame);
    }
  }
}

// static
void ReflowInput::ComputeAbsPosInlineAutoMargin(nscoord aAvailMarginSpace,
                                                WritingMode aContainingBlockWM,
                                                bool aIsMarginIStartAuto,
                                                bool aIsMarginIEndAuto,
                                                LogicalMargin& aMargin,
                                                LogicalMargin& aOffsets) {
  if (aIsMarginIStartAuto) {
    if (aIsMarginIEndAuto) {
      if (aAvailMarginSpace < 0) {
        // Note that this case is different from the neither-'auto'
        // case below, where the spec says to ignore 'left'/'right'.
        // Ignore the specified value for 'margin-right'.
        aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
      } else {
        // Both 'margin-left' and 'margin-right' are 'auto', so they get
        // equal values
        aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace / 2;
        aMargin.IEnd(aContainingBlockWM) =
            aAvailMarginSpace - aMargin.IStart(aContainingBlockWM);
      }
    } else {
      // Just 'margin-left' is 'auto'
      aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace;
    }
  } else {
    if (aIsMarginIEndAuto) {
      // Just 'margin-right' is 'auto'
      aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
    } else {
      // We're over-constrained so use the direction of the containing
      // block to dictate which value to ignore.  (And note that the
      // spec says to ignore 'left' or 'right' rather than
      // 'margin-left' or 'margin-right'.)
      // Note that this case is different from the both-'auto' case
      // above, where the spec says to ignore
      // 'margin-left'/'margin-right'.
      // Ignore the specified value for 'right'.
      aOffsets.IEnd(aContainingBlockWM) += aAvailMarginSpace;
    }
  }
}

// static
void ReflowInput::ComputeAbsPosBlockAutoMargin(nscoord aAvailMarginSpace,
                                               WritingMode aContainingBlockWM,
                                               bool aIsMarginBStartAuto,
                                               bool aIsMarginBEndAuto,
                                               LogicalMargin& aMargin,
                                               LogicalMargin& aOffsets) {
  if (aIsMarginBStartAuto) {
    if (aIsMarginBEndAuto) {
      // Both 'margin-top' and 'margin-bottom' are 'auto', so they get
      // equal values
      aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace / 2;
      aMargin.BEnd(aContainingBlockWM) =
          aAvailMarginSpace - aMargin.BStart(aContainingBlockWM);
    } else {
      // Just margin-block-start is 'auto'
      aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace;
    }
  } else {
    if (aIsMarginBEndAuto) {
      // Just margin-block-end is 'auto'
      aMargin.BEnd(aContainingBlockWM) = aAvailMarginSpace;
    } else {
      // We're over-constrained so ignore the specified value for
      // block-end.  (And note that the spec says to ignore 'bottom'
      // rather than 'margin-bottom'.)
      aOffsets.BEnd(aContainingBlockWM) += aAvailMarginSpace;
    }
  }
}

void ReflowInput::ApplyRelativePositioning(
    nsIFrame* aFrame, mozilla::WritingMode aWritingMode,
    const mozilla::LogicalMargin& aComputedOffsets,
    mozilla::LogicalPoint* aPosition, const nsSize& aContainerSize) {
  // Subtract the size of the frame from the container size that we
  // use for converting between the logical and physical origins of
  // the frame. This accounts for the fact that logical origins in RTL
  // coordinate systems are at the top right of the frame instead of
  // the top left.
  nsSize frameSize = aFrame->GetSize();
  nsPoint pos =
      aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize);
  ApplyRelativePositioning(
      aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos);
  *aPosition =
      mozilla::LogicalPoint(aWritingMode, pos, aContainerSize - frameSize);
}

nsIFrame* ReflowInput::GetHypotheticalBoxContainer(nsIFrame* aFrame,
                                                   nscoord& aCBIStartEdge,
                                                   LogicalSize& aCBSize) const {
  aFrame = aFrame->GetContainingBlock();
  NS_ASSERTION(aFrame != mFrame, "How did that happen?");

  /* Now aFrame is the containing block we want */

  /* Check whether the containing block is currently being reflowed.
     If so, use the info from the reflow input. */
  const ReflowInput* reflowInput;
  if (aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW)) {
    for (reflowInput = mParentReflowInput;
         reflowInput && reflowInput->mFrame != aFrame;
         reflowInput = reflowInput->mParentReflowInput) {
      /* do nothing */
    }
  } else {
    reflowInput = nullptr;
  }

  if (reflowInput) {
    WritingMode wm = reflowInput->GetWritingMode();
    NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
    aCBIStartEdge = reflowInput->ComputedLogicalBorderPadding(wm).IStart(wm);
    aCBSize = reflowInput->ComputedSize(wm);
  } else {
    /* Didn't find a reflow reflowInput for aFrame.  Just compute the
       information we want, on the assumption that aFrame already knows its
       size.  This really ought to be true by now. */
    NS_ASSERTION(!aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW),
                 "aFrame shouldn't be in reflow; we'll lie if it is");
    WritingMode wm = aFrame->GetWritingMode();
    // Compute CB's offset & content-box size by subtracting borderpadding from
    // frame size.
    const auto& bp = aFrame->GetLogicalUsedBorderAndPadding(wm);
    aCBIStartEdge = bp.IStart(wm);
    aCBSize = aFrame->GetLogicalSize(wm) - bp.Size(wm);
  }

  return aFrame;
}

struct nsHypotheticalPosition {
  // offset from inline-start edge of containing block (which is a padding edge)
  nscoord mIStart;
  // offset from block-start edge of containing block (which is a padding edge)
  nscoord mBStart;
  WritingMode mWritingMode;
};

/**
 * aInsideBoxSizing returns the part of the padding, border, and margin
 * in the aAxis dimension that goes inside the edge given by box-sizing;
 * aOutsideBoxSizing returns the rest.
 */
void ReflowInput::CalculateBorderPaddingMargin(
    LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing,
    nscoord* aOutsideBoxSizing) const {
  WritingMode wm = GetWritingMode();
  mozilla::Side startSide =
      wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeStart));
  mozilla::Side endSide =
      wm.PhysicalSide(MakeLogicalSide(aAxis, eLogicalEdgeEnd));

  nsMargin styleBorder = mStyleBorder->GetComputedBorder();
  nscoord borderStartEnd =
      styleBorder.Side(startSide) + styleBorder.Side(endSide);

  nscoord paddingStartEnd, marginStartEnd;

  // See if the style system can provide us the padding directly
  const auto* stylePadding = mFrame->StylePadding();
  if (nsMargin padding; stylePadding->GetPadding(padding)) {
    paddingStartEnd = padding.Side(startSide) + padding.Side(endSide);
  } else {
    // We have to compute the start and end values
    nscoord start, end;
    start = nsLayoutUtils::ComputeCBDependentValue(
        aContainingBlockSize, stylePadding->mPadding.Get(startSide));
    end = nsLayoutUtils::ComputeCBDependentValue(
        aContainingBlockSize, stylePadding->mPadding.Get(endSide));
    paddingStartEnd = start + end;
  }

  // See if the style system can provide us the margin directly
  if (nsMargin margin; mStyleMargin->GetMargin(margin)) {
    marginStartEnd = margin.Side(startSide) + margin.Side(endSide);
  } else {
    nscoord start, end;
    // We have to compute the start and end values
    if (mStyleMargin->mMargin.Get(startSide).IsAuto()) {
      // We set this to 0 for now, and fix it up later in
      // InitAbsoluteConstraints (which is caller of this function, via
      // CalculateHypotheticalPosition).
      start = 0;
    } else {
      start = nsLayoutUtils::ComputeCBDependentValue(
          aContainingBlockSize, mStyleMargin->mMargin.Get(startSide));
    }
    if (mStyleMargin->mMargin.Get(endSide).IsAuto()) {
      // We set this to 0 for now, and fix it up later in
      // InitAbsoluteConstraints (which is caller of this function, via
      // CalculateHypotheticalPosition).
      end = 0;
    } else {
      end = nsLayoutUtils::ComputeCBDependentValue(
          aContainingBlockSize, mStyleMargin->mMargin.Get(endSide));
    }
    marginStartEnd = start + end;
  }

  nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
  nscoord inside = 0;
  if (mStylePosition->mBoxSizing == StyleBoxSizing::Border) {
    inside = borderStartEnd + paddingStartEnd;
  }
  outside -= inside;
  *aInsideBoxSizing = inside;
  *aOutsideBoxSizing = outside;
}

/**
 * Returns true iff a pre-order traversal of the normal child
 * frames rooted at aFrame finds no non-empty frame before aDescendant.
 */
static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
                                           nsIFrame* aDescendant,
                                           bool* aFound) {
  if (aFrame == aDescendant) {
    *aFound = true;
    return true;
  }
  if (aFrame->IsPlaceholderFrame()) {
    auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
    MOZ_ASSERT(ph->IsSelfEmpty() && ph->PrincipalChildList().IsEmpty());
    ph->SetLineIsEmptySoFar(true);
  } else {
    if (!aFrame->IsSelfEmpty()) {
      *aFound = false;
      return false;
    }
    for (nsIFrame* f : aFrame->PrincipalChildList()) {
      bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
      if (*aFound || !allEmpty) {
        return allEmpty;
      }
    }
  }
  *aFound = false;
  return true;
}

static bool AxisPolarityFlipped(LogicalAxis aThisAxis, WritingMode aThisWm,
                                WritingMode aOtherWm) {
  if (MOZ_LIKELY(aThisWm == aOtherWm)) {
    // Dedicated short circuit for the common case.
    return false;
  }
  LogicalAxis otherAxis = aThisWm.IsOrthogonalTo(aOtherWm)
                              ? GetOrthogonalAxis(aThisAxis)
                              : aThisAxis;
  NS_ASSERTION(
      aThisWm.PhysicalAxis(aThisAxis) == aOtherWm.PhysicalAxis(otherAxis),
      "Physical axes must match!");
  Side thisStartSide =
      aThisWm.PhysicalSide(MakeLogicalSide(aThisAxis, eLogicalEdgeStart));
  Side otherStartSide =
      aOtherWm.PhysicalSide(MakeLogicalSide(otherAxis, eLogicalEdgeStart));
  return thisStartSide != otherStartSide;
}

static bool InlinePolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
  return AxisPolarityFlipped(eLogicalAxisInline, aThisWm, aOtherWm);
}

static bool BlockPolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
  return AxisPolarityFlipped(eLogicalAxisBlock, aThisWm, aOtherWm);
}

// Calculate the position of the hypothetical box that the element would have
// if it were in the flow.
// The values returned are relative to the padding edge of the absolute
// containing block. The writing-mode of the hypothetical box position will
// have the same block direction as the absolute containing block, but may
// differ in inline-bidi direction.
// In the code below, |aCBReflowInput->frame| is the absolute containing block,
// while |containingBlock| is the nearest block container of the placeholder
// frame, which may be different from the absolute containing block.
void ReflowInput::CalculateHypotheticalPosition(
    nsPresContext* aPresContext, nsPlaceholderFrame* aPlaceholderFrame,
    const ReflowInput* aCBReflowInput, nsHypotheticalPosition& aHypotheticalPos,
    LayoutFrameType aFrameType) const {
  NS_ASSERTION(mStyleDisplay->mOriginalDisplay != StyleDisplay::None,
               "mOriginalDisplay has not been properly initialized");

  // Find the nearest containing block frame to the placeholder frame,
  // and its inline-start edge and width.
  nscoord blockIStartContentEdge;
  // Dummy writing mode for blockContentSize, will be changed as needed by
  // GetHypotheticalBoxContainer.
  WritingMode cbwm = aCBReflowInput->GetWritingMode();
  LogicalSize blockContentSize(cbwm);
  nsIFrame* containingBlock = GetHypotheticalBoxContainer(
      aPlaceholderFrame, blockIStartContentEdge, blockContentSize);
  // Now blockContentSize is in containingBlock's writing mode.

  // If it's a replaced element and it has a 'auto' value for
  //'inline size', see if we can get the intrinsic size. This will allow
  // us to exactly determine both the inline edges
  WritingMode wm = containingBlock->GetWritingMode();

  const auto& styleISize = mStylePosition->ISize(wm);
  bool isAutoISize = styleISize.IsAuto();
  Maybe<nsSize> intrinsicSize;
  if (mFlags.mIsReplaced && isAutoISize) {
    // See if we can get the intrinsic size of the element
    intrinsicSize = mFrame->GetIntrinsicSize().ToSize();
  }

  // See if we can calculate what the box inline size would have been if
  // the element had been in the flow
  Maybe<nscoord> boxISize;
  if (mStyleDisplay->IsOriginalDisplayInlineOutside() && !mFlags.mIsReplaced) {
    // For non-replaced inline-level elements the 'inline size' property
    // doesn't apply, so we don't know what the inline size would have
    // been without reflowing it

  } else {
    // It's either a replaced inline-level element or a block-level element

    // Determine the total amount of inline direction
    // border/padding/margin that the element would have had if it had
    // been in the flow. Note that we ignore any 'auto' and 'inherit'
    // values
    nscoord insideBoxISizing, outsideBoxISizing;
    CalculateBorderPaddingMargin(eLogicalAxisInline, blockContentSize.ISize(wm),
                                 &insideBoxISizing, &outsideBoxISizing);

    if (mFlags.mIsReplaced && isAutoISize) {
      // It's a replaced element with an 'auto' inline size so the box
      // inline size is its intrinsic size plus any border/padding/margin
      if (intrinsicSize) {
        boxISize.emplace(LogicalSize(wm, *intrinsicSize).ISize(wm) +
                         outsideBoxISizing + insideBoxISizing);
      }

    } else if (isAutoISize) {
      // The box inline size is the containing block inline size
      boxISize.emplace(blockContentSize.ISize(wm));
    } else {
      // We need to compute it. It's important we do this, because if it's
      // percentage based this computed value may be different from the computed
      // value calculated using the absolute containing block width
      nscoord insideBoxBSizing, dummy;
      CalculateBorderPaddingMargin(eLogicalAxisBlock,
                                   blockContentSize.ISize(wm),
                                   &insideBoxBSizing, &dummy);
      boxISize.emplace(
          ComputeISizeValue(wm, blockContentSize,
                            LogicalSize(wm, insideBoxISizing, insideBoxBSizing),
                            outsideBoxISizing, styleISize) +
          insideBoxISizing + outsideBoxISizing);
    }
  }

  // Get the placeholder x-offset and y-offset in the coordinate
  // space of its containing block
  // XXXbz the placeholder is not fully reflowed yet if our containing block is
  // relatively positioned...
  nsSize containerSize =
      containingBlock->HasAnyStateBits(NS_FRAME_IN_REFLOW)
          ? aCBReflowInput->ComputedSizeAsContainerIfConstrained()
          : containingBlock->GetSize();
  LogicalPoint placeholderOffset(
      wm, aPlaceholderFrame->GetOffsetToIgnoringScrolling(containingBlock),
      containerSize);

  // First, determine the hypothetical box's mBStart.  We want to check the
  // content insertion frame of containingBlock for block-ness, but make
  // sure to compute all coordinates in the coordinate system of
  // containingBlock.
  nsBlockFrame* blockFrame =
      do_QueryFrame(containingBlock->GetContentInsertionFrame());
  if (blockFrame) {
    // Use a null containerSize to convert a LogicalPoint functioning as a
    // vector into a physical nsPoint vector.
    const nsSize nullContainerSize;
    LogicalPoint blockOffset(
        wm, blockFrame->GetOffsetToIgnoringScrolling(containingBlock),
        nullContainerSize);
    bool isValid;
    nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
    if (!isValid) {
      // Give up.  We're probably dealing with somebody using
      // position:absolute inside native-anonymous content anyway.
      aHypotheticalPos.mBStart = placeholderOffset.B(wm);
    } else {
      NS_ASSERTION(iter.GetContainer() == blockFrame,
                   "Found placeholder in wrong block!");
      nsBlockFrame::LineIterator lineBox = iter.GetLine();

      // How we determine the hypothetical box depends on whether the element
      // would have been inline-level or block-level
      LogicalRect lineBounds = lineBox->GetBounds().ConvertTo(
          wm, lineBox->mWritingMode, lineBox->mContainerSize);
      if (mStyleDisplay->IsOriginalDisplayInlineOutside()) {
        // Use the block-start of the inline box which the placeholder lives in
        // as the hypothetical box's block-start.
        aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
      } else {
        // The element would have been block-level which means it would
        // be below the line containing the placeholder frame, unless
        // all the frames before it are empty.  In that case, it would
        // have been just before this line.
        // XXXbz the line box is not fully reflowed yet if our
        // containing block is relatively positioned...
        if (lineBox != iter.End()) {
          nsIFrame* firstFrame = lineBox->mFirstChild;
          bool allEmpty = false;
          if (firstFrame == aPlaceholderFrame) {
            aPlaceholderFrame->SetLineIsEmptySoFar(true);
            allEmpty = true;
          } else {
            auto prev = aPlaceholderFrame->GetPrevSibling();
            if (prev && prev->IsPlaceholderFrame()) {
              auto ph = static_cast<nsPlaceholderFrame*>(prev);
              if (ph->GetLineIsEmptySoFar(&allEmpty)) {
                aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
              }
            }
          }
          if (!allEmpty) {
            bool found = false;
            while (firstFrame) {  // See bug 223064
              allEmpty = AreAllEarlierInFlowFramesEmpty(
                  firstFrame, aPlaceholderFrame, &found);
              if (found || !allEmpty) {
                break;
              }
              firstFrame = firstFrame->GetNextSibling();
            }
            aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
          }
          NS_ASSERTION(firstFrame, "Couldn't find placeholder!");

          if (allEmpty) {
            // The top of the hypothetical box is the top of the line
            // containing the placeholder, since there is nothing in the
            // line before our placeholder except empty frames.
            aHypotheticalPos.mBStart =
                lineBounds.BStart(wm) + blockOffset.B(wm);
          } else {
            // The top of the hypothetical box is just below the line
            // containing the placeholder.
            aHypotheticalPos.mBStart = lineBounds.BEnd(wm) + blockOffset.B(wm);
          }
        } else {
          // Just use the placeholder's block-offset wrt the containing block
          aHypotheticalPos.mBStart = placeholderOffset.B(wm);
        }
      }
    }
  } else {
    // The containing block is not a block, so it's probably something
    // like a XUL box, etc.
    // Just use the placeholder's block-offset
    aHypotheticalPos.mBStart = placeholderOffset.B(wm);
  }

  // Second, determine the hypothetical box's mIStart.
  // How we determine the hypothetical box depends on whether the element
  // would have been inline-level or block-level
  if (mStyleDisplay->IsOriginalDisplayInlineOutside() ||
      mFlags.mIOffsetsNeedCSSAlign) {
    // The placeholder represents the IStart edge of the hypothetical box.
    // (Or if mFlags.mIOffsetsNeedCSSAlign is set, it represents the IStart
    // edge of the Alignment Container.)
    aHypotheticalPos.mIStart = placeholderOffset.I(wm);
  } else {
    aHypotheticalPos.mIStart = blockIStartContentEdge;
  }

  // The current coordinate space is that of the nearest block to the
  // placeholder. Convert to the coordinate space of the absolute containing
  // block.
  nsPoint cbOffset =
      containingBlock->GetOffsetToIgnoringScrolling(aCBReflowInput->mFrame);

  nsSize reflowSize = aCBReflowInput->ComputedSizeAsContainerIfConstrained();
  LogicalPoint logCBOffs(wm, cbOffset, reflowSize - containerSize);
  aHypotheticalPos.mIStart += logCBOffs.I(wm);
  aHypotheticalPos.mBStart += logCBOffs.B(wm);

  // If block direction doesn't match (whether orthogonal or antiparallel),
  // we'll have to convert aHypotheticalPos to be in terms of cbwm.
  // This upcoming conversion must be taken into account for border offsets.
  const bool hypotheticalPosWillUseCbwm =
      cbwm.GetBlockDir() != wm.GetBlockDir();
  // The specified offsets are relative to the absolute containing block's
  // padding edge and our current values are relative to the border edge, so
  // translate.
  const LogicalMargin border = aCBReflowInput->ComputedLogicalBorder(wm);
  if (hypotheticalPosWillUseCbwm && InlinePolarityFlipped(wm, cbwm)) {
    aHypotheticalPos.mIStart += border.IEnd(wm);
  } else {
    aHypotheticalPos.mIStart -= border.IStart(wm);
  }

  if (hypotheticalPosWillUseCbwm && BlockPolarityFlipped(wm, cbwm)) {
    aHypotheticalPos.mBStart += border.BEnd(wm);
  } else {
    aHypotheticalPos.mBStart -= border.BStart(wm);
  }
  // At this point, we have computed aHypotheticalPos using the writing mode
  // of the placeholder's containing block.

  if (hypotheticalPosWillUseCbwm) {
    // If the block direction we used in calculating aHypotheticalPos does not
    // match the absolute containing block's, we need to convert here so that
    // aHypotheticalPos is usable in relation to the absolute containing block.
    // This requires computing or measuring the abspos frame's block-size,
    // which is not otherwise required/used here (as aHypotheticalPos
    // records only the block-start coordinate).

    // This is similar to the inline-size calculation for a replaced
    // inline-level element or a block-level element (above), except that
    // 'auto' sizing is handled differently in the block direction for non-
    // replaced elements and replaced elements lacking an intrinsic size.

    // Determine the total amount of block direction
    // border/padding/margin that the element would have had if it had
    // been in the flow. Note that we ignore any 'auto' and 'inherit'
    // values.
    nscoord insideBoxSizing, outsideBoxSizing;
    CalculateBorderPaddingMargin(eLogicalAxisBlock, blockContentSize.BSize(wm),
                                 &insideBoxSizing, &outsideBoxSizing);

    nscoord boxBSize;
    const auto& styleBSize = mStylePosition->BSize(wm);
    if (styleBSize.BehavesLikeInitialValueOnBlockAxis()) {
      if (mFlags.mIsReplaced && intrinsicSize) {
        // It's a replaced element with an 'auto' block size so the box
        // block size is its intrinsic size plus any border/padding/margin
        boxBSize = LogicalSize(wm, *intrinsicSize).BSize(wm) +
                   outsideBoxSizing + insideBoxSizing;
      } else {
        // XXX Bug 1191801
        // Figure out how to get the correct boxBSize here (need to reflow the
        // positioned frame?)
        boxBSize = 0;
      }
    } else {
      // We need to compute it. It's important we do this, because if it's
      // percentage-based this computed value may be different from the
      // computed value calculated using the absolute containing block height.
      boxBSize = nsLayoutUtils::ComputeBSizeValue(
                     blockContentSize.BSize(wm), insideBoxSizing,
                     styleBSize.AsLengthPercentage()) +
                 insideBoxSizing + outsideBoxSizing;
    }

    LogicalSize boxSize(wm, boxISize.valueOr(0), boxBSize);

    LogicalPoint origin(wm, aHypotheticalPos.mIStart, aHypotheticalPos.mBStart);
    origin =
        origin.ConvertTo(cbwm, wm, reflowSize - boxSize.GetPhysicalSize(wm));

    aHypotheticalPos.mIStart = origin.I(cbwm);
    aHypotheticalPos.mBStart = origin.B(cbwm);
    aHypotheticalPos.mWritingMode = cbwm;
  } else {
    aHypotheticalPos.mWritingMode = wm;
  }
}

bool ReflowInput::IsInlineSizeComputableByBlockSizeAndAspectRatio(
    nscoord aBlockSize) const {
  WritingMode wm = GetWritingMode();
  MOZ_ASSERT(!mStylePosition->mOffset.GetBStart(wm).IsAuto() &&
                 !mStylePosition->mOffset.GetBEnd(wm).IsAuto(),
             "If any of the block-start and block-end are auto, aBlockSize "
             "doesn't make sense");
  NS_WARNING_ASSERTION(
      aBlockSize >= 0 && aBlockSize != NS_UNCONSTRAINEDSIZE,
      "The caller shouldn't give us an unresolved or invalid block size");

  if (!mStylePosition->mAspectRatio.HasFiniteRatio()) {
    return false;
  }

  // We don't have to compute the inline size by aspect-ratio and the resolved
  // block size (from insets) for replaced elements.
  if (mFrame->IsFrameOfType(nsIFrame::eReplaced)) {
    return false;
  }

  // If inline size is specified, we should have it by mFrame->ComputeSize()
  // already.
  if (mStylePosition->ISize(wm).IsLengthPercentage()) {
    return false;
  }

  // If both inline insets are non-auto, mFrame->ComputeSize() should get a
  // possible inline size by those insets, so we don't rely on aspect-ratio.
  if (!mStylePosition->mOffset.GetIStart(wm).IsAuto() &&
      !mStylePosition->mOffset.GetIEnd(wm).IsAuto()) {
    return false;
  }

  // Just an error handling. If |aBlockSize| is NS_UNCONSTRAINEDSIZE, there must
  // be something wrong, and we don't want to continue the calculation for
  // aspect-ratio. So we return false if this happens.
  return aBlockSize != NS_UNCONSTRAINEDSIZE;
}

// FIXME: Move this into nsIFrame::ComputeSize() if possible, so most of the
// if-checks can be simplier.
LogicalSize ReflowInput::CalculateAbsoluteSizeWithResolvedAutoBlockSize(
    nscoord aAutoBSize, const LogicalSize& aTentativeComputedSize) {
  LogicalSize resultSize = aTentativeComputedSize;
  WritingMode wm = GetWritingMode();

  // Two cases we don't want to early return:
  // 1. If the block size behaves as initial value and we haven't resolved it in
  //    ComputeSize() yet, we need to apply |aAutoBSize|.
  //    Also, we check both computed style and |resultSize.BSize(wm)| to avoid
  //    applying |aAutoBSize| when the resolved block size is saturated at
  //    nscoord_MAX, and wrongly treated as NS_UNCONSTRAINEDSIZE because of a
  //    giant specified block-size.
  // 2. If the block size needs to be computed via aspect-ratio and
  //    |aAutoBSize|, we need to apply |aAutoBSize|. In this case,
  //    |resultSize.BSize(wm)| may not be NS_UNCONSTRAINEDSIZE because we apply
  //    aspect-ratio in ComputeSize() for block axis by default, so we have to
  //    check its computed style.
  const bool bSizeBehavesAsInitial =
      mStylePosition->BSize(wm).BehavesLikeInitialValueOnBlockAxis();
  const bool bSizeIsStillUnconstrained =
      bSizeBehavesAsInitial && resultSize.BSize(wm) == NS_UNCONSTRAINEDSIZE;
  const bool needsComputeInlineSizeByAspectRatio =
      bSizeBehavesAsInitial &&
      IsInlineSizeComputableByBlockSizeAndAspectRatio(aAutoBSize);
  if (!bSizeIsStillUnconstrained && !needsComputeInlineSizeByAspectRatio) {
    return resultSize;
  }

  // For non-replaced elements with block-size auto, the block-size
  // fills the remaining space, and we clamp it by min/max size constraints.
  resultSize.BSize(wm) = ApplyMinMaxBSize(aAutoBSize);

  if (!needsComputeInlineSizeByAspectRatio) {
    return resultSize;
  }

  // Calculate transferred inline size through aspect-ratio.
  // For non-replaced elements, we always take box-sizing into account.
  const auto boxSizingAdjust =
      mStylePosition->mBoxSizing == StyleBoxSizing::Border
          ? ComputedLogicalBorderPadding(wm).Size(wm)
          : LogicalSize(wm);
  auto transferredISize =
      mStylePosition->mAspectRatio.ToLayoutRatio().ComputeRatioDependentSize(
          LogicalAxis::eLogicalAxisInline, wm, aAutoBSize, boxSizingAdjust);
  resultSize.ISize(wm) = ApplyMinMaxISize(transferredISize);

  MOZ_ASSERT(mFlags.mIsBSizeSetByAspectRatio,
             "This flag should have been set because nsIFrame::ComputeSize() "
             "returns AspectRatioUsage::ToComputeBSize unconditionally for "
             "auto block-size");
  mFlags.mIsBSizeSetByAspectRatio = false;

  return resultSize;
}

void ReflowInput::InitAbsoluteConstraints(nsPresContext* aPresContext,
                                          const ReflowInput* aCBReflowInput,
                                          const LogicalSize& aCBSize,
                                          LayoutFrameType aFrameType) {
  WritingMode wm = GetWritingMode();
  WritingMode cbwm = aCBReflowInput->GetWritingMode();
  NS_WARNING_ASSERTION(aCBSize.BSize(cbwm) != NS_UNCONSTRAINEDSIZE,
                       "containing block bsize must be constrained");

  NS_ASSERTION(aFrameType != LayoutFrameType::Table,
               "InitAbsoluteConstraints should not be called on table frames");
  NS_ASSERTION(mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
               "Why are we here?");

  const auto& styleOffset = mStylePosition->mOffset;
  bool iStartIsAuto = styleOffset.GetIStart(cbwm).IsAuto();
  bool iEndIsAuto = styleOffset.GetIEnd(cbwm).IsAuto();
  bool bStartIsAuto = styleOffset.GetBStart(cbwm).IsAuto();
  bool bEndIsAuto = styleOffset.GetBEnd(cbwm).IsAuto();

  // If both 'left' and 'right' are 'auto' or both 'top' and 'bottom' are
  // 'auto', then compute the hypothetical box position where the element would
  // have been if it had been in the flow
  nsHypotheticalPosition hypotheticalPos;
  if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
    nsPlaceholderFrame* placeholderFrame = mFrame->GetPlaceholderFrame();
    MOZ_ASSERT(placeholderFrame, "no placeholder frame");
    nsIFrame* placeholderParent = placeholderFrame->GetParent();
    MOZ_ASSERT(placeholderParent, "shouldn't have unparented placeholders");

    if (placeholderFrame->HasAnyStateBits(
            PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN)) {
      MOZ_ASSERT(placeholderParent->IsFlexOrGridContainer(),
                 "This flag should only be set on grid/flex children");
      // If the (as-yet unknown) static position will determine the inline
      // and/or block offsets, set flags to note those offsets aren't valid
      // until we can do CSS Box Alignment on the OOF frame.
      mFlags.mIOffsetsNeedCSSAlign = (iStartIsAuto && iEndIsAuto);
      mFlags.mBOffsetsNeedCSSAlign = (bStartIsAuto && bEndIsAuto);
    }

    if (mFlags.mStaticPosIsCBOrigin) {
      hypotheticalPos.mWritingMode = cbwm;
      hypotheticalPos.mIStart = nscoord(0);
      hypotheticalPos.mBStart = nscoord(0);
      if (placeholderParent->IsGridContainerFrame() &&
          placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY |
                                             NS_STATE_GRID_IS_ROW_MASONRY)) {
        // Disable CSS alignment in Masonry layout since we don't have real grid
        // areas in that axis.  We'll use the placeholder position instead as it
        // was calculated by nsGridContainerFrame::MasonryLayout.
        auto cbsz = aCBSize.GetPhysicalSize(cbwm);
        LogicalPoint pos = placeholderFrame->GetLogicalPosition(cbwm, cbsz);
        if (placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
          mFlags.mIOffsetsNeedCSSAlign = false;
          hypotheticalPos.mIStart = pos.I(cbwm);
        } else {
          mFlags.mBOffsetsNeedCSSAlign = false;
          hypotheticalPos.mBStart = pos.B(cbwm);
        }
      }
    } else {
      // XXXmats all this is broken for orthogonal writing-modes: bug 1521988.
      CalculateHypotheticalPosition(aPresContext, placeholderFrame,
                                    aCBReflowInput, hypotheticalPos,
                                    aFrameType);
      if (aCBReflowInput->mFrame->IsGridContainerFrame()) {
        // 'hypotheticalPos' is relative to the padding rect of the CB *frame*.
        // In grid layout the CB is the grid area rectangle, so we translate
        // 'hypotheticalPos' to be relative that rectangle here.
        nsRect cb = nsGridContainerFrame::GridItemCB(mFrame);
        nscoord left(0);
        nscoord right(0);
        if (cbwm.IsBidiLTR()) {
          left = cb.X();
        } else {
          right = aCBReflowInput->ComputedWidth() +
                  aCBReflowInput->ComputedPhysicalPadding().LeftRight() -
                  cb.XMost();
        }
        LogicalMargin offsets(cbwm, nsMargin(cb.Y(), right, nscoord(0), left));
        hypotheticalPos.mIStart -= offsets.IStart(cbwm);
        hypotheticalPos.mBStart -= offsets.BStart(cbwm);
      }
    }
  }

  // Initialize the 'left' and 'right' computed offsets
  // XXX Handle new 'static-position' value...

  // Size of the containing block in its writing mode
  LogicalSize cbSize = aCBSize;
  LogicalMargin offsets = ComputedLogicalOffsets(cbwm);

  if (iStartIsAuto) {
    offsets.IStart(cbwm) = 0;
  } else {
    offsets.IStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
        cbSize.ISize(cbwm), styleOffset.GetIStart(cbwm));
  }
  if (iEndIsAuto) {
    offsets.IEnd(cbwm) = 0;
  } else {
    offsets.IEnd(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
        cbSize.ISize(cbwm), styleOffset.GetIEnd(cbwm));
  }

  if (iStartIsAuto && iEndIsAuto) {
    if (cbwm.IsBidiLTR() != hypotheticalPos.mWritingMode.IsBidiLTR()) {
      offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
      iEndIsAuto = false;
    } else {
      offsets.IStart(cbwm) = hypotheticalPos.mIStart;
      iStartIsAuto = false;
    }
  }

  if (bStartIsAuto) {
    offsets.BStart(cbwm) = 0;
  } else {
    offsets.BStart(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
        cbSize.BSize(cbwm), styleOffset.GetBStart(cbwm));
  }
  if (bEndIsAuto) {
    offsets.BEnd(cbwm) = 0;
  } else {
    offsets.BEnd(cbwm) = nsLayoutUtils::ComputeBSizeDependentValue(
        cbSize.BSize(cbwm), styleOffset.GetBEnd(cbwm));
  }

  if (bStartIsAuto && bEndIsAuto) {
    // Treat 'top' like 'static-position'
    offsets.BStart(cbwm) = hypotheticalPos.mBStart;
    bStartIsAuto = false;
  }

  SetComputedLogicalOffsets(cbwm, offsets);

  if (wm.IsOrthogonalTo(cbwm)) {
    if (bStartIsAuto || bEndIsAuto) {
      mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
    }
  } else {
    if (iStartIsAuto || iEndIsAuto) {
      mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
    }
  }

  nsIFrame::SizeComputationResult sizeResult = {
      LogicalSize(wm), nsIFrame::AspectRatioUsage::None};
  {
    AutoMaybeDisableFontInflation an(mFrame);

    sizeResult = mFrame->ComputeSize(
        mRenderingContext, wm, cbSize.ConvertTo(wm, cbwm),
        cbSize.ConvertTo(wm, cbwm).ISize(wm),  // XXX or AvailableISize()?
        ComputedLogicalMargin(wm).Size(wm) +
            ComputedLogicalOffsets(wm).Size(wm),
        ComputedLogicalBorderPadding(wm).Size(wm), {}, mComputeSizeFlags);
    mComputedSize = sizeResult.mLogicalSize;
    NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
    NS_ASSERTION(
        ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
        "Bogus block-size");
  }

  LogicalSize& computedSize = sizeResult.mLogicalSize;
  computedSize = computedSize.ConvertTo(cbwm, wm);

  mFlags.mIsBSizeSetByAspectRatio = sizeResult.mAspectRatioUsage ==
                                    nsIFrame::AspectRatioUsage::ToComputeBSize;

  // XXX Now that we have ComputeSize, can we condense many of the
  // branches off of widthIsAuto?

  LogicalMargin margin = ComputedLogicalMargin(cbwm);
  const LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbwm);

  bool iSizeIsAuto = mStylePosition->ISize(cbwm).IsAuto();
  bool marginIStartIsAuto = false;
  bool marginIEndIsAuto = false;
  bool marginBStartIsAuto = false;
  bool marginBEndIsAuto = false;
  if (iStartIsAuto) {
    // We know 'right' is not 'auto' anymore thanks to the hypothetical
    // box code above.
    // Solve for 'left'.
    if (iSizeIsAuto) {
      // XXXldb This, and the corresponding code in
      // nsAbsoluteContainingBlock.cpp, could probably go away now that
      // we always compute widths.
      offsets.IStart(cbwm) = NS_AUTOOFFSET;
    } else {
      offsets.IStart(cbwm) = cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
                             computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
                             borderPadding.IStartEnd(cbwm);
    }
  } else if (iEndIsAuto) {
    // We know 'left' is not 'auto' anymore thanks to the hypothetical
    // box code above.
    // Solve for 'right'.
    if (iSizeIsAuto) {
      // XXXldb This, and the corresponding code in
      // nsAbsoluteContainingBlock.cpp, could probably go away now that
      // we always compute widths.
      offsets.IEnd(cbwm) = NS_AUTOOFFSET;
    } else {
      offsets.IEnd(cbwm) = cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
                           computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
                           borderPadding.IStartEnd(cbwm);
    }
  } else if (!mFrame->HasIntrinsicKeywordForBSize() ||
             !wm.IsOrthogonalTo(cbwm)) {
    // Neither 'inline-start' nor 'inline-end' is 'auto'.
    if (wm.IsOrthogonalTo(cbwm)) {
      // For orthogonal blocks, we need to handle the case where the block had
      // unconstrained block-size, which mapped to unconstrained inline-size
      // in the containing block's writing mode.
      nscoord autoISize = cbSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
                          borderPadding.IStartEnd(cbwm) -
                          offsets.IStartEnd(cbwm);
      autoISize = std::max(autoISize, 0);
      // FIXME: Bug 1602669: if |autoISize| happens to be numerically equal to
      // NS_UNCONSTRAINEDSIZE, we may get some unexpected behavior. We need a
      // better way to distinguish between unconstrained size and resolved
      // size.
      NS_WARNING_ASSERTION(autoISize != NS_UNCONSTRAINEDSIZE,
                           "Unexpected size from inline-start and inline-end");

      nscoord autoBSizeInWM = autoISize;
      LogicalSize computedSizeInWM =
          CalculateAbsoluteSizeWithResolvedAutoBlockSize(
              autoBSizeInWM, computedSize.ConvertTo(wm, cbwm));
      computedSize = computedSizeInWM.ConvertTo(cbwm, wm);
    }

    // However, the inline-size might
    // still not fill all the available space (even though we didn't
    // shrink-wrap) in case:
    //  * inline-size was specified
    //  * we're dealing with a replaced element
    //  * width was constrained by min- or max-inline-size.

    nscoord availMarginSpace =
        aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
        borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
    marginIStartIsAuto = mStyleMargin->mMargin.GetIStart(cbwm).IsAuto();
    marginIEndIsAuto = mStyleMargin->mMargin.GetIEnd(cbwm).IsAuto();
    ComputeAbsPosInlineAutoMargin(availMarginSpace, cbwm, marginIStartIsAuto,
                                  marginIEndIsAuto, margin, offsets);
  }

  bool bSizeIsAuto =
      mStylePosition->BSize(cbwm).BehavesLikeInitialValueOnBlockAxis();
  if (bStartIsAuto) {
    // solve for block-start
    if (bSizeIsAuto) {
      offsets.BStart(cbwm) = NS_AUTOOFFSET;
    } else {
      offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
                             borderPadding.BStartEnd(cbwm) -
                             computedSize.BSize(cbwm) - offsets.BEnd(cbwm);
    }
  } else if (bEndIsAuto) {
    // solve for block-end
    if (bSizeIsAuto) {
      offsets.BEnd(cbwm) = NS_AUTOOFFSET;
    } else {
      offsets.BEnd(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
                           borderPadding.BStartEnd(cbwm) -
                           computedSize.BSize(cbwm) - offsets.BStart(cbwm);
    }
  } else if (!mFrame->HasIntrinsicKeywordForBSize() ||
             wm.IsOrthogonalTo(cbwm)) {
    // Neither block-start nor -end is 'auto'.
    nscoord autoBSize = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
                        borderPadding.BStartEnd(cbwm) - offsets.BStartEnd(cbwm);
    autoBSize = std::max(autoBSize, 0);
    // FIXME: Bug 1602669: if |autoBSize| happens to be numerically equal to
    // NS_UNCONSTRAINEDSIZE, we may get some unexpected behavior. We need a
    // better way to distinguish between unconstrained size and resolved size.
    NS_WARNING_ASSERTION(autoBSize != NS_UNCONSTRAINEDSIZE,
                         "Unexpected size from block-start and block-end");

    // For orthogonal case, the inline size in |wm| should have been handled by
    // ComputeSize(). In other words, we only have to apply |autoBSize| to
    // the computed size if this value can represent the block size in |wm|.
    if (!wm.IsOrthogonalTo(cbwm)) {
      // We handle the unconstrained block-size in current block's writing
      // mode 'wm'.
      LogicalSize computedSizeInWM =
          CalculateAbsoluteSizeWithResolvedAutoBlockSize(
              autoBSize, computedSize.ConvertTo(wm, cbwm));
      computedSize = computedSizeInWM.ConvertTo(cbwm, wm);
    }

    // The block-size might still not fill all the available space in case:
    //  * bsize was specified
    //  * we're dealing with a replaced element
    //  * bsize was constrained by min- or max-bsize.
    nscoord availMarginSpace = autoBSize - computedSize.BSize(cbwm);
    marginBStartIsAuto = mStyleMargin->mMargin.GetBStart(cbwm).IsAuto();
    marginBEndIsAuto = mStyleMargin->mMargin.GetBEnd(cbwm).IsAuto();

    ComputeAbsPosBlockAutoMargin(availMarginSpace, cbwm, marginBStartIsAuto,
                                 marginBEndIsAuto, margin, offsets);
  }
  mComputedSize = computedSize.ConvertTo(wm, cbwm);

  SetComputedLogicalOffsets(cbwm, offsets);
  SetComputedLogicalMargin(cbwm, margin);

  // If we have auto margins, update our UsedMarginProperty. The property
  // will have already been created by InitOffsets if it is needed.
  if (marginIStartIsAuto || marginIEndIsAuto || marginBStartIsAuto ||
      marginBEndIsAuto) {
    nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
    MOZ_ASSERT(propValue,
               "UsedMarginProperty should have been created "
               "by InitOffsets.");
    *propValue = margin.GetPhysicalMargin(cbwm);
  }
}

// This will not be converted to abstract coordinates because it's only
// used in CalcQuirkContainingBlockHeight
static nscoord GetBlockMarginBorderPadding(const ReflowInput* aReflowInput) {
  nscoord result = 0;
  if (!aReflowInput) return result;

  // zero auto margins
  nsMargin margin = aReflowInput->ComputedPhysicalMargin();
  if (NS_AUTOMARGIN == margin.top) margin.top = 0;
  if (NS_AUTOMARGIN == margin.bottom) margin.bottom = 0;

  result += margin.top + margin.bottom;
  result += aReflowInput->ComputedPhysicalBorderPadding().top +
            aReflowInput->ComputedPhysicalBorderPadding().bottom;

  return result;
}

/* Get the height based on the viewport of the containing block specified
 * in aReflowInput when the containing block has mComputedHeight ==
 * NS_UNCONSTRAINEDSIZE This will walk up the chain of containing blocks looking
 * for a computed height until it finds the canvas frame, or it encounters a
 * frame that is not a block, area, or scroll frame. This handles compatibility
 * with IE (see bug 85016 and bug 219693)
 *
 * When we encounter scrolledContent block frames, we skip over them,
 * since they are guaranteed to not be useful for computing the containing
 * block.
 *
 * See also IsQuirkContainingBlockHeight.
 */
static nscoord CalcQuirkContainingBlockHeight(
    const ReflowInput* aCBReflowInput) {
  const ReflowInput* firstAncestorRI = nullptr;   // a candidate for html frame
  const ReflowInput* secondAncestorRI = nullptr;  // a candidate for body frame

  // initialize the default to NS_UNCONSTRAINEDSIZE as this is the containings
  // block computed height when this function is called. It is possible that we
  // don't alter this height especially if we are restricted to one level
  nscoord result = NS_UNCONSTRAINEDSIZE;

  const ReflowInput* ri = aCBReflowInput;
  for (; ri; ri = ri->mParentReflowInput) {
    LayoutFrameType frameType = ri->mFrame->Type();
    // if the ancestor is auto height then skip it and continue up if it
    // is the first block frame and possibly the body/html
    if (LayoutFrameType::Block == frameType ||
        LayoutFrameType::Scroll == frameType) {
      secondAncestorRI = firstAncestorRI;
      firstAncestorRI = ri;

      // If the current frame we're looking at is positioned, we don't want to
      // go any further (see bug 221784).  The behavior we want here is: 1) If
      // not auto-height, use this as the percentage base.  2) If auto-height,
      // keep looking, unless the frame is positioned.
      if (NS_UNCONSTRAINEDSIZE == ri->ComputedHeight()) {
        if (ri->mFrame->IsAbsolutelyPositioned(ri->mStyleDisplay)) {
          break;
        } else {
          continue;
        }
      }
    } else if (LayoutFrameType::Canvas == frameType) {
      // Always continue on to the height calculation
    } else if (LayoutFrameType::PageContent == frameType) {
      nsIFrame* prevInFlow = ri->mFrame->GetPrevInFlow();
      // only use the page content frame for a height basis if it is the first
      // in flow
      if (prevInFlow) break;
    } else {
      break;
    }

    // if the ancestor is the page content frame then the percent base is
    // the avail height, otherwise it is the computed height
    result = (LayoutFrameType::PageContent == frameType) ? ri->AvailableHeight()
                                                         : ri->ComputedHeight();
    // if unconstrained - don't sutract borders - would result in huge height
    if (NS_UNCONSTRAINEDSIZE == result) return result;

    // if we got to the canvas or page content frame, then subtract out
    // margin/border/padding for the BODY and HTML elements
    if ((LayoutFrameType::Canvas == frameType) ||
        (LayoutFrameType::PageContent == frameType)) {
      result -= GetBlockMarginBorderPadding(firstAncestorRI);
      result -= GetBlockMarginBorderPadding(secondAncestorRI);

#ifdef DEBUG
      // make sure the first ancestor is the HTML and the second is the BODY
      if (firstAncestorRI) {
        nsIContent* frameContent = firstAncestorRI->mFrame->GetContent();
        if (frameContent) {
          NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::html),
                       "First ancestor is not HTML");
        }
      }
      if (secondAncestorRI) {
        nsIContent* frameContent = secondAncestorRI->mFrame->GetContent();
        if (frameContent) {
          NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::body),
                       "Second ancestor is not BODY");
        }
      }
#endif

    }
    // if we got to the html frame (a block child of the canvas) ...
    else if (LayoutFrameType::Block == frameType && ri->mParentReflowInput &&
             ri->mParentReflowInput->mFrame->IsCanvasFrame()) {
      // ... then subtract out margin/border/padding for the BODY element
      result -= GetBlockMarginBorderPadding(secondAncestorRI);
    }
    break;
  }

  // Make sure not to return a negative height here!
  return std::max(result, 0);
}

// Called by InitConstraints() to compute the containing block rectangle for
// the element. Handles the special logic for absolutely positioned elements
LogicalSize ReflowInput::ComputeContainingBlockRectangle(
    nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const {
  // Unless the element is absolutely positioned, the containing block is
  // formed by the content edge of the nearest block-level ancestor
  LogicalSize cbSize = aContainingBlockRI->ComputedSize();

  WritingMode wm = aContainingBlockRI->GetWritingMode();

  if (aContainingBlockRI->mFlags.mTreatBSizeAsIndefinite) {
    cbSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
  }

  if (((mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
        // XXXfr hack for making frames behave properly when in overflow
        // container lists, see bug 154892; need to revisit later
        !mFrame->GetPrevInFlow()) ||
       (mFrame->IsTableFrame() &&
        mFrame->GetParent()->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) &&
      mStyleDisplay->IsAbsolutelyPositioned(mFrame)) {
    // See if the ancestor is block-level or inline-level
    const auto computedPadding = aContainingBlockRI->ComputedLogicalPadding(wm);
    if (aContainingBlockRI->mStyleDisplay->IsInlineOutsideStyle()) {
      // Base our size on the actual size of the frame.  In cases when this is
      // completely bogus (eg initial reflow), this code shouldn't even be
      // called, since the code in nsInlineFrame::Reflow will pass in
      // the containing block dimensions to our constructor.
      // XXXbz we should be taking the in-flows into account too, but
      // that's very hard.

      LogicalMargin computedBorder =
          aContainingBlockRI->ComputedLogicalBorderPadding(wm) -
          computedPadding;
      cbSize.ISize(wm) =
          aContainingBlockRI->mFrame->ISize(wm) - computedBorder.IStartEnd(wm);
      NS_ASSERTION(cbSize.ISize(wm) >= 0, "Negative containing block isize!");
      cbSize.BSize(wm) =
          aContainingBlockRI->mFrame->BSize(wm) - computedBorder.BStartEnd(wm);
      NS_ASSERTION(cbSize.BSize(wm) >= 0, "Negative containing block bsize!");
    } else {
      // If the ancestor is block-level, the containing block is formed by the
      // padding edge of the ancestor
      cbSize += computedPadding.Size(wm);
    }
  } else {
    auto IsQuirky = [](const StyleSize& aSize) -> bool {
      return aSize.ConvertsToPercentage();
    };
    // an element in quirks mode gets a containing block based on looking for a
    // parent with a non-auto height if the element has a percent height.
    // Note: We don't emulate this quirk for percents in calc(), or in vertical
    // writing modes, or if the containing block is a flex or grid item.
    if (!wm.IsVertical() && NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
      if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
          !aContainingBlockRI->mFrame->IsFlexOrGridItem() &&
          (IsQuirky(mStylePosition->mHeight) ||
           (mFrame->IsTableWrapperFrame() &&
            IsQuirky(mFrame->PrincipalChildList()
                         .FirstChild()
                         ->StylePosition()
                         ->mHeight)))) {
        cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(aContainingBlockRI);
      }
    }
  }

  return cbSize.ConvertTo(GetWritingMode(), wm);
}

// XXX refactor this code to have methods for each set of properties
// we are computing: width,height,line-height; margin; offsets

void ReflowInput::InitConstraints(
    nsPresContext* aPresContext, const Maybe<LogicalSize>& aContainingBlockSize,
    const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding,
    LayoutFrameType aFrameType) {
  WritingMode wm = GetWritingMode();
  LogicalSize cbSize = aContainingBlockSize.valueOr(
      LogicalSize(mWritingMode, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE));
  DISPLAY_INIT_CONSTRAINTS(mFrame, this, cbSize.ISize(wm), cbSize.BSize(wm),
                           aBorder, aPadding);

  // If this is a reflow root, then set the computed width and
  // height equal to the available space
  if (nullptr == mParentReflowInput || mFlags.mDummyParentReflowInput) {
    // XXXldb This doesn't mean what it used to!
    InitOffsets(wm, cbSize.ISize(wm), aFrameType, mComputeSizeFlags, aBorder,
                aPadding, mStyleDisplay);
    // Override mComputedMargin since reflow roots start from the
    // frame's boundary, which is inside the margin.
    SetComputedLogicalMargin(wm, LogicalMargin(wm));
    SetComputedLogicalOffsets(wm, LogicalMargin(wm));

    const auto borderPadding = ComputedLogicalBorderPadding(wm);
    SetComputedISize(
        std::max(0, AvailableISize() - borderPadding.IStartEnd(wm)),
        ResetResizeFlags::No);
    SetComputedBSize(
        AvailableBSize() != NS_UNCONSTRAINEDSIZE
            ? std::max(0, AvailableBSize() - borderPadding.BStartEnd(wm))
            : NS_UNCONSTRAINEDSIZE,
        ResetResizeFlags::No);

    mComputedMinSize.SizeTo(mWritingMode, 0, 0);
    mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
                            NS_UNCONSTRAINEDSIZE);
  } else {
    // Get the containing block's reflow input
    const ReflowInput* cbri = mCBReflowInput;
    MOZ_ASSERT(cbri, "no containing block");
    MOZ_ASSERT(mFrame->GetParent());

    // If we weren't given a containing block size, then compute one.
    if (aContainingBlockSize.isNothing()) {
      cbSize = ComputeContainingBlockRectangle(aPresContext, cbri);
    }

    // See if the containing block height is based on the size of its
    // content
    if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
      // See if the containing block is a cell frame which needs
      // to use the mComputedHeight of the cell instead of what the cell block
      // passed in.
      // XXX It seems like this could lead to bugs with min-height and friends
      if (cbri->mParentReflowInput && cbri->mFrame->IsTableCellFrame()) {
        cbSize.BSize(wm) = cbri->ComputedSize(wm).BSize(wm);
      }
    }

    // XXX Might need to also pass the CB height (not width) for page boxes,
    // too, if we implement them.

    // For calculating positioning offsets, margins, borders and
    // padding, we use the writing mode of the containing block
    WritingMode cbwm = cbri->GetWritingMode();
    InitOffsets(cbwm, cbSize.ConvertTo(cbwm, wm).ISize(cbwm), aFrameType,
                mComputeSizeFlags, aBorder, aPadding, mStyleDisplay);

    // For calculating the size of this box, we use its own writing mode
    const auto& blockSize = mStylePosition->BSize(wm);
    bool isAutoBSize = blockSize.BehavesLikeInitialValueOnBlockAxis();

    // Check for a percentage based block size and a containing block
    // block size that depends on the content block size
    if (blockSize.HasPercent()) {
      if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
        // this if clause enables %-blockSize on replaced inline frames,
        // such as images.  See bug 54119.  The else clause "blockSizeUnit =
        // eStyleUnit_Auto;" used to be called exclusively.
        if (mFlags.mIsReplaced && mStyleDisplay->IsInlineOutsideStyle()) {
          // Get the containing block's reflow input
          NS_ASSERTION(nullptr != cbri, "no containing block");
          // in quirks mode, get the cb height using the special quirk method
          if (!wm.IsVertical() &&
              eCompatibility_NavQuirks == aPresContext->CompatibilityMode()) {
            if (!cbri->mFrame->IsTableCellFrame() &&
                !cbri->mFrame->IsFlexOrGridItem()) {
              cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(cbri);
              if (cbSize.BSize(wm) == NS_UNCONSTRAINEDSIZE) {
                isAutoBSize = true;
              }
            } else {
              isAutoBSize = true;
            }
          }
          // in standard mode, use the cb block size.  if it's "auto",
          // as will be the case by default in BODY, use auto block size
          // as per CSS2 spec.
          else {
            nscoord computedBSize = cbri->ComputedSize(wm).BSize(wm);
            if (NS_UNCONSTRAINEDSIZE != computedBSize) {
              cbSize.BSize(wm) = computedBSize;
            } else {
              isAutoBSize = true;
            }
          }
        } else {
          // default to interpreting the blockSize like 'auto'
          isAutoBSize = true;
        }
      }
    }

    // Compute our offsets if the element is relatively positioned.  We
    // need the correct containing block inline-size and block-size
    // here, which is why we need to do it after all the quirks-n-such
    // above. (If the element is sticky positioned, we need to wait
    // until the scroll container knows its size, so we compute offsets
    // from StickyScrollContainer::UpdatePositions.)
    if (mStyleDisplay->IsRelativelyPositioned(mFrame)) {
      const LogicalMargin offsets =
          ComputeRelativeOffsets(cbwm, mFrame, cbSize.ConvertTo(cbwm, wm));
      SetComputedLogicalOffsets(cbwm, offsets);
    } else {
      // Initialize offsets to 0
      SetComputedLogicalOffsets(wm, LogicalMargin(wm));
    }

    // Calculate the computed values for min and max properties.  Note that
    // this MUST come after we've computed our border and padding.
    ComputeMinMaxValues(cbSize);

    // Calculate the computed inlineSize and blockSize.
    // This varies by frame type.

    if (IsInternalTableFrame()) {
      // Internal table elements. The rules vary depending on the type.
      // Calculate the computed isize
      bool rowOrRowGroup = false;
      const auto& inlineSize = mStylePosition->ISize(wm);
      bool isAutoISize = inlineSize.IsAuto();
      if ((StyleDisplay::TableRow == mStyleDisplay->mDisplay) ||
          (StyleDisplay::TableRowGroup == mStyleDisplay->mDisplay)) {
        // 'inlineSize' property doesn't apply to table rows and row groups
        isAutoISize = true;
        rowOrRowGroup = true;
      }

      // calc() with both percentages and lengths act like auto on internal
      // table elements
      if (isAutoISize || inlineSize.HasLengthAndPercentage()) {
        if (AvailableISize() != NS_UNCONSTRAINEDSIZE && !rowOrRowGroup) {
          // Internal table elements don't have margins. Only tables and
          // cells have border and padding
          SetComputedISize(
              std::max(0, AvailableISize() -
                              ComputedLogicalBorderPadding(wm).IStartEnd(wm)),
              ResetResizeFlags::No);
        } else {
          SetComputedISize(AvailableISize(), ResetResizeFlags::No);
        }
        NS_ASSERTION(ComputedISize() >= 0, "Bogus computed isize");

      } else {
        SetComputedISize(
            ComputeISizeValue(cbSize, mStylePosition->mBoxSizing, inlineSize),
            ResetResizeFlags::No);
      }

      // Calculate the computed block size
      if (StyleDisplay::TableColumn == mStyleDisplay->mDisplay ||
          StyleDisplay::TableColumnGroup == mStyleDisplay->mDisplay) {
        // 'blockSize' property doesn't apply to table columns and column groups
        isAutoBSize = true;
      }
      // calc() with both percentages and lengths acts like 'auto' on internal
      // table elements
      if (isAutoBSize || blockSize.HasLengthAndPercentage()) {
        SetComputedBSize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
      } else {
        SetComputedBSize(
            ComputeBSizeValue(cbSize.BSize(wm), mStylePosition->mBoxSizing,
                              blockSize.AsLengthPercentage()),
            ResetResizeFlags::No);
      }

      // Doesn't apply to internal table elements
      mComputedMinSize.SizeTo(mWritingMode, 0, 0);
      mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
                              NS_UNCONSTRAINEDSIZE);
    } else if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
               mStyleDisplay->IsAbsolutelyPositionedStyle() &&
               // XXXfr hack for making frames behave properly when in overflow
               // container lists, see bug 154892; need to revisit later
               !mFrame->GetPrevInFlow()) {
      InitAbsoluteConstraints(aPresContext, cbri,
                              cbSize.ConvertTo(cbri->GetWritingMode(), wm),
                              aFrameType);
    } else {
      AutoMaybeDisableFontInflation an(mFrame);

      const bool isBlockLevel =
          ((!mStyleDisplay->IsInlineOutsideStyle() &&
            // internal table values on replaced elements behaves as inline
            // https://drafts.csswg.org/css-tables-3/#table-structure
            // "... it is handled instead as though the author had declared
            //  either 'block' (for 'table' display) or 'inline' (for all
            //  other values)"
            !(mFlags.mIsReplaced && (mStyleDisplay->IsInnerTableStyle() ||
                                     mStyleDisplay->DisplayOutside() ==
                                         StyleDisplayOutside::TableCaption))) ||
           // The inner table frame always fills its outer wrapper table frame,
           // even for 'inline-table'.
           mFrame->IsTableFrame()) &&
          // XXX abs.pos. continuations treated like blocks, see comment in
          // the else-if condition above.
          (!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) ||
           mStyleDisplay->IsAbsolutelyPositionedStyle());

      if (!isBlockLevel) {
        mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
      }

      nsIFrame* alignCB = mFrame->GetParent();
      if (alignCB->IsTableWrapperFrame() && alignCB->GetParent()) {
        // XXX grid-specific for now; maybe remove this check after we address
        // bug 799725
        if (alignCB->GetParent()->IsGridContainerFrame()) {
          alignCB = alignCB->GetParent();
        }
      }
      if (alignCB->IsGridContainerFrame()) {
        // Shrink-wrap grid items that will be aligned (rather than stretched)
        // in its inline axis.
        auto inlineAxisAlignment =
            wm.IsOrthogonalTo(cbwm)
                ? mStylePosition->UsedAlignSelf(alignCB->Style())._0
                : mStylePosition->UsedJustifySelf(alignCB->Style())._0;
        if ((inlineAxisAlignment != StyleAlignFlags::STRETCH &&
             inlineAxisAlignment != StyleAlignFlags::NORMAL) ||
            mStyleMargin->mMargin.GetIStart(wm).IsAuto() ||
            mStyleMargin->mMargin.GetIEnd(wm).IsAuto()) {
          mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
        }
      } else {
        // Shrink-wrap blocks that are orthogonal to their container.
        if (isBlockLevel && mCBReflowInput &&
            mCBReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
          mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
        }

        if (alignCB->IsFlexContainerFrame()) {
          mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
        }
      }

      if (cbSize.ISize(wm) == NS_UNCONSTRAINEDSIZE) {
        // For orthogonal flows, where we found a parent orthogonal-limit
        // for AvailableISize() in Init(), we'll use the same here as well.
        cbSize.ISize(wm) = AvailableISize();
      }

      auto size =
          mFrame->ComputeSize(mRenderingContext, wm, cbSize, AvailableISize(),
                              ComputedLogicalMargin(wm).Size(wm),
                              ComputedLogicalBorderPadding(wm).Size(wm),
                              mStyleSizeOverrides, mComputeSizeFlags);

      mComputedSize = size.mLogicalSize;
      NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
      NS_ASSERTION(
          ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
          "Bogus block-size");

      mFlags.mIsBSizeSetByAspectRatio =
          size.mAspectRatioUsage == nsIFrame::AspectRatioUsage::ToComputeBSize;

      const bool shouldCalculateBlockSideMargins = [&]() {
        if (!isBlockLevel) {
          return false;
        }
        if (mStyleDisplay->mDisplay == StyleDisplay::InlineTable) {
          return false;
        }
        if (mFrame->IsTableFrame()) {
          return false;
        }
        if (alignCB->IsFlexOrGridContainer()) {
          // Exclude flex and grid items.
          return false;
        }
        const auto pseudoType = mFrame->Style()->GetPseudoType();
        if (pseudoType == PseudoStyleType::marker &&
            mFrame->GetParent()->StyleList()->mListStylePosition ==
                StyleListStylePosition::Outside) {
          // Exclude outside ::markers.
          return false;
        }
        if (pseudoType == PseudoStyleType::columnContent) {
          // Exclude -moz-column-content since it cannot have any margin.
          return false;
        }
        return true;
      }();

      if (shouldCalculateBlockSideMargins) {
        CalculateBlockSideMargins();
      }
    }
  }

  // Save our containing block dimensions
  mContainingBlockSize = cbSize;
}

static void UpdateProp(nsIFrame* aFrame,
                       const FramePropertyDescriptor<nsMargin>* aProperty,
                       bool aNeeded, const nsMargin& aNewValue) {
  if (aNeeded) {
    nsMargin* propValue = aFrame->GetProperty(aProperty);
    if (propValue) {
      *propValue = aNewValue;
    } else {
      aFrame->AddProperty(aProperty, new nsMargin(aNewValue));
    }
  } else {
    aFrame->RemoveProperty(aProperty);
  }
}

void SizeComputationInput::InitOffsets(WritingMode aCBWM, nscoord aPercentBasis,
                                       LayoutFrameType aFrameType,
                                       ComputeSizeFlags aFlags,
                                       const Maybe<LogicalMargin>& aBorder,
                                       const Maybe<LogicalMargin>& aPadding,
                                       const nsStyleDisplay* aDisplay) {
  DISPLAY_INIT_OFFSETS(mFrame, this, aPercentBasis, aCBWM, aBorder, aPadding);

  // Since we are in reflow, we don't need to store these properties anymore
  // unless they are dependent on width, in which case we store the new value.
  nsPresContext* presContext = mFrame->PresContext();
  mFrame->RemoveProperty(nsIFrame::UsedBorderProperty());

  // Compute margins from the specified margin style information. These
  // become the default computed values, and may be adjusted below
  // XXX fix to provide 0,0 for the top&bottom margins for
  // inline-non-replaced elements
  bool needMarginProp = ComputeMargin(aCBWM, aPercentBasis, aFrameType);
  // Note that ComputeMargin() simplistically resolves 'auto' margins to 0.
  // In formatting contexts where this isn't correct, some later code will
  // need to update the UsedMargin() property with the actual resolved value.
  // One example of this is ::CalculateBlockSideMargins().
  ::UpdateProp(mFrame, nsIFrame::UsedMarginProperty(), needMarginProp,
               ComputedPhysicalMargin());

  const WritingMode wm = GetWritingMode();
  const nsStyleDisplay* disp = mFrame->StyleDisplayWithOptionalParam(aDisplay);
  bool needPaddingProp;
  LayoutDeviceIntMargin widgetPadding;
  if (mIsThemed && presContext->Theme()->GetWidgetPadding(
                       presContext->DeviceContext(), mFrame,
                       disp->EffectiveAppearance(), &widgetPadding)) {
    const nsMargin padding = LayoutDevicePixel::ToAppUnits(
        widgetPadding, presContext->AppUnitsPerDevPixel());
    SetComputedLogicalPadding(wm, LogicalMargin(wm, padding));
    needPaddingProp = false;
  } else if (mFrame->IsInSVGTextSubtree()) {
    SetComputedLogicalPadding(wm, LogicalMargin(wm));
    needPaddingProp = false;
  } else if (aPadding) {  // padding is an input arg
    SetComputedLogicalPadding(wm, *aPadding);
    nsMargin stylePadding;
    // If the caller passes a padding that doesn't match our style (like
    // nsTextControlFrame might due due to theming), then we also need a
    // padding prop.
    needPaddingProp = !mFrame->StylePadding()->GetPadding(stylePadding) ||
                      aPadding->GetPhysicalMargin(wm) != stylePadding;
  } else {
    needPaddingProp = ComputePadding(aCBWM, aPercentBasis, aFrameType);
  }

  // Add [align|justify]-content:baseline padding contribution.
  typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
  auto ApplyBaselinePadding = [this, wm, &needPaddingProp](LogicalAxis aAxis,
                                                           Prop aProp) {
    bool found;
    nscoord val = mFrame->GetProperty(aProp, &found);
    if (found) {
      NS_ASSERTION(val != nscoord(0), "zero in this property is useless");
      LogicalSide side;
      if (val > 0) {
        side = MakeLogicalSide(aAxis, eLogicalEdgeStart);
      } else {
        side = MakeLogicalSide(aAxis, eLogicalEdgeEnd);
        val = -val;
      }
      mComputedPadding.Side(side, wm) += val;
      needPaddingProp = true;
      if (aAxis == eLogicalAxisBlock && val > 0) {
        // We have a baseline-adjusted block-axis start padding, so
        // we need this to mark lines dirty when mIsBResize is true:
        this->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
      }
    }
  };
  if (!aFlags.contains(ComputeSizeFlag::IsGridMeasuringReflow)) {
    ApplyBaselinePadding(eLogicalAxisBlock, nsIFrame::BBaselinePadProperty());
  }
  if (!aFlags.contains(ComputeSizeFlag::ShrinkWrap)) {
    ApplyBaselinePadding(eLogicalAxisInline, nsIFrame::IBaselinePadProperty());
  }

  LogicalMargin border(wm);
  if (mIsThemed) {
    const LayoutDeviceIntMargin widgetBorder =
        presContext->Theme()->GetWidgetBorder(
            presContext->DeviceContext(), mFrame, disp->EffectiveAppearance());
    border = LogicalMargin(
        wm, LayoutDevicePixel::ToAppUnits(widgetBorder,
                                          presContext->AppUnitsPerDevPixel()));
  } else if (mFrame->IsInSVGTextSubtree()) {
    // Do nothing since the border local variable is initialized all zero.
  } else if (aBorder) {  // border is an input arg
    border = *aBorder;
  } else {
    border = LogicalMargin(wm, mFrame->StyleBorder()->GetComputedBorder());
  }
  SetComputedLogicalBorderPadding(wm, border + ComputedLogicalPadding(wm));

  if (aFrameType == LayoutFrameType::Scrollbar) {
    // scrollbars may have had their width or height smashed to zero
    // by the associated scrollframe, in which case we must not report
    // any padding or border.
    nsSize size(mFrame->GetSize());
    if (size.width == 0 || size.height == 0) {
      SetComputedLogicalPadding(wm, LogicalMargin(wm));
      SetComputedLogicalBorderPadding(wm, LogicalMargin(wm));
    }
  }

  bool hasPaddingChange;
  if (nsMargin* oldPadding =
          mFrame->GetProperty(nsIFrame::UsedPaddingProperty())) {
    // Note: If a padding change is already detectable without resolving the
    // percentage, e.g. a padding is changing from 50px to 50%,
    // nsIFrame::DidSetComputedStyle() will cache the old padding in
    // UsedPaddingProperty().
    hasPaddingChange = *oldPadding != ComputedPhysicalPadding();
  } else {
    // Our padding may have changed, but we can't tell at this point.
    hasPaddingChange = needPaddingProp;
  }
  // Keep mHasPaddingChange bit set until we've done reflow. We'll clear it in
  // nsIFrame::DidReflow()
  mFrame->SetHasPaddingChange(mFrame->HasPaddingChange() || hasPaddingChange);

  ::UpdateProp(mFrame, nsIFrame::UsedPaddingProperty(), needPaddingProp,
               ComputedPhysicalPadding());
}

// This code enforces section 10.3.3 of the CSS2 spec for this formula:
//
// 'margin-left' + 'border-left-width' + 'padding-left' + 'width' +
//   'padding-right' + 'border-right-width' + 'margin-right'
//   = width of containing block
//
// Note: the width unit is not auto when this is called
void ReflowInput::CalculateBlockSideMargins() {
  MOZ_ASSERT(!mFrame->IsTableFrame(),
             "Inner table frame cannot have computed margins!");

  // Calculations here are done in the containing block's writing mode,
  // which is where margins will eventually be applied: we're calculating
  // margins that will be used by the container in its inline direction,
  // which in the case of an orthogonal contained block will correspond to
  // the block direction of this reflow input. So in the orthogonal-flow
  // case, "CalculateBlock*Side*Margins" will actually end up adjusting
  // the BStart/BEnd margins; those are the "sides" of the block from its
  // container's point of view.
  WritingMode cbWM =
      mCBReflowInput ? mCBReflowInput->GetWritingMode() : GetWritingMode();

  nscoord availISizeCBWM = AvailableSize(cbWM).ISize(cbWM);
  nscoord computedISizeCBWM = ComputedSize(cbWM).ISize(cbWM);
  if (computedISizeCBWM == NS_UNCONSTRAINEDSIZE) {
    // For orthogonal flows, where we found a parent orthogonal-limit
    // for AvailableISize() in Init(), we don't have meaningful sizes to
    // adjust.  Act like the sum is already correct (below).
    return;
  }

  LAYOUT_WARN_IF_FALSE(NS_UNCONSTRAINEDSIZE != computedISizeCBWM &&
                           NS_UNCONSTRAINEDSIZE != availISizeCBWM,
                       "have unconstrained inline-size; this should only "
                       "result from very large sizes, not attempts at "
                       "intrinsic inline-size calculation");

  LogicalMargin margin = ComputedLogicalMargin(cbWM);
  LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbWM);
  nscoord sum = margin.IStartEnd(cbWM) + borderPadding.IStartEnd(cbWM) +
                computedISizeCBWM;
  if (sum == availISizeCBWM) {
    // The sum is already correct
    return;
  }

  // Determine the start and end margin values. The isize value
  // remains constant while we do this.

  // Calculate how much space is available for margins
  nscoord availMarginSpace = availISizeCBWM - sum;

  // If the available margin space is negative, then don't follow the
  // usual overconstraint rules.
  if (availMarginSpace < 0) {
    margin.IEnd(cbWM) += availMarginSpace;
    SetComputedLogicalMargin(cbWM, margin);
    return;
  }

  // The css2 spec clearly defines how block elements should behave
  // in section 10.3.3.
  const auto& styleSides = mStyleMargin->mMargin;
  bool isAutoStartMargin = styleSides.GetIStart(cbWM).IsAuto();
  bool isAutoEndMargin = styleSides.GetIEnd(cbWM).IsAuto();
  if (!isAutoStartMargin && !isAutoEndMargin) {
    // Neither margin is 'auto' so we're over constrained. Use the
    // 'direction' property of the parent to tell which margin to
    // ignore
    // First check if there is an HTML alignment that we should honor
    const StyleTextAlign* textAlign =
        mParentReflowInput
            ? &mParentReflowInput->mFrame->StyleText()->mTextAlign
            : nullptr;
    if (textAlign && (*textAlign == StyleTextAlign::MozLeft ||
                      *textAlign == StyleTextAlign::MozCenter ||
                      *textAlign == StyleTextAlign::MozRight)) {
      if (mParentReflowInput->mWritingMode.IsBidiLTR()) {
        isAutoStartMargin = *textAlign != StyleTextAlign::MozLeft;
        isAutoEndMargin = *textAlign != StyleTextAlign::MozRight;
      } else {
        isAutoStartMargin = *textAlign != StyleTextAlign::MozRight;
        isAutoEndMargin = *textAlign != StyleTextAlign::MozLeft;
      }
    }
    // Otherwise apply the CSS rules, and ignore one margin by forcing
    // it to 'auto', depending on 'direction'.
    else {
      isAutoEndMargin = true;
    }
  }

  // Logic which is common to blocks and tables
  // The computed margins need not be zero because the 'auto' could come from
  // overconstraint or from HTML alignment so values need to be accumulated

  if (isAutoStartMargin) {
    if (isAutoEndMargin) {
      // Both margins are 'auto' so the computed addition should be equal
      nscoord forStart = availMarginSpace / 2;
      margin.IStart(cbWM) += forStart;
      margin.IEnd(cbWM) += availMarginSpace - forStart;
    } else {
      margin.IStart(cbWM) += availMarginSpace;
    }
  } else if (isAutoEndMargin) {
    margin.IEnd(cbWM) += availMarginSpace;
  }
  SetComputedLogicalMargin(cbWM, margin);

  if (isAutoStartMargin || isAutoEndMargin) {
    // Update the UsedMargin property if we were tracking it already.
    nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
    if (propValue) {
      *propValue = margin.GetPhysicalMargin(cbWM);
    }
  }
}

// For "normal" we use the font's normal line height (em height + leading).
// If both internal leading and  external leading specified by font itself are
// zeros, we should compensate this by creating extra (external) leading.
// This is necessary because without this compensation, normal line height might
// look too tight.
constexpr float kNormalLineHeightFactor = 1.2f;
static nscoord GetNormalLineHeight(nsFontMetrics* aFontMetrics) {
  MOZ_ASSERT(aFontMetrics, "no font metrics");
  nscoord externalLeading = aFontMetrics->ExternalLeading();
  nscoord internalLeading = aFontMetrics->InternalLeading();
  nscoord emHeight = aFontMetrics->EmHeight();
  if (!internalLeading && !externalLeading) {
    return NSToCoordRound(emHeight * kNormalLineHeightFactor);
  }
  return emHeight + internalLeading + externalLeading;
}

static inline nscoord ComputeLineHeight(const StyleLineHeight& aLh,
                                        const nsStyleFont& aRelativeToFont,
                                        nsPresContext* aPresContext,
                                        bool aIsVertical, nscoord aBlockBSize,
                                        float aFontSizeInflation) {
  if (aLh.IsLength()) {
    nscoord result = aLh.AsLength().ToAppUnits();
    if (aFontSizeInflation != 1.0f) {
      result = NSToCoordRound(result * aFontSizeInflation);
    }
    return result;
  }

  if (aLh.IsNumber()) {
    // For factor units the computed value of the line-height property
    // is found by multiplying the factor by the font's computed size
    // (adjusted for min-size prefs and text zoom).
    return aRelativeToFont.mFont.size
        .ScaledBy(aLh.AsNumber() * aFontSizeInflation)
        .ToAppUnits();
  }

  MOZ_ASSERT(aLh.IsNormal() || aLh.IsMozBlockHeight());
  if (aLh.IsMozBlockHeight() && aBlockBSize != NS_UNCONSTRAINEDSIZE) {
    return aBlockBSize;
  }

  auto size = aRelativeToFont.mFont.size;
  size.ScaleBy(aFontSizeInflation);

  if (aPresContext) {
    RefPtr<nsFontMetrics> fm = nsLayoutUtils::GetMetricsFor(
        aPresContext, aIsVertical, &aRelativeToFont, size,
        /* aUseUserFontSet = */ true);
    return GetNormalLineHeight(fm);
  }
  // If we don't have a pres context, use a 1.2em fallback.
  size.ScaleBy(kNormalLineHeightFactor);
  return size.ToAppUnits();
}

nscoord ReflowInput::GetLineHeight() const {
  if (mLineHeight != NS_UNCONSTRAINEDSIZE) {
    return mLineHeight;
  }

  nscoord blockBSize = nsLayoutUtils::IsNonWrapperBlock(mFrame)
                           ? ComputedBSize()
                           : (mCBReflowInput ? mCBReflowInput->ComputedBSize()
                                             : NS_UNCONSTRAINEDSIZE);
  mLineHeight = CalcLineHeight(*mFrame->Style(), mFrame->PresContext(),
                               mFrame->GetContent(), blockBSize,
                               nsLayoutUtils::FontSizeInflationFor(mFrame));
  return mLineHeight;
}

void ReflowInput::SetLineHeight(nscoord aLineHeight) {
  MOZ_ASSERT(aLineHeight >= 0, "aLineHeight must be >= 0!");

  if (mLineHeight != aLineHeight) {
    mLineHeight = aLineHeight;
    // Setting used line height can change a frame's block-size if mFrame's
    // block-size behaves as auto.
    InitResizeFlags(mFrame->PresContext(), mFrame->Type());
  }
}

/* static */
nscoord ReflowInput::CalcLineHeight(const ComputedStyle& aStyle,
                                    nsPresContext* aPresContext,
                                    const nsIContent* aContent,
                                    nscoord aBlockBSize,
                                    float aFontSizeInflation) {
  const StyleLineHeight& lh = aStyle.StyleText()->mLineHeight;
  WritingMode wm(&aStyle);
  const bool vertical = wm.IsVertical() && !wm.IsSideways();
  return CalcLineHeight(lh, *aStyle.StyleFont(), aPresContext, vertical,
                        aContent, aBlockBSize, aFontSizeInflation);
}

nscoord ReflowInput::CalcLineHeight(
    const StyleLineHeight& aLh, const nsStyleFont& aRelativeToFont,
    nsPresContext* aPresContext, bool aIsVertical, const nsIContent* aContent,
    nscoord aBlockBSize, float aFontSizeInflation) {
  nscoord lineHeight =
      ComputeLineHeight(aLh, aRelativeToFont, aPresContext, aIsVertical,
                        aBlockBSize, aFontSizeInflation);

  NS_ASSERTION(lineHeight >= 0, "ComputeLineHeight screwed up");

  const auto* input = HTMLInputElement::FromNodeOrNull(aContent);
  if (input && input->IsSingleLineTextControl()) {
    // For Web-compatibility, single-line text input elements cannot
    // have a line-height smaller than 'normal'.
    if (!aLh.IsNormal()) {
      nscoord normal = ComputeLineHeight(
          StyleLineHeight::Normal(), aRelativeToFont, aPresContext, aIsVertical,
          aBlockBSize, aFontSizeInflation);
      if (lineHeight < normal) {
        lineHeight = normal;
      }
    }
  }

  return lineHeight;
}

bool SizeComputationInput::ComputeMargin(WritingMode aCBWM,
                                         nscoord aPercentBasis,
                                         LayoutFrameType aFrameType) {
  // SVG text frames have no margin.
  if (mFrame->IsInSVGTextSubtree()) {
    return false;
  }

  if (aFrameType == LayoutFrameType::Table) {
    // Table frame's margin is inherited to the table wrapper frame via the
    // ::-moz-table-wrapper rule in ua.css, so don't set any margins for it.
    SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode));
    return false;
  }

  // If style style can provide us the margin directly, then use it.
  const nsStyleMargin* styleMargin = mFrame->StyleMargin();

  nsMargin margin;
  const bool isCBDependent = !styleMargin->GetMargin(margin);
  if (isCBDependent) {
    // We have to compute the value. Note that this calculation is
    // performed according to the writing mode of the containing block
    // (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
    if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
      aPercentBasis = 0;
    }
    LogicalMargin m(aCBWM);
    m.IStart(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
        aPercentBasis, styleMargin->mMargin.GetIStart(aCBWM));
    m.IEnd(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
        aPercentBasis, styleMargin->mMargin.GetIEnd(aCBWM));

    m.BStart(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
        aPercentBasis, styleMargin->mMargin.GetBStart(aCBWM));
    m.BEnd(aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
        aPercentBasis, styleMargin->mMargin.GetBEnd(aCBWM));

    SetComputedLogicalMargin(aCBWM, m);
  } else {
    SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode, margin));
  }

  // ... but font-size-inflation-based margin adjustment uses the
  // frame's writing mode
  nscoord marginAdjustment = FontSizeInflationListMarginAdjustment(mFrame);

  if (marginAdjustment > 0) {
    LogicalMargin m = ComputedLogicalMargin(mWritingMode);
    m.IStart(mWritingMode) += marginAdjustment;
    SetComputedLogicalMargin(mWritingMode, m);
  }

  return isCBDependent;
}

bool SizeComputationInput::ComputePadding(WritingMode aCBWM,
                                          nscoord aPercentBasis,
                                          LayoutFrameType aFrameType) {
  // If style can provide us the padding directly, then use it.
  const nsStylePadding* stylePadding = mFrame->StylePadding();
  nsMargin padding;
  bool isCBDependent = !stylePadding->GetPadding(padding);
  // a table row/col group, row/col doesn't have padding
  // XXXldb Neither do border-collapse tables.
  if (LayoutFrameType::TableRowGroup == aFrameType ||
      LayoutFrameType::TableColGroup == aFrameType ||
      LayoutFrameType::TableRow == aFrameType ||
      LayoutFrameType::TableCol == aFrameType) {
    SetComputedLogicalPadding(mWritingMode, LogicalMargin(mWritingMode));
  } else if (isCBDependent) {
    // We have to compute the value. This calculation is performed
    // according to the writing mode of the containing block
    // (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
    // clamp negative calc() results to 0
    if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
      aPercentBasis = 0;
    }
    LogicalMargin p(aCBWM);
    p.IStart(aCBWM) = std::max(
        0, nsLayoutUtils::ComputeCBDependentValue(
               aPercentBasis, stylePadding->mPadding.GetIStart(aCBWM)));
    p.IEnd(aCBWM) =
        std::max(0, nsLayoutUtils::ComputeCBDependentValue(
                        aPercentBasis, stylePadding->mPadding.GetIEnd(aCBWM)));

    p.BStart(aCBWM) = std::max(
        0, nsLayoutUtils::ComputeCBDependentValue(
               aPercentBasis, stylePadding->mPadding.GetBStart(aCBWM)));
    p.BEnd(aCBWM) =
        std::max(0, nsLayoutUtils::ComputeCBDependentValue(
                        aPercentBasis, stylePadding->mPadding.GetBEnd(aCBWM)));

    SetComputedLogicalPadding(aCBWM, p);
  } else {
    SetComputedLogicalPadding(mWritingMode,
                              LogicalMargin(mWritingMode, padding));
  }
  return isCBDependent;
}

void ReflowInput::ComputeMinMaxValues(const LogicalSize& aCBSize) {
  WritingMode wm = GetWritingMode();

  const auto& minISize = mStylePosition->MinISize(wm);
  const auto& maxISize = mStylePosition->MaxISize(wm);
  const auto& minBSize = mStylePosition->MinBSize(wm);
  const auto& maxBSize = mStylePosition->MaxBSize(wm);

  LogicalSize minWidgetSize(wm);
  if (mIsThemed) {
    nsPresContext* pc = mFrame->PresContext();
    const LayoutDeviceIntSize widget = pc->Theme()->GetMinimumWidgetSize(
        pc, mFrame, mStyleDisplay->EffectiveAppearance());

    // Convert themed widget's physical dimensions to logical coords.
    minWidgetSize = {
        wm, LayoutDeviceIntSize::ToAppUnits(widget, pc->AppUnitsPerDevPixel())};

    // GetMinimumWidgetSize() returns border-box; we need content-box.
    minWidgetSize -= ComputedLogicalBorderPadding(wm).Size(wm);
  }

  // NOTE: min-width:auto resolves to 0, except on a flex item. (But
  // even there, it's supposed to be ignored (i.e. treated as 0) until
  // the flex container explicitly resolves & considers it.)
  if (minISize.IsAuto()) {
    SetComputedMinISize(0);
  } else {
    SetComputedMinISize(
        ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, minISize));
  }

  if (mIsThemed) {
    SetComputedMinISize(std::max(ComputedMinISize(), minWidgetSize.ISize(wm)));
  }

  if (maxISize.IsNone()) {
    // Specified value of 'none'
    SetComputedMaxISize(NS_UNCONSTRAINEDSIZE);
  } else {
    SetComputedMaxISize(
        ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, maxISize));
  }

  // If the computed value of 'min-width' is greater than the value of
  // 'max-width', 'max-width' is set to the value of 'min-width'
  if (ComputedMinISize() > ComputedMaxISize()) {
    SetComputedMaxISize(ComputedMinISize());
  }

  // Check for percentage based values and a containing block height that
  // depends on the content height. Treat them like the initial value.
  // Likewise, check for calc() with percentages on internal table elements;
  // that's treated as the initial value too.
  const bool isInternalTableFrame = IsInternalTableFrame();
  const nscoord& bPercentageBasis = aCBSize.BSize(wm);
  auto BSizeBehavesAsInitialValue = [&](const auto& aBSize) {
    if (nsLayoutUtils::IsAutoBSize(aBSize, bPercentageBasis)) {
      return true;
    }
    if (isInternalTableFrame) {
      return aBSize.HasLengthAndPercentage();
    }
    return false;
  };

  // NOTE: min-height:auto resolves to 0, except on a flex item. (But
  // even there, it's supposed to be ignored (i.e. treated as 0) until
  // the flex container explicitly resolves & considers it.)
  if (BSizeBehavesAsInitialValue(minBSize)) {
    SetComputedMinBSize(0);
  } else {
    SetComputedMinBSize(ComputeBSizeValue(bPercentageBasis,
                                          mStylePosition->mBoxSizing,
                                          minBSize.AsLengthPercentage()));
  }

  if (mIsThemed) {
    SetComputedMinBSize(std::max(ComputedMinBSize(), minWidgetSize.BSize(wm)));
  }

  if (BSizeBehavesAsInitialValue(maxBSize)) {
    // Specified value of 'none'
    SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
  } else {
    SetComputedMaxBSize(ComputeBSizeValue(bPercentageBasis,
                                          mStylePosition->mBoxSizing,
                                          maxBSize.AsLengthPercentage()));
  }

  // If the computed value of 'min-height' is greater than the value of
  // 'max-height', 'max-height' is set to the value of 'min-height'
  if (ComputedMinBSize() > ComputedMaxBSize()) {
    SetComputedMaxBSize(ComputedMinBSize());
  }
}

bool ReflowInput::IsInternalTableFrame() const {
  return mFrame->IsTableRowGroupFrame() || mFrame->IsTableColGroupFrame() ||
         mFrame->IsTableRowFrame() || mFrame->IsTableCellFrame();
}