summaryrefslogtreecommitdiffstats
path: root/mozglue/baseprofiler/public/ProportionValue.h
blob: 61eb2766ec87c96b85e58a356da18abafd43a35d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ProportionValue_h
#define ProportionValue_h

#include "mozilla/Attributes.h"

#include <algorithm>
#include <limits>

namespace mozilla {

// Class storing a proportion value between 0 and 1, effectively 0% to 100%.
// The public interface deals with doubles, but internally the value is encoded
// in an integral type, so arithmetic operations are fast.
// It also supports an invalid value: Use MakeInvalid() to construct, it infects
// any operation, and gets converted to a signaling NaN.
class ProportionValue {
 public:
  using UnderlyingType = uint32_t;

  // Default-construct at 0%.
  constexpr ProportionValue()
      // This `noexcept` is necessary to avoid a build error when encapsulating
      // `ProportionValue` in `std::Atomic`:
      // "use of deleted function
      // 'constexpr std::atomic<mozilla::ProportionValue>::atomic()"
      // because the default `std::atomic<T>::atomic()` constructor is marked:
      // `noexcept(std::is_nothrow_default_constructible_v<T>)`
      // and therefore this default constructor here must be explicitly marked
      // `noexcept` as well.
      noexcept
      : mIntegralValue(0u) {}

  // Construct a ProportionValue with the given value, clamped to 0..1.
  // Note that it's constexpr, so construction from literal numbers should incur
  // no runtime costs.
  // If `aValue` is NaN, behavior is undefined! Use `MakeInvalid()` instead.
  constexpr explicit ProportionValue(double aValue)
      : mIntegralValue(UnderlyingType(std::clamp(aValue, 0.0, 1.0) * scMaxD)) {}

  [[nodiscard]] static constexpr ProportionValue MakeInvalid() {
    return ProportionValue(scInvalidU, Internal{});
  }

  [[nodiscard]] constexpr double ToDouble() const {
    return IsInvalid() ? std::numeric_limits<double>::signaling_NaN()
                       : (double(mIntegralValue) * scInvMaxD);
  }

  // Retrieve the underlying integral value, for storage or testing purposes.
  [[nodiscard]] constexpr UnderlyingType ToUnderlyingType() const {
    return mIntegralValue;
  };

  // Re-construct a ProportionValue from an underlying integral value.
  [[nodiscard]] static constexpr ProportionValue FromUnderlyingType(
      UnderlyingType aUnderlyingType) {
    return ProportionValue(
        (aUnderlyingType <= scMaxU) ? aUnderlyingType : scInvalidU, Internal{});
  }

  [[nodiscard]] constexpr bool IsExactlyZero() const {
    return mIntegralValue == 0u;
  }

  [[nodiscard]] constexpr bool IsExactlyOne() const {
    return mIntegralValue == scMaxU;
  }

  [[nodiscard]] constexpr bool IsValid() const {
    // Compare to the maximum value, not just exactly scInvalidU, to catch any
    // kind of invalid state.
    return mIntegralValue <= scMaxU;
  }
  [[nodiscard]] constexpr bool IsInvalid() const {
    // Compare to the maximum value, not just exactly scInvalidU, to catch any
    // kind of invalid state.
    return mIntegralValue > scMaxU;
  }

  // Strict comparisons based on the underlying integral value. Use
  // `CompareWithin` instead to make fuzzy comparisons.
  // `ProportionValue::MakeInvalid()`s are equal, and greater than anything
  // else; Best to avoid comparisons, and first use IsInvalid() instead.
#define OPERATOR_COMPARISON(CMP)                                  \
  [[nodiscard]] constexpr friend bool operator CMP(               \
      const ProportionValue& aLHS, const ProportionValue& aRHS) { \
    return aLHS.mIntegralValue CMP aRHS.mIntegralValue;           \
  }
  OPERATOR_COMPARISON(==)
  OPERATOR_COMPARISON(!=)
  OPERATOR_COMPARISON(<)
  OPERATOR_COMPARISON(<=)
  OPERATOR_COMPARISON(>)
  OPERATOR_COMPARISON(>=)
#undef OPERATOR_COMPARISON

  // Arithmetic operations + - *, all working on the underlying integral values
  // (i.e, no expensive floating-point operations are used), and always clamping
  // to 0..1 range. Invalid values are poisonous.

  [[nodiscard]] constexpr ProportionValue operator+(
      ProportionValue aRHS) const {
    return ProportionValue(
        (IsInvalid() || aRHS.IsInvalid())
            ? scInvalidU
            // Adding fixed-point values keep the same scale, so there is no
            // adjustment needed for that. [0,1]+[0,1]=[0,2], so we only need to
            // ensure that the result is capped at max 1, aka scMaxU:
            // a+b<=max <=> b<=max-a, so b is at maximum max-a.
            : (mIntegralValue +
               std::min(aRHS.mIntegralValue, scMaxU - mIntegralValue)),
        Internal{});
  }

  [[nodiscard]] constexpr ProportionValue operator-(
      ProportionValue aRHS) const {
    return ProportionValue(
        (IsInvalid() || aRHS.IsInvalid())
            ? scInvalidU
            // Subtracting fixed-point values keep the same scale, so there is
            // no adjustment needed for that. [0,1]-[0,1]=[-1,1], so we only
            // need to ensure that the value is positive:
            // a-b>=0 <=> b<=a, so b is at maximum a.
            : (mIntegralValue - std::min(aRHS.mIntegralValue, mIntegralValue)),
        Internal{});
  }

  [[nodiscard]] constexpr ProportionValue operator*(
      ProportionValue aRHS) const {
    // Type to hold the full result of multiplying two maximum numbers.
    using DoublePrecisionType = uint64_t;
    static_assert(sizeof(DoublePrecisionType) >= 2 * sizeof(UnderlyingType));
    return ProportionValue(
        (IsInvalid() || aRHS.IsInvalid())
            ? scInvalidU
            // Multiplying fixed-point values doubles the scale (2^31 -> 2^62),
            // so we need to adjust the result by dividing it by one scale
            // (which is optimized into a binary right-shift).
            : (UnderlyingType((DoublePrecisionType(mIntegralValue) *
                               DoublePrecisionType(aRHS.mIntegralValue)) /
                              DoublePrecisionType(scMaxU))),
        Internal{});
  }

  // Explicitly forbid divisions, they make little sense, and would almost
  // always return a clamped 100% (E.g.: 50% / 10% = 0.5 / 0.1 = 5 = 500%).
  [[nodiscard]] constexpr ProportionValue operator/(
      ProportionValue aRHS) const = delete;

  // Division by a positive integer value, useful to split an interval in equal
  // parts (with maybe some spare space at the end, because it is rounded down).
  // Division by 0 produces an invalid value.
  [[nodiscard]] constexpr ProportionValue operator/(uint32_t aDivisor) const {
    return ProportionValue((IsInvalid() || aDivisor == 0u)
                               ? scInvalidU
                               : (mIntegralValue / aDivisor),
                           Internal{});
  }

  // Multiplication by a positive integer value, useful as inverse of the
  // integer division above. But it may be lossy because the division is rounded
  // down, therefore: PV - u < (PV / u) * u <= PV.
  // Clamped to 100% max.
  [[nodiscard]] constexpr ProportionValue operator*(
      uint32_t aMultiplier) const {
    return ProportionValue(IsInvalid()
                               ? scInvalidU
                               : ((aMultiplier > scMaxU / mIntegralValue)
                                      ? scMaxU
                                      : (mIntegralValue * aMultiplier)),
                           Internal{});
  }

 private:
  // Tagged constructor for internal construction from the UnderlyingType, so
  // that it is never ambiguously considered in constructions from one number.
  struct Internal {};
  constexpr ProportionValue(UnderlyingType aIntegralValue, Internal)
      : mIntegralValue(aIntegralValue) {}

  // Use all but 1 bit for the fractional part.
  // Valid values can go from 0b0 (0%) up to 0b1000...00 (scMaxU aka 100%).
  static constexpr unsigned scFractionalBits = sizeof(UnderlyingType) * 8 - 1;
  // Maximum value corresponding to 1.0 or 100%.
  static constexpr UnderlyingType scMaxU = UnderlyingType(1u)
                                           << scFractionalBits;
  // This maximum value corresponding to 1.0 can also be seen as the scaling
  // factor from any [0,1] `double` value to the internal integral value.
  static constexpr double scMaxD = double(scMaxU);
  // The inverse can be used to convert the internal value back to [0,1].
  static constexpr double scInvMaxD = 1.0 / scMaxD;

  // Special value outside [0,max], used to construct invalid values.
  static constexpr UnderlyingType scInvalidU = ~UnderlyingType(0u);

  // Internal integral value, guaranteed to always be <= scMaxU, or scInvalidU.
  // This is effectively a fixed-point value using 1 bit for the integer part
  // and 31 bits for the fractional part.
  // It is roughly equal to the `double` value [0,1] multiplied by scMaxD.
  UnderlyingType mIntegralValue;
};

namespace literals {
inline namespace ProportionValue_literals {

// User-defined literal for integer percentages, e.g.: `10_pc`, `100_pc`
// (equivalent to `ProportionValue{0.1}` and `ProportionValue{1.0}`).
// Clamped to [0, 100]_pc.
[[nodiscard]] constexpr ProportionValue operator""_pc(
    unsigned long long int aPercentage) {
  return ProportionValue{
      double(std::clamp<unsigned long long int>(aPercentage, 0u, 100u)) /
      100.0};
}

// User-defined literal for non-integer percentages, e.g.: `12.3_pc`, `100.0_pc`
// (equivalent to `ProportionValue{0.123}` and `ProportionValue{1.0}`).
// Clamped to [0.0, 100.0]_pc.
[[nodiscard]] constexpr ProportionValue operator""_pc(long double aPercentage) {
  return ProportionValue{
      double(std::clamp<long double>(aPercentage, 0.0, 100.0)) / 100.0};
}

}  // namespace ProportionValue_literals
}  // namespace literals

}  // namespace mozilla

#endif  // ProportionValue_h