1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <memory>
#include "nss.h"
#include "pk11pub.h"
#include "pk11priv.h"
#include "secerr.h"
#include "sechash.h"
#include "nss_scoped_ptrs.h"
#include "testvectors/gcm-vectors.h"
#include "gtest/gtest.h"
#include "util.h"
namespace nss_test {
class Pkcs11AesGcmTest : public ::testing::TestWithParam<AesGcmKatValue> {
protected:
void RunTest(const AesGcmKatValue vec) {
std::vector<uint8_t> key = hex_string_to_bytes(vec.key);
std::vector<uint8_t> iv = hex_string_to_bytes(vec.iv);
std::vector<uint8_t> plaintext = hex_string_to_bytes(vec.plaintext);
std::vector<uint8_t> aad = hex_string_to_bytes(vec.additional_data);
std::vector<uint8_t> result = hex_string_to_bytes(vec.result);
bool invalid_ct = vec.invalid_ct;
bool invalid_iv = vec.invalid_iv;
std::string msg = "Test #" + std::to_string(vec.id) + " failed";
// Ignore GHASH-only vectors.
if (key.empty()) {
return;
}
// Prepare AEAD params.
CK_NSS_GCM_PARAMS gcm_params;
gcm_params.pIv = iv.data();
gcm_params.ulIvLen = iv.size();
gcm_params.pAAD = aad.data();
gcm_params.ulAADLen = aad.size();
gcm_params.ulTagBits = 128;
SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&gcm_params),
sizeof(gcm_params)};
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
SECItem key_item = {siBuffer, key.data(),
static_cast<unsigned int>(key.size())};
// Import key.
ScopedPK11SymKey sym_key(PK11_ImportSymKey(
slot.get(), mech, PK11_OriginUnwrap, CKA_ENCRYPT, &key_item, nullptr));
ASSERT_TRUE(!!sym_key) << msg;
// Encrypt with bogus parameters.
unsigned int output_len = 0;
std::vector<uint8_t> output(plaintext.size() + gcm_params.ulTagBits / 8);
// "maxout" must be at least "inlen + tagBytes", or, in this case:
// "output.size()" must be at least "plaintext.size() + tagBytes"
gcm_params.ulTagBits = 128;
SECStatus rv =
PK11_Encrypt(sym_key.get(), mech, ¶ms, output.data(), &output_len,
output.size() - 10, plaintext.data(), plaintext.size());
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, output_len);
// The valid values for tag size in AES_GCM are:
// 32, 64, 96, 104, 112, 120 and 128.
gcm_params.ulTagBits = 110;
rv = PK11_Encrypt(sym_key.get(), mech, ¶ms, output.data(), &output_len,
output.size(), plaintext.data(), plaintext.size());
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, output_len);
// Encrypt.
gcm_params.ulTagBits = 128;
rv = PK11_Encrypt(sym_key.get(), mech, ¶ms, output.data(), &output_len,
output.size(), plaintext.data(), plaintext.size());
if (invalid_iv) {
EXPECT_EQ(SECFailure, rv) << msg;
EXPECT_EQ(0U, output_len);
return;
}
EXPECT_EQ(SECSuccess, rv) << msg;
ASSERT_EQ(output_len, output.size()) << msg;
// Check ciphertext and tag.
if (invalid_ct) {
EXPECT_NE(result, output) << msg;
} else {
EXPECT_EQ(result, output) << msg;
}
// Decrypt.
unsigned int decrypted_len = 0;
// The PK11 AES API is stupid, it expects an explicit IV and thus wants
// a block more of available output memory.
std::vector<uint8_t> decrypted(output.size());
rv = PK11_Decrypt(sym_key.get(), mech, ¶ms, decrypted.data(),
&decrypted_len, decrypted.size(), output.data(),
output_len);
EXPECT_EQ(SECSuccess, rv) << msg;
ASSERT_EQ(decrypted_len, plaintext.size()) << msg;
// Check the plaintext.
EXPECT_EQ(plaintext,
std::vector<uint8_t>(decrypted.begin(),
decrypted.begin() + decrypted_len))
<< msg;
}
SECStatus EncryptWithIV(std::vector<uint8_t>& iv) {
// Generate a random key.
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ScopedPK11SymKey sym_key(
PK11_KeyGen(slot.get(), mech, nullptr, 16, nullptr));
EXPECT_TRUE(!!sym_key);
std::vector<uint8_t> data(17);
std::vector<uint8_t> output(33);
std::vector<uint8_t> aad(0);
// Prepare AEAD params.
CK_NSS_GCM_PARAMS gcm_params;
gcm_params.pIv = iv.data();
gcm_params.ulIvLen = iv.size();
gcm_params.pAAD = aad.data();
gcm_params.ulAADLen = aad.size();
gcm_params.ulTagBits = 128;
SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&gcm_params),
sizeof(gcm_params)};
// Try to encrypt.
unsigned int output_len = 0;
return PK11_Encrypt(sym_key.get(), mech, ¶ms, output.data(),
&output_len, output.size(), data.data(), data.size());
}
SECStatus MessageInterfaceTest(int iterations, int ivFixedBits,
CK_GENERATOR_FUNCTION ivGen,
PRBool separateTag) {
// Generate a random key.
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
EXPECT_NE(nullptr, slot);
ScopedPK11SymKey sym_key(
PK11_KeyGen(slot.get(), mech, nullptr, 16, nullptr));
EXPECT_NE(nullptr, sym_key);
const int kTagSize = 16;
int cipher_simulated_size;
int output_len_message = 0;
int output_len_simulated = 0;
unsigned int output_len_v24 = 0;
std::vector<uint8_t> plainIn(17);
std::vector<uint8_t> plainOut_message(17);
std::vector<uint8_t> plainOut_simulated(17);
std::vector<uint8_t> plainOut_v24(17);
std::vector<uint8_t> iv(16);
std::vector<uint8_t> iv_init(16);
std::vector<uint8_t> iv_simulated(16);
std::vector<uint8_t> cipher_message(33);
std::vector<uint8_t> cipher_simulated(33);
std::vector<uint8_t> cipher_v24(33);
std::vector<uint8_t> aad(16);
std::vector<uint8_t> tag_message(16);
std::vector<uint8_t> tag_simulated(16);
// Prepare AEAD v2.40 params.
CK_GCM_PARAMS_V3 gcm_params;
gcm_params.pIv = iv.data();
gcm_params.ulIvLen = iv.size();
gcm_params.ulIvBits = iv.size() * 8;
gcm_params.pAAD = aad.data();
gcm_params.ulAADLen = aad.size();
gcm_params.ulTagBits = kTagSize * 8;
// Prepare AEAD MESSAGE params.
CK_GCM_MESSAGE_PARAMS gcm_message_params;
gcm_message_params.pIv = iv.data();
gcm_message_params.ulIvLen = iv.size();
gcm_message_params.ulTagBits = kTagSize * 8;
gcm_message_params.ulIvFixedBits = ivFixedBits;
gcm_message_params.ivGenerator = ivGen;
if (separateTag) {
gcm_message_params.pTag = tag_message.data();
} else {
gcm_message_params.pTag = cipher_message.data() + plainIn.size();
}
// Prepare AEAD MESSAGE params for simulated case
CK_GCM_MESSAGE_PARAMS gcm_simulated_params;
gcm_simulated_params = gcm_message_params;
if (separateTag) {
// The simulated case, we have to allocate temp bufs for separate
// tags, make sure that works in both the encrypt and the decrypt
// cases.
gcm_simulated_params.pTag = tag_simulated.data();
cipher_simulated_size = cipher_simulated.size() - kTagSize;
} else {
gcm_simulated_params.pTag = cipher_simulated.data() + plainIn.size();
cipher_simulated_size = cipher_simulated.size();
}
/* when we are using CKG_GENERATE_RANDOM, don't independently generate
* the IV in the simulated case. Since the IV's would be random, none of
* the generated results would be the same. Just use the IV we generated
* in message interface */
if (ivGen == CKG_GENERATE_RANDOM) {
gcm_simulated_params.ivGenerator = CKG_NO_GENERATE;
} else {
gcm_simulated_params.pIv = iv_simulated.data();
}
SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&gcm_params),
sizeof(gcm_params)};
SECItem empty = {siBuffer, NULL, 0};
// initialize our plain text, IV and aad.
EXPECT_EQ(PK11_GenerateRandom(plainIn.data(), plainIn.size()), SECSuccess);
EXPECT_EQ(PK11_GenerateRandom(aad.data(), aad.size()), SECSuccess);
EXPECT_EQ(PK11_GenerateRandom(iv_init.data(), iv_init.size()), SECSuccess);
iv_simulated = iv_init; // vector assignment actually copies data
iv = iv_init;
// Initialize message encrypt context
ScopedPK11Context encrypt_message_context(PK11_CreateContextBySymKey(
mech, CKA_NSS_MESSAGE | CKA_ENCRYPT, sym_key.get(), &empty));
EXPECT_NE(nullptr, encrypt_message_context);
if (!encrypt_message_context) {
return SECFailure;
}
EXPECT_FALSE(_PK11_ContextGetAEADSimulation(encrypt_message_context.get()));
// Initialize simulated encrypt context
ScopedPK11Context encrypt_simulated_context(PK11_CreateContextBySymKey(
mech, CKA_NSS_MESSAGE | CKA_ENCRYPT, sym_key.get(), &empty));
EXPECT_NE(nullptr, encrypt_simulated_context);
if (!encrypt_simulated_context) {
return SECFailure;
}
EXPECT_EQ(SECSuccess,
_PK11_ContextSetAEADSimulation(encrypt_simulated_context.get()));
// Initialize message decrypt context
ScopedPK11Context decrypt_message_context(PK11_CreateContextBySymKey(
mech, CKA_NSS_MESSAGE | CKA_DECRYPT, sym_key.get(), &empty));
EXPECT_NE(nullptr, decrypt_message_context);
if (!decrypt_message_context) {
return SECFailure;
}
EXPECT_FALSE(_PK11_ContextGetAEADSimulation(decrypt_message_context.get()));
// Initialize simulated decrypt context
ScopedPK11Context decrypt_simulated_context(PK11_CreateContextBySymKey(
mech, CKA_NSS_MESSAGE | CKA_DECRYPT, sym_key.get(), &empty));
EXPECT_NE(nullptr, decrypt_simulated_context);
if (!decrypt_simulated_context) {
return SECFailure;
}
EXPECT_EQ(SECSuccess,
_PK11_ContextSetAEADSimulation(decrypt_simulated_context.get()));
// Now walk down our iterations. Each method of calculating the operation
// should agree at each step.
for (int i = 0; i < iterations; i++) {
SECStatus rv;
/* recopy the initial vector each time */
iv_simulated = iv_init;
iv = iv_init;
// First encrypt. We don't test the error code here, because
// we may be testing error conditions with this function (namely
// do we fail if we try to generate to many Random IV's).
rv =
PK11_AEADRawOp(encrypt_message_context.get(), &gcm_message_params,
sizeof(gcm_message_params), aad.data(), aad.size(),
cipher_message.data(), &output_len_message,
cipher_message.size(), plainIn.data(), plainIn.size());
if (rv != SECSuccess) {
return rv;
}
rv =
PK11_AEADRawOp(encrypt_simulated_context.get(), &gcm_simulated_params,
sizeof(gcm_simulated_params), aad.data(), aad.size(),
cipher_simulated.data(), &output_len_simulated,
cipher_simulated_size, plainIn.data(), plainIn.size());
if (rv != SECSuccess) {
return rv;
}
// make sure simulated and message is the same
EXPECT_EQ(output_len_message, output_len_simulated);
EXPECT_EQ(0, memcmp(cipher_message.data(), cipher_simulated.data(),
output_len_message));
EXPECT_EQ(0, memcmp(gcm_message_params.pTag, gcm_simulated_params.pTag,
kTagSize));
EXPECT_EQ(0, memcmp(iv.data(), gcm_simulated_params.pIv, iv.size()));
// make sure v2.40 is the same. it inherits the generated iv from
// encrypt_message_context.
EXPECT_EQ(SECSuccess,
PK11_Encrypt(sym_key.get(), mech, ¶ms, cipher_v24.data(),
&output_len_v24, cipher_v24.size(), plainIn.data(),
plainIn.size()));
EXPECT_EQ(output_len_message, (int)output_len_v24 - kTagSize);
EXPECT_EQ(0, memcmp(cipher_message.data(), cipher_v24.data(),
output_len_message));
EXPECT_EQ(0, memcmp(gcm_message_params.pTag,
cipher_v24.data() + output_len_message, kTagSize));
// now make sure we can decrypt
EXPECT_EQ(SECSuccess,
PK11_AEADRawOp(decrypt_message_context.get(),
&gcm_message_params, sizeof(gcm_message_params),
aad.data(), aad.size(), plainOut_message.data(),
&output_len_message, plainOut_message.size(),
cipher_message.data(), output_len_message));
EXPECT_EQ(output_len_message, (int)plainIn.size());
EXPECT_EQ(
0, memcmp(plainOut_message.data(), plainIn.data(), plainIn.size()));
EXPECT_EQ(
SECSuccess,
PK11_AEADRawOp(decrypt_simulated_context.get(), &gcm_simulated_params,
sizeof(gcm_simulated_params), aad.data(), aad.size(),
plainOut_simulated.data(), &output_len_simulated,
plainOut_simulated.size(), cipher_message.data(),
output_len_simulated));
EXPECT_EQ(output_len_simulated, (int)plainIn.size());
EXPECT_EQ(
0, memcmp(plainOut_simulated.data(), plainIn.data(), plainIn.size()));
if (separateTag) {
// in the separateTag case, we need to copy the tag back to the
// end of the cipher_message.data() before using the v2.4 interface
memcpy(cipher_message.data() + output_len_message,
gcm_message_params.pTag, kTagSize);
}
EXPECT_EQ(SECSuccess,
PK11_Decrypt(sym_key.get(), mech, ¶ms, plainOut_v24.data(),
&output_len_v24, plainOut_v24.size(),
cipher_message.data(), output_len_v24));
EXPECT_EQ(output_len_v24, plainIn.size());
EXPECT_EQ(0, memcmp(plainOut_v24.data(), plainIn.data(), plainIn.size()));
}
return SECSuccess;
}
const CK_MECHANISM_TYPE mech = CKM_AES_GCM;
};
TEST_P(Pkcs11AesGcmTest, TestVectors) { RunTest(GetParam()); }
INSTANTIATE_TEST_SUITE_P(NISTTestVector, Pkcs11AesGcmTest,
::testing::ValuesIn(kGcmKatValues));
INSTANTIATE_TEST_SUITE_P(WycheproofTestVector, Pkcs11AesGcmTest,
::testing::ValuesIn(kGcmWycheproofVectors));
TEST_F(Pkcs11AesGcmTest, ZeroLengthIV) {
std::vector<uint8_t> iv(0);
EXPECT_EQ(SECFailure, EncryptWithIV(iv));
}
TEST_F(Pkcs11AesGcmTest, AllZeroIV) {
std::vector<uint8_t> iv(16, 0);
EXPECT_EQ(SECSuccess, EncryptWithIV(iv));
}
TEST_F(Pkcs11AesGcmTest, TwelveByteZeroIV) {
std::vector<uint8_t> iv(12, 0);
EXPECT_EQ(SECSuccess, EncryptWithIV(iv));
}
// basic message interface it's the most common configuration
TEST_F(Pkcs11AesGcmTest, MessageInterfaceBasic) {
EXPECT_EQ(SECSuccess,
MessageInterfaceTest(16, 0, CKG_GENERATE_COUNTER, PR_FALSE));
}
// basic interface, but return the tags in a separate buffer. This triggers
// different behaviour in the simulated case, which has to buffer the
// intermediate values in a separate buffer.
TEST_F(Pkcs11AesGcmTest, MessageInterfaceSeparateTags) {
EXPECT_EQ(SECSuccess,
MessageInterfaceTest(16, 0, CKG_GENERATE_COUNTER, PR_TRUE));
}
// test the case where we are only allowing a portion of the iv to be generated
TEST_F(Pkcs11AesGcmTest, MessageInterfaceIVMask) {
EXPECT_EQ(SECSuccess,
MessageInterfaceTest(16, 124, CKG_GENERATE_COUNTER, PR_FALSE));
}
// test the case where we using the tls1.3 iv generation
TEST_F(Pkcs11AesGcmTest, MessageInterfaceXorCounter) {
EXPECT_EQ(SECSuccess,
MessageInterfaceTest(16, 0, CKG_GENERATE_COUNTER_XOR, PR_FALSE));
}
// test the case where we overflow the counter (requires restricted iv)
// 128-124 = 4 bits;
TEST_F(Pkcs11AesGcmTest, MessageInterfaceCounterOverflow) {
EXPECT_EQ(SECFailure,
MessageInterfaceTest(17, 124, CKG_GENERATE_COUNTER, PR_FALSE));
}
// overflow the tla1.2 iv case
TEST_F(Pkcs11AesGcmTest, MessageInterfaceXorCounterOverflow) {
EXPECT_EQ(SECFailure,
MessageInterfaceTest(17, 124, CKG_GENERATE_COUNTER_XOR, PR_FALSE));
}
// test random generation of the IV (uses an aligned restricted iv)
TEST_F(Pkcs11AesGcmTest, MessageInterfaceRandomIV) {
EXPECT_EQ(SECSuccess,
MessageInterfaceTest(16, 56, CKG_GENERATE_RANDOM, PR_FALSE));
}
// test the case where we try to generate too many random IVs for the size of
// our our restricted IV (notice for counters, we can generate 16 IV with
// 4 bits, but for random we need at least 72 bits to generate 16 IVs).
// 128-56 = 72 bits
TEST_F(Pkcs11AesGcmTest, MessageInterfaceRandomOverflow) {
EXPECT_EQ(SECFailure,
MessageInterfaceTest(17, 56, CKG_GENERATE_RANDOM, PR_FALSE));
}
} // namespace nss_test
|