1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include <cstdint>
#include <memory>
#include "cryptohi.h"
#include "cpputil.h"
#include "databuffer.h"
#include "json_reader.h"
#include "gtest/gtest.h"
#include "nss.h"
#include "nss_scoped_ptrs.h"
#include "pk11pub.h"
#include "secerr.h"
#include "sechash.h"
#include "pk11_signature_test.h"
#include "testvectors/rsa_signature-vectors.h"
namespace nss_test {
CK_MECHANISM_TYPE RsaHashToComboMech(SECOidTag hash) {
switch (hash) {
case SEC_OID_SHA1:
return CKM_SHA1_RSA_PKCS;
case SEC_OID_SHA224:
return CKM_SHA224_RSA_PKCS;
case SEC_OID_SHA256:
return CKM_SHA256_RSA_PKCS;
case SEC_OID_SHA384:
return CKM_SHA384_RSA_PKCS;
case SEC_OID_SHA512:
return CKM_SHA512_RSA_PKCS;
default:
break;
}
return CKM_INVALID_MECHANISM;
}
class Pkcs11RsaBaseTest : public Pk11SignatureTest {
protected:
Pkcs11RsaBaseTest(SECOidTag hashOid)
: Pk11SignatureTest(CKM_RSA_PKCS, hashOid, RsaHashToComboMech(hashOid)) {}
void Verify(const RsaSignatureTestVector& vec) {
Pkcs11SignatureTestParams params = {
DataBuffer(), DataBuffer(vec.public_key.data(), vec.public_key.size()),
DataBuffer(vec.msg.data(), vec.msg.size()),
DataBuffer(vec.sig.data(), vec.sig.size())};
Pk11SignatureTest::Verify(params, (bool)vec.valid);
}
};
class Pkcs11RsaPkcs1WycheproofTest : public ::testing::Test {
protected:
static void ReadTestAttr(RsaSignatureTestVector& t, const std::string& n,
JsonReader& r) {
if (n == "msg") {
t.msg = r.ReadHex();
} else if (n == "sig") {
t.sig = r.ReadHex();
} else {
FAIL() << "unknown test key: " << n;
}
}
void RunGroup(JsonReader& r) {
std::vector<RsaSignatureTestVector> tests;
std::vector<uint8_t> public_key;
SECOidTag hash_oid = SEC_OID_UNKNOWN;
uint64_t keysize = 0;
while (r.NextItem()) {
std::string n = r.ReadLabel();
if (n == "") {
break;
}
if (n == "e" || n == "keyAsn" || n == "keyJwk" || n == "keyPem" ||
n == "n") {
r.SkipValue();
} else if (n == "keyDer") {
public_key = r.ReadHex();
} else if (n == "keysize") {
keysize = r.ReadInt();
} else if (n == "type") {
ASSERT_EQ("RsassaPkcs1Verify", r.ReadString());
} else if (n == "sha") {
hash_oid = r.ReadHash();
} else if (n == "tests") {
WycheproofReadTests(
r, &tests, ReadTestAttr, false,
[keysize](RsaSignatureTestVector& t, const std::string& result,
const std::vector<std::string>& flags) {
if (result == "acceptable" && keysize >= 1024 &&
std::find_if(flags.begin(), flags.end(), [](std::string v) {
return v == "SmallModulus" || v == "SmallPublicKey";
}) != flags.end()) {
t.valid = true;
};
});
} else {
FAIL() << "unknown group label: " << n;
}
}
for (auto& t : tests) {
Pkcs11RsaBaseTestWrap test(hash_oid);
t.hash_oid = hash_oid;
t.public_key = public_key;
test.Run(t);
}
}
private:
class Pkcs11RsaBaseTestWrap : public Pkcs11RsaBaseTest {
public:
Pkcs11RsaBaseTestWrap(SECOidTag hash) : Pkcs11RsaBaseTest(hash) {}
void TestBody() {}
void Verify1(const RsaSignatureTestVector& vec) {
SECItem spki_item = {siBuffer, toUcharPtr(vec.public_key.data()),
static_cast<unsigned int>(vec.public_key.size())};
ScopedCERTSubjectPublicKeyInfo cert_spki(
SECKEY_DecodeDERSubjectPublicKeyInfo(&spki_item));
ASSERT_TRUE(cert_spki);
ScopedSECKEYPublicKey pub_key(SECKEY_ExtractPublicKey(cert_spki.get()));
ASSERT_TRUE(pub_key);
DataBuffer hash;
hash.Allocate(static_cast<size_t>(HASH_ResultLenByOidTag(vec.hash_oid)));
SECStatus rv = PK11_HashBuf(vec.hash_oid, toUcharPtr(hash.data()),
toUcharPtr(vec.msg.data()), vec.msg.size());
ASSERT_EQ(rv, SECSuccess);
// Verify.
SECItem hash_item = {siBuffer, toUcharPtr(hash.data()),
static_cast<unsigned int>(hash.len())};
SECItem sig_item = {siBuffer, toUcharPtr(vec.sig.data()),
static_cast<unsigned int>(vec.sig.size())};
rv = VFY_VerifyDigestDirect(&hash_item, pub_key.get(), &sig_item,
SEC_OID_PKCS1_RSA_ENCRYPTION, vec.hash_oid,
nullptr);
EXPECT_EQ(rv, vec.valid ? SECSuccess : SECFailure);
};
void Run(const RsaSignatureTestVector& vec) {
/* Using VFY_ interface */
Verify1(vec);
/* Using PKCS #11 interface */
setSkipRaw(true);
Verify(vec);
}
};
};
/* Test that PKCS #1 v1.5 verification requires a minimum of 8B
* of padding, per-RFC3447. The padding formula is
* `pad_len = em_len - t_len - 3`, where em_len is the octet length
* of the RSA modulus and t_len is the length of the `DigestInfo ||
* Hash(message)` sequence. For SHA512, t_len is 83. We'll tweak the
* modulus size to test with a pad_len of 8 (valid) and 6 (invalid):
* em_len = `8 + 83 + 3` = `94*8` = 752b
* em_len = `6 + 83 + 3` = `92*8` = 736b
* Use 6 as the invalid value since modLen % 16 must be zero.
*/
TEST(RsaPkcs1Test, Pkcs1MinimumPadding) {
#define RSA_SHORT_KEY_LENGTH 736
/* if our minimum supported key length is big enough to handle
* our largest Hash function, we can't test a short length */
#if RSA_MIN_MODULUS_BITS < RSA_SHORT_KEY_LENGTH
const size_t kRsaShortKeyBits = RSA_SHORT_KEY_LENGTH;
const size_t kRsaKeyBits = 752;
static const std::vector<uint8_t> kMsg{'T', 'E', 'S', 'T'};
static const std::vector<uint8_t> kSha512DigestInfo{
0x30, 0x51, 0x30, 0x0D, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01,
0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
static const std::vector<uint8_t> kMsgSha512{
0x7B, 0xFA, 0x95, 0xA6, 0x88, 0x92, 0x4C, 0x47, 0xC7, 0xD2, 0x23,
0x81, 0xF2, 0x0C, 0xC9, 0x26, 0xF5, 0x24, 0xBE, 0xAC, 0xB1, 0x3F,
0x84, 0xE2, 0x03, 0xD4, 0xBD, 0x8C, 0xB6, 0xBA, 0x2F, 0xCE, 0x81,
0xC5, 0x7A, 0x5F, 0x05, 0x9B, 0xF3, 0xD5, 0x09, 0x92, 0x64, 0x87,
0xBD, 0xE9, 0x25, 0xB3, 0xBC, 0xEE, 0x06, 0x35, 0xE4, 0xF7, 0xBA,
0xEB, 0xA0, 0x54, 0xE5, 0xDB, 0xA6, 0x96, 0xB2, 0xBF};
ScopedSECKEYPrivateKey short_priv, good_priv;
ScopedSECKEYPublicKey short_pub, good_pub;
PK11RSAGenParams rsa_params;
rsa_params.keySizeInBits = kRsaShortKeyBits;
rsa_params.pe = 65537;
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ASSERT_TRUE(slot);
SECKEYPublicKey* p_pub_tmp = nullptr;
short_priv.reset(PK11_GenerateKeyPair(slot.get(), CKM_RSA_PKCS_KEY_PAIR_GEN,
&rsa_params, &p_pub_tmp, false, false,
nullptr));
short_pub.reset(p_pub_tmp);
rsa_params.keySizeInBits = kRsaKeyBits;
good_priv.reset(PK11_GenerateKeyPair(slot.get(), CKM_RSA_PKCS_KEY_PAIR_GEN,
&rsa_params, &p_pub_tmp, false, false,
nullptr));
good_pub.reset(p_pub_tmp);
size_t em_len = kRsaShortKeyBits / 8;
size_t t_len = kSha512DigestInfo.size() + kMsgSha512.size();
size_t pad_len = em_len - t_len - 3;
ASSERT_EQ(6U, pad_len);
std::vector<uint8_t> invalid_pkcs;
invalid_pkcs.push_back(0x00);
invalid_pkcs.push_back(0x01);
invalid_pkcs.insert(invalid_pkcs.end(), pad_len, 0xff);
invalid_pkcs.insert(invalid_pkcs.end(), 1, 0x00);
invalid_pkcs.insert(invalid_pkcs.end(), kSha512DigestInfo.begin(),
kSha512DigestInfo.end());
invalid_pkcs.insert(invalid_pkcs.end(), kMsgSha512.begin(), kMsgSha512.end());
ASSERT_EQ(em_len, invalid_pkcs.size());
// Sign it indirectly. Signing functions check for a proper pad_len.
std::vector<uint8_t> sig(em_len);
uint32_t sig_len;
SECStatus rv =
PK11_PubDecryptRaw(short_priv.get(), sig.data(), &sig_len, sig.size(),
invalid_pkcs.data(), invalid_pkcs.size());
EXPECT_EQ(SECSuccess, rv);
// Verify it.
DataBuffer hash;
hash.Allocate(static_cast<size_t>(HASH_ResultLenByOidTag(SEC_OID_SHA512)));
rv = PK11_HashBuf(SEC_OID_SHA512, toUcharPtr(hash.data()),
toUcharPtr(kMsg.data()), kMsg.size());
ASSERT_EQ(rv, SECSuccess);
SECItem hash_item = {siBuffer, toUcharPtr(hash.data()),
static_cast<unsigned int>(hash.len())};
SECItem sig_item = {siBuffer, toUcharPtr(sig.data()), sig_len};
rv = VFY_VerifyDigestDirect(&hash_item, short_pub.get(), &sig_item,
SEC_OID_PKCS1_RSA_ENCRYPTION, SEC_OID_SHA512,
nullptr);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(SEC_ERROR_BAD_SIGNATURE, PORT_GetError());
// Repeat the test with the sufficiently-long key.
em_len = kRsaKeyBits / 8;
t_len = kSha512DigestInfo.size() + kMsgSha512.size();
pad_len = em_len - t_len - 3;
ASSERT_EQ(8U, pad_len);
std::vector<uint8_t> valid_pkcs;
valid_pkcs.push_back(0x00);
valid_pkcs.push_back(0x01);
valid_pkcs.insert(valid_pkcs.end(), pad_len, 0xff);
valid_pkcs.insert(valid_pkcs.end(), 1, 0x00);
valid_pkcs.insert(valid_pkcs.end(), kSha512DigestInfo.begin(),
kSha512DigestInfo.end());
valid_pkcs.insert(valid_pkcs.end(), kMsgSha512.begin(), kMsgSha512.end());
ASSERT_EQ(em_len, valid_pkcs.size());
// Sign it the same way as above (even though we could use sign APIs now).
sig.resize(em_len);
rv = PK11_PubDecryptRaw(good_priv.get(), sig.data(), &sig_len, sig.size(),
valid_pkcs.data(), valid_pkcs.size());
EXPECT_EQ(SECSuccess, rv);
// Verify it.
sig_item = {siBuffer, toUcharPtr(sig.data()), sig_len};
rv = VFY_VerifyDigestDirect(&hash_item, good_pub.get(), &sig_item,
SEC_OID_PKCS1_RSA_ENCRYPTION, SEC_OID_SHA512,
nullptr);
EXPECT_EQ(SECSuccess, rv);
#else
GTEST_SKIP();
#endif
}
TEST(RsaPkcs1Test, RequireNullParameter) {
// The test vectors may be verified with:
//
// openssl rsautl -keyform der -pubin -inkey spki.bin -in sig.bin | der2ascii
// openssl rsautl -keyform der -pubin -inkey spki.bin -in sig2.bin | der2ascii
// Import public key.
SECItem spki_item = {siBuffer, toUcharPtr(kSpki), sizeof(kSpki)};
ScopedCERTSubjectPublicKeyInfo cert_spki(
SECKEY_DecodeDERSubjectPublicKeyInfo(&spki_item));
ASSERT_TRUE(cert_spki);
ScopedSECKEYPublicKey pub_key(SECKEY_ExtractPublicKey(cert_spki.get()));
ASSERT_TRUE(pub_key);
SECItem hash = {siBuffer, toUcharPtr(kHash), sizeof(kHash)};
// kSignature is a valid signature.
SECItem sig_item = {siBuffer, toUcharPtr(kSignature), sizeof(kSignature)};
SECStatus rv = VFY_VerifyDigestDirect(&hash, pub_key.get(), &sig_item,
SEC_OID_PKCS1_RSA_ENCRYPTION,
SEC_OID_SHA256, nullptr);
EXPECT_EQ(SECSuccess, rv);
// kSignatureInvalid is not.
sig_item = {siBuffer, toUcharPtr(kSignatureInvalid),
sizeof(kSignatureInvalid)};
rv = VFY_VerifyDigestDirect(&hash, pub_key.get(), &sig_item,
SEC_OID_PKCS1_RSA_ENCRYPTION, SEC_OID_SHA256,
nullptr);
#ifdef NSS_PKCS1_AllowMissingParameters
EXPECT_EQ(SECSuccess, rv);
#else
EXPECT_EQ(SECFailure, rv);
#endif
}
TEST_F(Pkcs11RsaPkcs1WycheproofTest, Pkcs11RsaPkcs1WycheproofTest) {
WycheproofHeader("rsa_signature", "RSASSA-PKCS1-v1_5",
"rsassa_pkcs1_verify_schema.json",
[this](JsonReader& r) { RunGroup(r); });
}
} // namespace nss_test
|