1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
<!DOCTYPE html>
<html>
<head>
<title>
Test Convolver Channel Outputs for Response with 1 channel
</title>
<script src="/resources/testharness.js"></script>
<script src="/resources/testharnessreport.js"></script>
<script src="/webaudio/resources/audit-util.js"></script>
<script src="/webaudio/resources/audit.js"></script>
</head>
<body>
<script id="layout-test-code">
// Test various convolver configurations when the convolver response has
// one channel (mono).
// This is somewhat arbitrary. It is the minimum value for which tests
// pass with both FFmpeg and KISS FFT implementations for 256 points.
// The value was similar for each implementation.
const absoluteThreshold = Math.pow(2, -21);
// Fairly arbitrary sample rate, except that we want the rate to be a
// power of two so that 1/sampleRate is exactly representable as a
// single-precision float.
let sampleRate = 8192;
// A fairly arbitrary number of frames, except the number of frames should
// be more than a few render quanta.
let renderFrames = 10 * 128;
let audit = Audit.createTaskRunner();
// Convolver response
let response;
audit.define(
{
label: 'initialize',
description: 'Convolver response with one channel'
},
(task, should) => {
// Convolver response
should(
() => {
response = new AudioBuffer(
{numberOfChannels: 1, length: 2, sampleRate: sampleRate});
response.getChannelData(0)[1] = 1;
},
'new AudioBuffer({numberOfChannels: 1, length: 2, sampleRate: ' +
sampleRate + '})')
.notThrow();
task.done();
});
audit.define(
{label: '1-channel input', description: 'produces 1-channel output'},
(task, should) => {
// Create a 3-channel context: channel 0 = convolver under test,
// channel 1: test that convolver output is not stereo, channel 2:
// expected output. The context MUST be discrete so that the
// channels don't get mixed in some unexpected way.
let context = new OfflineAudioContext(3, renderFrames, sampleRate);
context.destination.channelInterpretation = 'discrete';
let src = new OscillatorNode(context);
let conv = new ConvolverNode(
context, {disableNormalization: true, buffer: response});
// Splitter node to verify that the output of the convolver is mono.
// channelInterpretation must be 'discrete' so we don't do any
// mixing of the input to the node.
let splitter = new ChannelSplitterNode(
context,
{numberOfOutputs: 2, channelInterpretation: 'discrete'});
// Final merger to feed all of the individual channels into the
// destination.
let merger = new ChannelMergerNode(context, {numberOfInputs: 3});
src.connect(conv).connect(splitter);
splitter.connect(merger, 0, 0);
splitter.connect(merger, 1, 1);
// The convolver response is a 1-sample delay. Use a delay node to
// implement this.
let delay =
new DelayNode(context, {delayTime: 1 / context.sampleRate});
src.connect(delay);
delay.connect(merger, 0, 2);
merger.connect(context.destination);
src.start();
context.startRendering()
.then(audioBuffer => {
// Extract out the three channels
let actual = audioBuffer.getChannelData(0);
let c1 = audioBuffer.getChannelData(1);
let expected = audioBuffer.getChannelData(2);
// c1 is expected to be zero.
should(c1, '1: Channel 1').beConstantValueOf(0);
// The expected and actual results should be identical
should(actual, 'Convolver output')
.beCloseToArray(expected,
{absoluteThreshold: absoluteThreshold});
})
.then(() => task.done());
});
audit.define(
{label: '2-channel input', description: 'produces 2-channel output'},
(task, should) => {
downMixTest({numberOfInputs: 2, prefix: '2'}, should)
.then(() => task.done());
});
audit.define(
{
label: '3-channel input',
description: '3->2 downmix producing 2-channel output'
},
(task, should) => {
downMixTest({numberOfInputs: 3, prefix: '3'}, should)
.then(() => task.done());
});
audit.define(
{
label: '4-channel input',
description: '4->2 downmix producing 2-channel output'
},
(task, should) => {
downMixTest({numberOfInputs: 4, prefix: '4'}, should)
.then(() => task.done());
});
audit.define(
{
label: '5.1-channel input',
description: '5.1->2 downmix producing 2-channel output'
},
(task, should) => {
// Scale tolerance by maximum amplitude expected in down-mix
// output.
let threshold = (1.0 + Math.sqrt(0.5) * 2) * absoluteThreshold;
downMixTest({numberOfInputs: 6, prefix: '5.1',
absoluteThreshold: threshold}, should)
.then(() => task.done());
});
audit.define(
{
label: '3-channel input, explicit',
description: '3->2 explicit downmix producing 2-channel output'
},
(task, should) => {
downMixTest(
{
channelCountMode: 'explicit',
numberOfInputs: 3,
prefix: '3 chan downmix explicit'
},
should)
.then(() => task.done());
});
audit.define(
{
label: '4-channel input, explicit',
description: '4->2 explicit downmix producing 2-channel output'
},
(task, should) => {
downMixTest(
{
channelCountMode: 'explicit',
numberOfInputs: 4,
prefix: '4 chan downmix explicit'
},
should)
.then(() => task.done());
});
audit.define(
{
label: '5.1-channel input, explicit',
description: '5.1->2 explicit downmix producing 2-channel output'
},
(task, should) => {
// Scale tolerance by maximum amplitude expected in down-mix
// output.
let threshold = (1.0 + Math.sqrt(0.5) * 2) * absoluteThreshold;
downMixTest(
{
channelCountMode: 'explicit',
numberOfInputs: 6,
prefix: '5.1 chan downmix explicit',
absoluteThreshold: threshold
},
should)
.then(() => task.done());
});
audit.define(
{
label: 'mono-upmix-explicit',
description: '1->2 upmix, count mode explicit'
},
(task, should) => {
upMixTest(should, {channelCountMode: 'explicit'})
.then(buffer => {
let length = buffer.length;
let input = buffer.getChannelData(0);
let out0 = buffer.getChannelData(1);
let out1 = buffer.getChannelData(2);
// The convolver is basically a one-sample delay. Verify that
// that each channel is delayed by one sample.
should(out0.slice(1), '1->2 explicit upmix: channel 0')
.beCloseToArray(
input.slice(0, length - 1),
{absoluteThreshold: absoluteThreshold});
should(out1.slice(1), '1->2 explicit upmix: channel 1')
.beCloseToArray(
input.slice(0, length - 1),
{absoluteThreshold: absoluteThreshold});
})
.then(() => task.done());
});
audit.define(
{
label: 'mono-upmix-clamped-max',
description: '1->2 upmix, count mode clamped-max'
},
(task, should) => {
upMixTest(should, {channelCountMode: 'clamped-max'})
.then(buffer => {
let length = buffer.length;
let input = buffer.getChannelData(0);
let out0 = buffer.getChannelData(1);
let out1 = buffer.getChannelData(2);
// The convolver is basically a one-sample delay. With a mono
// input, the count set to 2, and a mode of 'clamped-max', the
// output should be mono
should(out0.slice(1), '1->2 clamped-max upmix: channel 0')
.beCloseToArray(
input.slice(0, length - 1),
{absoluteThreshold: absoluteThreshold});
should(out1, '1->2 clamped-max upmix: channel 1')
.beConstantValueOf(0);
})
.then(() => task.done());
});
function downMixTest(options, should) {
// Create an 4-channel offline context. The first two channels are for
// the stereo output of the convolver and the next two channels are for
// the reference stereo signal.
let context = new OfflineAudioContext(4, renderFrames, sampleRate);
context.destination.channelInterpretation = 'discrete';
// Create oscillators for use as the input. The type and frequency is
// arbitrary except that oscillators must be different.
let src = new Array(options.numberOfInputs);
for (let k = 0; k < src.length; ++k) {
src[k] = new OscillatorNode(
context, {type: 'square', frequency: 440 + 220 * k});
}
// Merger to combine the oscillators into one output stream.
let srcMerger =
new ChannelMergerNode(context, {numberOfInputs: src.length});
for (let k = 0; k < src.length; ++k) {
src[k].connect(srcMerger, 0, k);
}
// Convolver under test.
let conv = new ConvolverNode(context, {
disableNormalization: true,
buffer: response,
channelCountMode: options.channelCountMode
});
srcMerger.connect(conv);
// Splitter to get individual channels of the convolver output so we can
// feed them (eventually) to the context in the right set of channels.
let splitter = new ChannelSplitterNode(context, {numberOfOutputs: 2});
conv.connect(splitter);
// Reference graph consists of a delay node to simulate the response of
// the convolver. (The convolver response is designed this way.)
let delay = new DelayNode(context, {delayTime: 1 / context.sampleRate});
// Gain node to mix the sources to stereo in the desired way. (Could be
// done in the delay node, but let's keep the mixing separated from the
// functionality.)
let gainMixer = new GainNode(
context, {channelCount: 2, channelCountMode: 'explicit'});
srcMerger.connect(gainMixer);
// Splitter to extract the channels of the reference signal.
let refSplitter =
new ChannelSplitterNode(context, {numberOfOutputs: 2});
gainMixer.connect(delay).connect(refSplitter);
// Final merger to bring back the individual channels from the convolver
// and the reference in the right order for the destination.
let finalMerger = new ChannelMergerNode(
context, {numberOfInputs: context.destination.channelCount});
// First two channels are for the convolver output, and the next two are
// for the reference.
splitter.connect(finalMerger, 0, 0);
splitter.connect(finalMerger, 1, 1);
refSplitter.connect(finalMerger, 0, 2);
refSplitter.connect(finalMerger, 1, 3);
finalMerger.connect(context.destination);
// Start the sources at last.
for (let k = 0; k < src.length; ++k) {
src[k].start();
}
return context.startRendering().then(audioBuffer => {
// Extract the various channels out
let actual0 = audioBuffer.getChannelData(0);
let actual1 = audioBuffer.getChannelData(1);
let expected0 = audioBuffer.getChannelData(2);
let expected1 = audioBuffer.getChannelData(3);
let threshold = options.absoluteThreshold ?
options.absoluteThreshold : absoluteThreshold;
// Verify that each output channel of the convolver matches
// the delayed signal from the reference
should(actual0, options.prefix + ': Channel 0')
.beCloseToArray(expected0, {absoluteThreshold: threshold});
should(actual1, options.prefix + ': Channel 1')
.beCloseToArray(expected1, {absoluteThreshold: threshold});
});
}
function upMixTest(should, options) {
// Offline context with 3 channels: 0 = source
// 1 = convolver output, left, 2 = convolver output, right. Context
// destination must be discrete so that channels don't get mixed in
// unexpected ways.
let context = new OfflineAudioContext(3, renderFrames, sampleRate);
context.destination.channelInterpretation = 'discrete';
let merger = new ChannelMergerNode(
context, {numberOfInputs: context.destination.maxChannelCount});
merger.connect(context.destination);
let src = new OscillatorNode(context);
// Mono response for convolver. Just a simple 1-frame delay.
let response =
new AudioBuffer({length: 2, sampleRate: context.sampleRate});
response.getChannelData(0)[1] = 1;
// Set mode to explicit and count to 2 so we manually force the
// convolver to produce stereo output. Without this, it would be
// mono input with mono response, which produces a mono output.
let conv;
should(
() => {conv = new ConvolverNode(context, {
buffer: response,
disableNormalization: true,
channelCount: 2,
channelCountMode: options.channelCountMode
})},
`new ConvolverNode({channelCountMode: '${
options.channelCountMode}'})`)
.notThrow();
// Split output of convolver into individual channels.
let convSplit = new ChannelSplitterNode(context, {numberOfOutputs: 2});
src.connect(conv);
conv.connect(convSplit);
// Connect signals to destination in the desired way.
src.connect(merger, 0, 0);
convSplit.connect(merger, 0, 1);
convSplit.connect(merger, 1, 2);
src.start();
return context.startRendering();
}
audit.run();
</script>
</body>
</html>
|