1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/extras/enc/npy.h"
#include <jxl/types.h>
#include <stdio.h>
#include <sstream>
#include <string>
#include <vector>
#include "lib/extras/packed_image.h"
namespace jxl {
namespace extras {
namespace {
// JSON value writing
class JSONField {
public:
virtual ~JSONField() = default;
virtual void Write(std::ostream& o, uint32_t indent) const = 0;
protected:
JSONField() = default;
};
class JSONValue : public JSONField {
public:
template <typename T>
explicit JSONValue(const T& value) : value_(std::to_string(value)) {}
explicit JSONValue(const std::string& value) : value_("\"" + value + "\"") {}
explicit JSONValue(bool value) : value_(value ? "true" : "false") {}
void Write(std::ostream& o, uint32_t indent) const override { o << value_; }
private:
std::string value_;
};
class JSONDict : public JSONField {
public:
JSONDict() = default;
template <typename T>
T* AddEmpty(const std::string& key) {
static_assert(std::is_convertible<T*, JSONField*>::value,
"T must be a JSONField");
T* ret = new T();
values_.emplace_back(
key, std::unique_ptr<JSONField>(static_cast<JSONField*>(ret)));
return ret;
}
template <typename T>
void Add(const std::string& key, const T& value) {
values_.emplace_back(key, std::unique_ptr<JSONField>(new JSONValue(value)));
}
void Write(std::ostream& o, uint32_t indent) const override {
std::string indent_str(indent, ' ');
o << "{";
bool is_first = true;
for (const auto& key_value : values_) {
if (!is_first) {
o << ",";
}
is_first = false;
o << std::endl << indent_str << " \"" << key_value.first << "\": ";
key_value.second->Write(o, indent + 2);
}
if (!values_.empty()) {
o << std::endl << indent_str;
}
o << "}";
}
private:
// Dictionary with order.
std::vector<std::pair<std::string, std::unique_ptr<JSONField>>> values_;
};
class JSONArray : public JSONField {
public:
JSONArray() = default;
template <typename T>
T* AddEmpty() {
static_assert(std::is_convertible<T*, JSONField*>::value,
"T must be a JSONField");
T* ret = new T();
values_.emplace_back(ret);
return ret;
}
template <typename T>
void Add(const T& value) {
values_.emplace_back(new JSONValue(value));
}
void Write(std::ostream& o, uint32_t indent) const override {
std::string indent_str(indent, ' ');
o << "[";
bool is_first = true;
for (const auto& value : values_) {
if (!is_first) {
o << ",";
}
is_first = false;
o << std::endl << indent_str << " ";
value->Write(o, indent + 2);
}
if (!values_.empty()) {
o << std::endl << indent_str;
}
o << "]";
}
private:
std::vector<std::unique_ptr<JSONField>> values_;
};
void GenerateMetadata(const PackedPixelFile& ppf, std::vector<uint8_t>* out) {
JSONDict meta;
// Same order as in 18181-3 CD.
// Frames.
auto* meta_frames = meta.AddEmpty<JSONArray>("frames");
for (size_t i = 0; i < ppf.frames.size(); i++) {
auto* frame_i = meta_frames->AddEmpty<JSONDict>();
if (ppf.info.have_animation) {
frame_i->Add("duration",
JSONValue(ppf.frames[i].frame_info.duration * 1.0f *
ppf.info.animation.tps_denominator /
ppf.info.animation.tps_numerator));
}
frame_i->Add("name", JSONValue(ppf.frames[i].name));
if (ppf.info.animation.have_timecodes) {
frame_i->Add("timecode", JSONValue(ppf.frames[i].frame_info.timecode));
}
}
#define METADATA(FIELD) meta.Add(#FIELD, ppf.info.FIELD)
METADATA(intensity_target);
METADATA(min_nits);
METADATA(relative_to_max_display);
METADATA(linear_below);
if (ppf.info.have_preview) {
meta.AddEmpty<JSONDict>("preview");
// TODO(veluca): can we have duration/name/timecode here?
}
{
auto ectype = meta.AddEmpty<JSONArray>("extra_channel_type");
auto bps = meta.AddEmpty<JSONArray>("bits_per_sample");
auto ebps = meta.AddEmpty<JSONArray>("exp_bits_per_sample");
bps->Add(ppf.info.bits_per_sample);
ebps->Add(ppf.info.exponent_bits_per_sample);
for (size_t i = 0; i < ppf.extra_channels_info.size(); i++) {
switch (ppf.extra_channels_info[i].ec_info.type) {
case JXL_CHANNEL_ALPHA: {
ectype->Add(std::string("Alpha"));
break;
}
case JXL_CHANNEL_DEPTH: {
ectype->Add(std::string("Depth"));
break;
}
case JXL_CHANNEL_SPOT_COLOR: {
ectype->Add(std::string("SpotColor"));
break;
}
case JXL_CHANNEL_SELECTION_MASK: {
ectype->Add(std::string("SelectionMask"));
break;
}
case JXL_CHANNEL_BLACK: {
ectype->Add(std::string("Black"));
break;
}
case JXL_CHANNEL_CFA: {
ectype->Add(std::string("CFA"));
break;
}
case JXL_CHANNEL_THERMAL: {
ectype->Add(std::string("Thermal"));
break;
}
default: {
ectype->Add(std::string("UNKNOWN"));
break;
}
}
bps->Add(ppf.extra_channels_info[i].ec_info.bits_per_sample);
ebps->Add(ppf.extra_channels_info[i].ec_info.exponent_bits_per_sample);
}
}
std::ostringstream os;
meta.Write(os, 0);
out->resize(os.str().size());
memcpy(out->data(), os.str().data(), os.str().size());
}
void Append(std::vector<uint8_t>* out, const void* data, size_t size) {
size_t pos = out->size();
out->resize(pos + size);
memcpy(out->data() + pos, data, size);
}
void WriteNPYHeader(size_t xsize, size_t ysize, uint32_t num_channels,
size_t num_frames, std::vector<uint8_t>* out) {
const uint8_t header[] = "\x93NUMPY\x01\x00";
Append(out, header, 8);
std::stringstream ss;
ss << "{'descr': '<f4', 'fortran_order': False, 'shape': (" << num_frames
<< ", " << ysize << ", " << xsize << ", " << num_channels << "), }\n";
// 16-bit little endian header length.
uint8_t header_len[2] = {static_cast<uint8_t>(ss.str().size() % 256),
static_cast<uint8_t>(ss.str().size() / 256)};
Append(out, header_len, 2);
Append(out, ss.str().data(), ss.str().size());
}
bool WriteFrameToNPYArray(size_t xsize, size_t ysize, const PackedFrame& frame,
std::vector<uint8_t>* out) {
const auto& color = frame.color;
if (color.xsize != xsize || color.ysize != ysize) {
return false;
}
for (const auto& ec : frame.extra_channels) {
if (ec.xsize != xsize || ec.ysize != ysize) {
return false;
}
}
// interleave the samples from color and extra channels
for (size_t y = 0; y < ysize; ++y) {
for (size_t x = 0; x < xsize; ++x) {
{
size_t sample_size = color.pixel_stride();
size_t offset = y * color.stride + x * sample_size;
uint8_t* pixels = reinterpret_cast<uint8_t*>(color.pixels());
JXL_ASSERT(offset + sample_size <= color.pixels_size);
Append(out, pixels + offset, sample_size);
}
for (const auto& ec : frame.extra_channels) {
size_t sample_size = ec.pixel_stride();
size_t offset = y * ec.stride + x * sample_size;
uint8_t* pixels = reinterpret_cast<uint8_t*>(ec.pixels());
JXL_ASSERT(offset + sample_size <= ec.pixels_size);
Append(out, pixels + offset, sample_size);
}
}
}
return true;
}
// Writes a PackedPixelFile as a numpy 4D ndarray in binary format.
bool WriteNPYArray(const PackedPixelFile& ppf, std::vector<uint8_t>* out) {
size_t xsize = ppf.info.xsize;
size_t ysize = ppf.info.ysize;
WriteNPYHeader(xsize, ysize,
ppf.info.num_color_channels + ppf.extra_channels_info.size(),
ppf.frames.size(), out);
for (const auto& frame : ppf.frames) {
if (!WriteFrameToNPYArray(xsize, ysize, frame, out)) {
return false;
}
}
return true;
}
class NumPyEncoder : public Encoder {
public:
Status Encode(const PackedPixelFile& ppf, EncodedImage* encoded_image,
ThreadPool* pool = nullptr) const override {
JXL_RETURN_IF_ERROR(VerifyBasicInfo(ppf.info));
GenerateMetadata(ppf, &encoded_image->metadata);
encoded_image->bitstreams.emplace_back();
if (!WriteNPYArray(ppf, &encoded_image->bitstreams.back())) {
return false;
}
if (ppf.preview_frame) {
size_t xsize = ppf.info.preview.xsize;
size_t ysize = ppf.info.preview.ysize;
WriteNPYHeader(xsize, ysize, ppf.info.num_color_channels, 1,
&encoded_image->preview_bitstream);
if (!WriteFrameToNPYArray(xsize, ysize, *ppf.preview_frame,
&encoded_image->preview_bitstream)) {
return false;
}
}
return true;
}
std::vector<JxlPixelFormat> AcceptedFormats() const override {
std::vector<JxlPixelFormat> formats;
for (const uint32_t num_channels : {1, 3}) {
formats.push_back(JxlPixelFormat{num_channels, JXL_TYPE_FLOAT,
JXL_LITTLE_ENDIAN, /*align=*/0});
}
return formats;
}
};
} // namespace
std::unique_ptr<Encoder> GetNumPyEncoder() {
return jxl::make_unique<NumPyEncoder>();
}
} // namespace extras
} // namespace jxl
|