1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_huffman_tree.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "lib/jxl/base/status.h"
namespace jxl {
void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth,
uint8_t level) {
if (p.index_left >= 0) {
++level;
SetDepth(pool[p.index_left], pool, depth, level);
SetDepth(pool[p.index_right_or_value], pool, depth, level);
} else {
depth[p.index_right_or_value] = level;
}
}
// Sort the root nodes, least popular first.
static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) {
return v0.total_count < v1.total_count;
}
// This function will create a Huffman tree.
//
// The catch here is that the tree cannot be arbitrarily deep.
// Brotli specifies a maximum depth of 15 bits for "code trees"
// and 7 bits for "code length code trees."
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
void CreateHuffmanTree(const uint32_t* data, const size_t length,
const int tree_limit, uint8_t* depth) {
// For block sizes below 64 kB, we never need to do a second iteration
// of this loop. Probably all of our block sizes will be smaller than
// that, so this loop is mostly of academic interest. If we actually
// would need this, we would be better off with the Katajainen algorithm.
for (uint32_t count_limit = 1;; count_limit *= 2) {
std::vector<HuffmanTree> tree;
tree.reserve(2 * length + 1);
for (size_t i = length; i != 0;) {
--i;
if (data[i]) {
const uint32_t count = std::max(data[i], count_limit - 1);
tree.emplace_back(count, -1, static_cast<int16_t>(i));
}
}
const size_t n = tree.size();
if (n == 1) {
// Fake value; will be fixed on upper level.
depth[tree[0].index_right_or_value] = 1;
break;
}
std::stable_sort(tree.begin(), tree.end(), Compare);
// The nodes are:
// [0, n): the sorted leaf nodes that we start with.
// [n]: we add a sentinel here.
// [n + 1, 2n): new parent nodes are added here, starting from
// (n+1). These are naturally in ascending order.
// [2n]: we add a sentinel at the end as well.
// There will be (2n+1) elements at the end.
const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
tree.push_back(sentinel);
tree.push_back(sentinel);
size_t i = 0; // Points to the next leaf node.
size_t j = n + 1; // Points to the next non-leaf node.
for (size_t k = n - 1; k != 0; --k) {
size_t left, right;
if (tree[i].total_count <= tree[j].total_count) {
left = i;
++i;
} else {
left = j;
++j;
}
if (tree[i].total_count <= tree[j].total_count) {
right = i;
++i;
} else {
right = j;
++j;
}
// The sentinel node becomes the parent node.
size_t j_end = tree.size() - 1;
tree[j_end].total_count =
tree[left].total_count + tree[right].total_count;
tree[j_end].index_left = static_cast<int16_t>(left);
tree[j_end].index_right_or_value = static_cast<int16_t>(right);
// Add back the last sentinel node.
tree.push_back(sentinel);
}
JXL_DASSERT(tree.size() == 2 * n + 1);
SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
// We need to pack the Huffman tree in tree_limit bits.
// If this was not successful, add fake entities to the lowest values
// and retry.
if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
break;
}
}
}
void Reverse(uint8_t* v, size_t start, size_t end) {
--end;
while (start < end) {
uint8_t tmp = v[start];
v[start] = v[end];
v[end] = tmp;
++start;
--end;
}
}
void WriteHuffmanTreeRepetitions(const uint8_t previous_value,
const uint8_t value, size_t repetitions,
size_t* tree_size, uint8_t* tree,
uint8_t* extra_bits_data) {
JXL_DASSERT(repetitions > 0);
if (previous_value != value) {
tree[*tree_size] = value;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
--repetitions;
}
if (repetitions == 7) {
tree[*tree_size] = value;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
--repetitions;
}
if (repetitions < 3) {
for (size_t i = 0; i < repetitions; ++i) {
tree[*tree_size] = value;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
}
} else {
repetitions -= 3;
size_t start = *tree_size;
while (true) {
tree[*tree_size] = 16;
extra_bits_data[*tree_size] = repetitions & 0x3;
++(*tree_size);
repetitions >>= 2;
if (repetitions == 0) {
break;
}
--repetitions;
}
Reverse(tree, start, *tree_size);
Reverse(extra_bits_data, start, *tree_size);
}
}
void WriteHuffmanTreeRepetitionsZeros(size_t repetitions, size_t* tree_size,
uint8_t* tree, uint8_t* extra_bits_data) {
if (repetitions == 11) {
tree[*tree_size] = 0;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
--repetitions;
}
if (repetitions < 3) {
for (size_t i = 0; i < repetitions; ++i) {
tree[*tree_size] = 0;
extra_bits_data[*tree_size] = 0;
++(*tree_size);
}
} else {
repetitions -= 3;
size_t start = *tree_size;
while (true) {
tree[*tree_size] = 17;
extra_bits_data[*tree_size] = repetitions & 0x7;
++(*tree_size);
repetitions >>= 3;
if (repetitions == 0) {
break;
}
--repetitions;
}
Reverse(tree, start, *tree_size);
Reverse(extra_bits_data, start, *tree_size);
}
}
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
bool* use_rle_for_non_zero,
bool* use_rle_for_zero) {
size_t total_reps_zero = 0;
size_t total_reps_non_zero = 0;
size_t count_reps_zero = 1;
size_t count_reps_non_zero = 1;
for (size_t i = 0; i < length;) {
const uint8_t value = depth[i];
size_t reps = 1;
for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
++reps;
}
if (reps >= 3 && value == 0) {
total_reps_zero += reps;
++count_reps_zero;
}
if (reps >= 4 && value != 0) {
total_reps_non_zero += reps;
++count_reps_non_zero;
}
i += reps;
}
*use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2;
*use_rle_for_zero = total_reps_zero > count_reps_zero * 2;
}
void WriteHuffmanTree(const uint8_t* depth, size_t length, size_t* tree_size,
uint8_t* tree, uint8_t* extra_bits_data) {
uint8_t previous_value = 8;
// Throw away trailing zeros.
size_t new_length = length;
for (size_t i = 0; i < length; ++i) {
if (depth[length - i - 1] == 0) {
--new_length;
} else {
break;
}
}
// First gather statistics on if it is a good idea to do rle.
bool use_rle_for_non_zero = false;
bool use_rle_for_zero = false;
if (length > 50) {
// Find rle coding for longer codes.
// Shorter codes seem not to benefit from rle.
DecideOverRleUse(depth, new_length, &use_rle_for_non_zero,
&use_rle_for_zero);
}
// Actual rle coding.
for (size_t i = 0; i < new_length;) {
const uint8_t value = depth[i];
size_t reps = 1;
if ((value != 0 && use_rle_for_non_zero) ||
(value == 0 && use_rle_for_zero)) {
for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) {
++reps;
}
}
if (value == 0) {
WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data);
} else {
WriteHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree,
extra_bits_data);
previous_value = value;
}
i += reps;
}
}
namespace {
uint16_t ReverseBits(int num_bits, uint16_t bits) {
static const size_t kLut[16] = {// Pre-reversed 4-bit values.
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf};
size_t retval = kLut[bits & 0xf];
for (int i = 4; i < num_bits; i += 4) {
retval <<= 4;
bits = static_cast<uint16_t>(bits >> 4);
retval |= kLut[bits & 0xf];
}
retval >>= (-num_bits & 0x3);
return static_cast<uint16_t>(retval);
}
} // namespace
void ConvertBitDepthsToSymbols(const uint8_t* depth, size_t len,
uint16_t* bits) {
// In Brotli, all bit depths are [1..15]
// 0 bit depth means that the symbol does not exist.
const int kMaxBits = 16; // 0..15 are values for bits
uint16_t bl_count[kMaxBits] = {0};
{
for (size_t i = 0; i < len; ++i) {
++bl_count[depth[i]];
}
bl_count[0] = 0;
}
uint16_t next_code[kMaxBits];
next_code[0] = 0;
{
int code = 0;
for (size_t i = 1; i < kMaxBits; ++i) {
code = (code + bl_count[i - 1]) << 1;
next_code[i] = static_cast<uint16_t>(code);
}
}
for (size_t i = 0; i < len; ++i) {
if (depth[i]) {
bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
}
}
}
} // namespace jxl
|