1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/gauss_blur.h"
#include <string.h>
#include <algorithm>
#include <cmath>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/gauss_blur.cc"
#include <hwy/cache_control.h>
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/profiler.h"
#include "lib/jxl/common.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/matrix_ops.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Broadcast;
using hwy::HWY_NAMESPACE::GetLane;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::NegMulSub;
#if HWY_TARGET != HWY_SCALAR
using hwy::HWY_NAMESPACE::ShiftLeftLanes;
#endif
using hwy::HWY_NAMESPACE::Vec;
void FastGaussian1D(const hwy::AlignedUniquePtr<RecursiveGaussian>& rg,
const float* JXL_RESTRICT in, intptr_t width,
float* JXL_RESTRICT out) {
// Although the current output depends on the previous output, we can unroll
// up to 4x by precomputing up to fourth powers of the constants. Beyond that,
// numerical precision might become a problem. Macro because this is tested
// in #if alongside HWY_TARGET.
#define JXL_GAUSS_MAX_LANES 4
using D = HWY_CAPPED(float, JXL_GAUSS_MAX_LANES);
using V = Vec<D>;
const D d;
const V mul_in_1 = Load(d, rg->mul_in + 0 * 4);
const V mul_in_3 = Load(d, rg->mul_in + 1 * 4);
const V mul_in_5 = Load(d, rg->mul_in + 2 * 4);
const V mul_prev_1 = Load(d, rg->mul_prev + 0 * 4);
const V mul_prev_3 = Load(d, rg->mul_prev + 1 * 4);
const V mul_prev_5 = Load(d, rg->mul_prev + 2 * 4);
const V mul_prev2_1 = Load(d, rg->mul_prev2 + 0 * 4);
const V mul_prev2_3 = Load(d, rg->mul_prev2 + 1 * 4);
const V mul_prev2_5 = Load(d, rg->mul_prev2 + 2 * 4);
V prev_1 = Zero(d);
V prev_3 = Zero(d);
V prev_5 = Zero(d);
V prev2_1 = Zero(d);
V prev2_3 = Zero(d);
V prev2_5 = Zero(d);
const intptr_t N = rg->radius;
intptr_t n = -N + 1;
// Left side with bounds checks and only write output after n >= 0.
const intptr_t first_aligned = RoundUpTo(N + 1, Lanes(d));
for (; n < std::min(first_aligned, width); ++n) {
const intptr_t left = n - N - 1;
const intptr_t right = n + N - 1;
const float left_val = left >= 0 ? in[left] : 0.0f;
const float right_val = right < width ? in[right] : 0.0f;
const V sum = Set(d, left_val + right_val);
// (Only processing a single lane here, no need to broadcast)
V out_1 = Mul(sum, mul_in_1);
V out_3 = Mul(sum, mul_in_3);
V out_5 = Mul(sum, mul_in_5);
out_1 = MulAdd(mul_prev2_1, prev2_1, out_1);
out_3 = MulAdd(mul_prev2_3, prev2_3, out_3);
out_5 = MulAdd(mul_prev2_5, prev2_5, out_5);
prev2_1 = prev_1;
prev2_3 = prev_3;
prev2_5 = prev_5;
out_1 = MulAdd(mul_prev_1, prev_1, out_1);
out_3 = MulAdd(mul_prev_3, prev_3, out_3);
out_5 = MulAdd(mul_prev_5, prev_5, out_5);
prev_1 = out_1;
prev_3 = out_3;
prev_5 = out_5;
if (n >= 0) {
out[n] = GetLane(Add(out_1, Add(out_3, out_5)));
}
}
// The above loop is effectively scalar but it is convenient to use the same
// prev/prev2 variables, so broadcast to each lane before the unrolled loop.
#if HWY_TARGET != HWY_SCALAR && JXL_GAUSS_MAX_LANES > 1
prev2_1 = Broadcast<0>(prev2_1);
prev2_3 = Broadcast<0>(prev2_3);
prev2_5 = Broadcast<0>(prev2_5);
prev_1 = Broadcast<0>(prev_1);
prev_3 = Broadcast<0>(prev_3);
prev_5 = Broadcast<0>(prev_5);
#endif
// Unrolled, no bounds checking needed.
for (; n < width - N + 1 - (JXL_GAUSS_MAX_LANES - 1); n += Lanes(d)) {
const V sum = Add(LoadU(d, in + n - N - 1), LoadU(d, in + n + N - 1));
// To get a vector of output(s), we multiply broadcasted vectors (of each
// input plus the two previous outputs) and add them all together.
// Incremental broadcasting and shifting is expected to be cheaper than
// horizontal adds or transposing 4x4 values because they run on a different
// port, concurrently with the FMA.
const V in0 = Broadcast<0>(sum);
V out_1 = Mul(in0, mul_in_1);
V out_3 = Mul(in0, mul_in_3);
V out_5 = Mul(in0, mul_in_5);
#if HWY_TARGET != HWY_SCALAR && JXL_GAUSS_MAX_LANES >= 2
const V in1 = Broadcast<1>(sum);
out_1 = MulAdd(ShiftLeftLanes<1>(mul_in_1), in1, out_1);
out_3 = MulAdd(ShiftLeftLanes<1>(mul_in_3), in1, out_3);
out_5 = MulAdd(ShiftLeftLanes<1>(mul_in_5), in1, out_5);
#if JXL_GAUSS_MAX_LANES >= 4
const V in2 = Broadcast<2>(sum);
out_1 = MulAdd(ShiftLeftLanes<2>(mul_in_1), in2, out_1);
out_3 = MulAdd(ShiftLeftLanes<2>(mul_in_3), in2, out_3);
out_5 = MulAdd(ShiftLeftLanes<2>(mul_in_5), in2, out_5);
const V in3 = Broadcast<3>(sum);
out_1 = MulAdd(ShiftLeftLanes<3>(mul_in_1), in3, out_1);
out_3 = MulAdd(ShiftLeftLanes<3>(mul_in_3), in3, out_3);
out_5 = MulAdd(ShiftLeftLanes<3>(mul_in_5), in3, out_5);
#endif
#endif
out_1 = MulAdd(mul_prev2_1, prev2_1, out_1);
out_3 = MulAdd(mul_prev2_3, prev2_3, out_3);
out_5 = MulAdd(mul_prev2_5, prev2_5, out_5);
out_1 = MulAdd(mul_prev_1, prev_1, out_1);
out_3 = MulAdd(mul_prev_3, prev_3, out_3);
out_5 = MulAdd(mul_prev_5, prev_5, out_5);
#if HWY_TARGET == HWY_SCALAR || JXL_GAUSS_MAX_LANES == 1
prev2_1 = prev_1;
prev2_3 = prev_3;
prev2_5 = prev_5;
prev_1 = out_1;
prev_3 = out_3;
prev_5 = out_5;
#else
prev2_1 = Broadcast<JXL_GAUSS_MAX_LANES - 2>(out_1);
prev2_3 = Broadcast<JXL_GAUSS_MAX_LANES - 2>(out_3);
prev2_5 = Broadcast<JXL_GAUSS_MAX_LANES - 2>(out_5);
prev_1 = Broadcast<JXL_GAUSS_MAX_LANES - 1>(out_1);
prev_3 = Broadcast<JXL_GAUSS_MAX_LANES - 1>(out_3);
prev_5 = Broadcast<JXL_GAUSS_MAX_LANES - 1>(out_5);
#endif
Store(Add(out_1, Add(out_3, out_5)), d, out + n);
}
// Remainder handling with bounds checks
for (; n < width; ++n) {
const intptr_t left = n - N - 1;
const intptr_t right = n + N - 1;
const float left_val = left >= 0 ? in[left] : 0.0f;
const float right_val = right < width ? in[right] : 0.0f;
const V sum = Set(d, left_val + right_val);
// (Only processing a single lane here, no need to broadcast)
V out_1 = Mul(sum, mul_in_1);
V out_3 = Mul(sum, mul_in_3);
V out_5 = Mul(sum, mul_in_5);
out_1 = MulAdd(mul_prev2_1, prev2_1, out_1);
out_3 = MulAdd(mul_prev2_3, prev2_3, out_3);
out_5 = MulAdd(mul_prev2_5, prev2_5, out_5);
prev2_1 = prev_1;
prev2_3 = prev_3;
prev2_5 = prev_5;
out_1 = MulAdd(mul_prev_1, prev_1, out_1);
out_3 = MulAdd(mul_prev_3, prev_3, out_3);
out_5 = MulAdd(mul_prev_5, prev_5, out_5);
prev_1 = out_1;
prev_3 = out_3;
prev_5 = out_5;
out[n] = GetLane(Add(out_1, Add(out_3, out_5)));
}
}
// Ring buffer is for n, n-1, n-2; round up to 4 for faster modulo.
constexpr size_t kMod = 4;
// Avoids an unnecessary store during warmup.
struct OutputNone {
template <class V>
void operator()(const V& /*unused*/, float* JXL_RESTRICT /*pos*/,
ptrdiff_t /*offset*/) const {}
};
// Common case: write output vectors in all VerticalBlock except warmup.
struct OutputStore {
template <class V>
void operator()(const V& out, float* JXL_RESTRICT pos,
ptrdiff_t offset) const {
// Stream helps for large images but is slower for images that fit in cache.
Store(out, HWY_FULL(float)(), pos + offset);
}
};
// At top/bottom borders, we don't have two inputs to load, so avoid addition.
// pos may even point to all zeros if the row is outside the input image.
class SingleInput {
public:
explicit SingleInput(const float* pos) : pos_(pos) {}
Vec<HWY_FULL(float)> operator()(const size_t offset) const {
return Load(HWY_FULL(float)(), pos_ + offset);
}
const float* pos_;
};
// In the middle of the image, we need to load from a row above and below, and
// return the sum.
class TwoInputs {
public:
TwoInputs(const float* pos1, const float* pos2) : pos1_(pos1), pos2_(pos2) {}
Vec<HWY_FULL(float)> operator()(const size_t offset) const {
const auto in1 = Load(HWY_FULL(float)(), pos1_ + offset);
const auto in2 = Load(HWY_FULL(float)(), pos2_ + offset);
return Add(in1, in2);
}
private:
const float* pos1_;
const float* pos2_;
};
// Block := kVectors consecutive full vectors (one cache line except on the
// right boundary, where we can only rely on having one vector). Unrolling to
// the cache line size improves cache utilization.
template <size_t kVectors, class V, class Input, class Output>
void VerticalBlock(const V& d1_1, const V& d1_3, const V& d1_5, const V& n2_1,
const V& n2_3, const V& n2_5, const Input& input,
size_t& ctr, float* ring_buffer, const Output output,
float* JXL_RESTRICT out_pos) {
const HWY_FULL(float) d;
constexpr size_t kVN = MaxLanes(d);
// More cache-friendly to process an entirely cache line at a time
constexpr size_t kLanes = kVectors * kVN;
float* JXL_RESTRICT y_1 = ring_buffer + 0 * kLanes * kMod;
float* JXL_RESTRICT y_3 = ring_buffer + 1 * kLanes * kMod;
float* JXL_RESTRICT y_5 = ring_buffer + 2 * kLanes * kMod;
const size_t n_0 = (++ctr) % kMod;
const size_t n_1 = (ctr - 1) % kMod;
const size_t n_2 = (ctr - 2) % kMod;
for (size_t idx_vec = 0; idx_vec < kVectors; ++idx_vec) {
const V sum = input(idx_vec * kVN);
const V y_n1_1 = Load(d, y_1 + kLanes * n_1 + idx_vec * kVN);
const V y_n1_3 = Load(d, y_3 + kLanes * n_1 + idx_vec * kVN);
const V y_n1_5 = Load(d, y_5 + kLanes * n_1 + idx_vec * kVN);
const V y_n2_1 = Load(d, y_1 + kLanes * n_2 + idx_vec * kVN);
const V y_n2_3 = Load(d, y_3 + kLanes * n_2 + idx_vec * kVN);
const V y_n2_5 = Load(d, y_5 + kLanes * n_2 + idx_vec * kVN);
// (35)
const V y1 = MulAdd(n2_1, sum, NegMulSub(d1_1, y_n1_1, y_n2_1));
const V y3 = MulAdd(n2_3, sum, NegMulSub(d1_3, y_n1_3, y_n2_3));
const V y5 = MulAdd(n2_5, sum, NegMulSub(d1_5, y_n1_5, y_n2_5));
Store(y1, d, y_1 + kLanes * n_0 + idx_vec * kVN);
Store(y3, d, y_3 + kLanes * n_0 + idx_vec * kVN);
Store(y5, d, y_5 + kLanes * n_0 + idx_vec * kVN);
output(Add(y1, Add(y3, y5)), out_pos, idx_vec * kVN);
}
// NOTE: flushing cache line out_pos hurts performance - less so with
// clflushopt than clflush but still a significant slowdown.
}
// Reads/writes one block (kVectors full vectors) in each row.
template <size_t kVectors>
void VerticalStrip(const hwy::AlignedUniquePtr<RecursiveGaussian>& rg,
const ImageF& in, const size_t x, ImageF* JXL_RESTRICT out) {
// We're iterating vertically, so use multiple full-length vectors (each lane
// is one column of row n).
using D = HWY_FULL(float);
using V = Vec<D>;
const D d;
constexpr size_t kVN = MaxLanes(d);
// More cache-friendly to process an entirely cache line at a time
constexpr size_t kLanes = kVectors * kVN;
#if HWY_TARGET == HWY_SCALAR
const V d1_1 = Set(d, rg->d1[0 * 4]);
const V d1_3 = Set(d, rg->d1[1 * 4]);
const V d1_5 = Set(d, rg->d1[2 * 4]);
const V n2_1 = Set(d, rg->n2[0 * 4]);
const V n2_3 = Set(d, rg->n2[1 * 4]);
const V n2_5 = Set(d, rg->n2[2 * 4]);
#else
const V d1_1 = LoadDup128(d, rg->d1 + 0 * 4);
const V d1_3 = LoadDup128(d, rg->d1 + 1 * 4);
const V d1_5 = LoadDup128(d, rg->d1 + 2 * 4);
const V n2_1 = LoadDup128(d, rg->n2 + 0 * 4);
const V n2_3 = LoadDup128(d, rg->n2 + 1 * 4);
const V n2_5 = LoadDup128(d, rg->n2 + 2 * 4);
#endif
const size_t N = rg->radius;
const size_t ysize = in.ysize();
size_t ctr = 0;
HWY_ALIGN float ring_buffer[3 * kLanes * kMod] = {0};
HWY_ALIGN static constexpr float zero[kLanes] = {0};
// Warmup: top is out of bounds (zero padded), bottom is usually in-bounds.
ssize_t n = -static_cast<ssize_t>(N) + 1;
for (; n < 0; ++n) {
// bottom is always non-negative since n is initialized in -N + 1.
const size_t bottom = n + N - 1;
VerticalBlock<kVectors>(
d1_1, d1_3, d1_5, n2_1, n2_3, n2_5,
SingleInput(bottom < ysize ? in.ConstRow(bottom) + x : zero), ctr,
ring_buffer, OutputNone(), nullptr);
}
JXL_DASSERT(n >= 0);
// Start producing output; top is still out of bounds.
for (; static_cast<size_t>(n) < std::min(N + 1, ysize); ++n) {
const size_t bottom = n + N - 1;
VerticalBlock<kVectors>(
d1_1, d1_3, d1_5, n2_1, n2_3, n2_5,
SingleInput(bottom < ysize ? in.ConstRow(bottom) + x : zero), ctr,
ring_buffer, OutputStore(), out->Row(n) + x);
}
// Interior outputs with prefetching and without bounds checks.
constexpr size_t kPrefetchRows = 8;
for (; n < static_cast<ssize_t>(ysize - N + 1 - kPrefetchRows); ++n) {
const size_t top = n - N - 1;
const size_t bottom = n + N - 1;
VerticalBlock<kVectors>(
d1_1, d1_3, d1_5, n2_1, n2_3, n2_5,
TwoInputs(in.ConstRow(top) + x, in.ConstRow(bottom) + x), ctr,
ring_buffer, OutputStore(), out->Row(n) + x);
hwy::Prefetch(in.ConstRow(top + kPrefetchRows) + x);
hwy::Prefetch(in.ConstRow(bottom + kPrefetchRows) + x);
}
// Bottom border without prefetching and with bounds checks.
for (; static_cast<size_t>(n) < ysize; ++n) {
const size_t top = n - N - 1;
const size_t bottom = n + N - 1;
VerticalBlock<kVectors>(
d1_1, d1_3, d1_5, n2_1, n2_3, n2_5,
TwoInputs(in.ConstRow(top) + x,
bottom < ysize ? in.ConstRow(bottom) + x : zero),
ctr, ring_buffer, OutputStore(), out->Row(n) + x);
}
}
// Apply 1D vertical scan to multiple columns (one per vector lane).
// Not yet parallelized.
void FastGaussianVertical(const hwy::AlignedUniquePtr<RecursiveGaussian>& rg,
const ImageF& in, ThreadPool* /*pool*/,
ImageF* JXL_RESTRICT out) {
PROFILER_FUNC;
JXL_CHECK(SameSize(in, *out));
constexpr size_t kCacheLineLanes = 64 / sizeof(float);
constexpr size_t kVN = MaxLanes(HWY_FULL(float)());
constexpr size_t kCacheLineVectors =
(kVN < kCacheLineLanes) ? (kCacheLineLanes / kVN) : 4;
constexpr size_t kFastPace = kCacheLineVectors * kVN;
size_t x = 0;
for (; x + kFastPace <= in.xsize(); x += kFastPace) {
VerticalStrip<kCacheLineVectors>(rg, in, x, out);
}
for (; x < in.xsize(); x += kVN) {
VerticalStrip<1>(rg, in, x, out);
}
}
// TODO(veluca): consider replacing with FastGaussian.
ImageF ConvolveXSampleAndTranspose(const ImageF& in,
const std::vector<float>& kernel,
const size_t res) {
JXL_ASSERT(kernel.size() % 2 == 1);
JXL_ASSERT(in.xsize() % res == 0);
const size_t offset = res / 2;
const size_t out_xsize = in.xsize() / res;
ImageF out(in.ysize(), out_xsize);
const int r = kernel.size() / 2;
HWY_FULL(float) df;
std::vector<float> row_tmp(in.xsize() + 2 * r + Lanes(df));
float* const JXL_RESTRICT rowp = &row_tmp[r];
std::vector<float> padded_k = kernel;
padded_k.resize(padded_k.size() + Lanes(df));
const float* const kernelp = &padded_k[r];
for (size_t y = 0; y < in.ysize(); ++y) {
ExtrapolateBorders(in.Row(y), rowp, in.xsize(), r);
size_t x = offset, ox = 0;
for (; x < static_cast<uint32_t>(r) && x < in.xsize(); x += res, ++ox) {
float sum = 0.0f;
for (int i = -r; i <= r; ++i) {
sum += rowp[std::max<int>(
0, std::min<int>(static_cast<int>(x) + i, in.xsize()))] *
kernelp[i];
}
out.Row(ox)[y] = sum;
}
for (; x + r < in.xsize(); x += res, ++ox) {
auto sum = Zero(df);
for (int i = -r; i <= r; i += Lanes(df)) {
sum = MulAdd(LoadU(df, rowp + x + i), LoadU(df, kernelp + i), sum);
}
out.Row(ox)[y] = GetLane(SumOfLanes(df, sum));
}
for (; x < in.xsize(); x += res, ++ox) {
float sum = 0.0f;
for (int i = -r; i <= r; ++i) {
sum += rowp[std::max<int>(
0, std::min<int>(static_cast<int>(x) + i, in.xsize()))] *
kernelp[i];
}
out.Row(ox)[y] = sum;
}
}
return out;
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(FastGaussian1D);
HWY_EXPORT(ConvolveXSampleAndTranspose);
void FastGaussian1D(const hwy::AlignedUniquePtr<RecursiveGaussian>& rg,
const float* JXL_RESTRICT in, intptr_t width,
float* JXL_RESTRICT out) {
return HWY_DYNAMIC_DISPATCH(FastGaussian1D)(rg, in, width, out);
}
HWY_EXPORT(FastGaussianVertical); // Local function.
void ExtrapolateBorders(const float* const JXL_RESTRICT row_in,
float* const JXL_RESTRICT row_out, const int xsize,
const int radius) {
const int lastcol = xsize - 1;
for (int x = 1; x <= radius; ++x) {
row_out[-x] = row_in[std::min(x, xsize - 1)];
}
memcpy(row_out, row_in, xsize * sizeof(row_out[0]));
for (int x = 1; x <= radius; ++x) {
row_out[lastcol + x] = row_in[std::max(0, lastcol - x)];
}
}
ImageF ConvolveXSampleAndTranspose(const ImageF& in,
const std::vector<float>& kernel,
const size_t res) {
return HWY_DYNAMIC_DISPATCH(ConvolveXSampleAndTranspose)(in, kernel, res);
}
Image3F ConvolveXSampleAndTranspose(const Image3F& in,
const std::vector<float>& kernel,
const size_t res) {
return Image3F(ConvolveXSampleAndTranspose(in.Plane(0), kernel, res),
ConvolveXSampleAndTranspose(in.Plane(1), kernel, res),
ConvolveXSampleAndTranspose(in.Plane(2), kernel, res));
}
ImageF ConvolveAndSample(const ImageF& in, const std::vector<float>& kernel,
const size_t res) {
ImageF tmp = ConvolveXSampleAndTranspose(in, kernel, res);
return ConvolveXSampleAndTranspose(tmp, kernel, res);
}
// Implements "Recursive Implementation of the Gaussian Filter Using Truncated
// Cosine Functions" by Charalampidis [2016].
hwy::AlignedUniquePtr<RecursiveGaussian> CreateRecursiveGaussian(double sigma) {
PROFILER_FUNC;
auto rg = hwy::MakeUniqueAligned<RecursiveGaussian>();
constexpr double kPi = 3.141592653589793238;
const double radius = roundf(3.2795 * sigma + 0.2546); // (57), "N"
// Table I, first row
const double pi_div_2r = kPi / (2.0 * radius);
const double omega[3] = {pi_div_2r, 3.0 * pi_div_2r, 5.0 * pi_div_2r};
// (37), k={1,3,5}
const double p_1 = +1.0 / std::tan(0.5 * omega[0]);
const double p_3 = -1.0 / std::tan(0.5 * omega[1]);
const double p_5 = +1.0 / std::tan(0.5 * omega[2]);
// (44), k={1,3,5}
const double r_1 = +p_1 * p_1 / std::sin(omega[0]);
const double r_3 = -p_3 * p_3 / std::sin(omega[1]);
const double r_5 = +p_5 * p_5 / std::sin(omega[2]);
// (50), k={1,3,5}
const double neg_half_sigma2 = -0.5 * sigma * sigma;
const double recip_radius = 1.0 / radius;
double rho[3];
for (size_t i = 0; i < 3; ++i) {
rho[i] = std::exp(neg_half_sigma2 * omega[i] * omega[i]) * recip_radius;
}
// second part of (52), k1,k2 = 1,3; 3,5; 5,1
const double D_13 = p_1 * r_3 - r_1 * p_3;
const double D_35 = p_3 * r_5 - r_3 * p_5;
const double D_51 = p_5 * r_1 - r_5 * p_1;
// (52), k=5
const double recip_d13 = 1.0 / D_13;
const double zeta_15 = D_35 * recip_d13;
const double zeta_35 = D_51 * recip_d13;
double A[9] = {p_1, p_3, p_5, //
r_1, r_3, r_5, // (56)
zeta_15, zeta_35, 1};
JXL_CHECK(Inv3x3Matrix(A));
const double gamma[3] = {1, radius * radius - sigma * sigma, // (55)
zeta_15 * rho[0] + zeta_35 * rho[1] + rho[2]};
double beta[3];
Mul3x3Vector(A, gamma, beta); // (53)
// Sanity check: correctly solved for beta (IIR filter weights are normalized)
const double sum = beta[0] * p_1 + beta[1] * p_3 + beta[2] * p_5; // (39)
JXL_ASSERT(std::abs(sum - 1) < 1E-12);
(void)sum;
rg->radius = static_cast<int>(radius);
double n2[3];
double d1[3];
for (size_t i = 0; i < 3; ++i) {
n2[i] = -beta[i] * std::cos(omega[i] * (radius + 1.0)); // (33)
d1[i] = -2.0 * std::cos(omega[i]); // (33)
for (size_t lane = 0; lane < 4; ++lane) {
rg->n2[4 * i + lane] = static_cast<float>(n2[i]);
rg->d1[4 * i + lane] = static_cast<float>(d1[i]);
}
const double d_2 = d1[i] * d1[i];
// Obtained by expanding (35) for four consecutive outputs via sympy:
// n, d, p, pp = symbols('n d p pp')
// i0, i1, i2, i3 = symbols('i0 i1 i2 i3')
// o0, o1, o2, o3 = symbols('o0 o1 o2 o3')
// o0 = n*i0 - d*p - pp
// o1 = n*i1 - d*o0 - p
// o2 = n*i2 - d*o1 - o0
// o3 = n*i3 - d*o2 - o1
// Then expand(o3) and gather terms for p(prev), pp(prev2) etc.
rg->mul_prev[4 * i + 0] = -d1[i];
rg->mul_prev[4 * i + 1] = d_2 - 1.0;
rg->mul_prev[4 * i + 2] = -d_2 * d1[i] + 2.0 * d1[i];
rg->mul_prev[4 * i + 3] = d_2 * d_2 - 3.0 * d_2 + 1.0;
rg->mul_prev2[4 * i + 0] = -1.0;
rg->mul_prev2[4 * i + 1] = d1[i];
rg->mul_prev2[4 * i + 2] = -d_2 + 1.0;
rg->mul_prev2[4 * i + 3] = d_2 * d1[i] - 2.0 * d1[i];
rg->mul_in[4 * i + 0] = n2[i];
rg->mul_in[4 * i + 1] = -d1[i] * n2[i];
rg->mul_in[4 * i + 2] = d_2 * n2[i] - n2[i];
rg->mul_in[4 * i + 3] = -d_2 * d1[i] * n2[i] + 2.0 * d1[i] * n2[i];
}
return rg;
}
namespace {
// Apply 1D horizontal scan to each row.
void FastGaussianHorizontal(const hwy::AlignedUniquePtr<RecursiveGaussian>& rg,
const ImageF& in, ThreadPool* pool,
ImageF* JXL_RESTRICT out) {
PROFILER_FUNC;
JXL_CHECK(SameSize(in, *out));
const intptr_t xsize = in.xsize();
JXL_CHECK(RunOnPool(
pool, 0, in.ysize(), ThreadPool::NoInit,
[&](const uint32_t task, size_t /*thread*/) {
const size_t y = task;
const float* row_in = in.ConstRow(y);
float* JXL_RESTRICT row_out = out->Row(y);
FastGaussian1D(rg, row_in, xsize, row_out);
},
"FastGaussianHorizontal"));
}
} // namespace
void FastGaussian(const hwy::AlignedUniquePtr<RecursiveGaussian>& rg,
const ImageF& in, ThreadPool* pool, ImageF* JXL_RESTRICT temp,
ImageF* JXL_RESTRICT out) {
FastGaussianHorizontal(rg, in, pool, temp);
HWY_DYNAMIC_DISPATCH(FastGaussianVertical)(rg, *temp, pool, out);
}
} // namespace jxl
#endif // HWY_ONCE
|