1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/icc_codec_common.h"
#include <stdint.h>
#include <map>
#include <string>
#include <vector>
#include "lib/jxl/base/byte_order.h"
#include "lib/jxl/common.h"
#include "lib/jxl/fields.h"
namespace jxl {
namespace {
static uint8_t ByteKind1(uint8_t b) {
if ('a' <= b && b <= 'z') return 0;
if ('A' <= b && b <= 'Z') return 0;
if ('0' <= b && b <= '9') return 1;
if (b == '.' || b == ',') return 1;
if (b == 0) return 2;
if (b == 1) return 3;
if (b < 16) return 4;
if (b == 255) return 6;
if (b > 240) return 5;
return 7;
}
static uint8_t ByteKind2(uint8_t b) {
if ('a' <= b && b <= 'z') return 0;
if ('A' <= b && b <= 'Z') return 0;
if ('0' <= b && b <= '9') return 1;
if (b == '.' || b == ',') return 1;
if (b < 16) return 2;
if (b > 240) return 3;
return 4;
}
template <typename T>
T PredictValue(T p1, T p2, T p3, int order) {
if (order == 0) return p1;
if (order == 1) return 2 * p1 - p2;
if (order == 2) return 3 * p1 - 3 * p2 + p3;
return 0;
}
} // namespace
uint32_t DecodeUint32(const uint8_t* data, size_t size, size_t pos) {
return pos + 4 > size ? 0 : LoadBE32(data + pos);
}
void EncodeUint32(size_t pos, uint32_t value, PaddedBytes* data) {
if (pos + 4 > data->size()) return;
StoreBE32(value, data->data() + pos);
}
void AppendUint32(uint32_t value, PaddedBytes* data) {
data->resize(data->size() + 4);
EncodeUint32(data->size() - 4, value, data);
}
typedef std::array<uint8_t, 4> Tag;
Tag DecodeKeyword(const uint8_t* data, size_t size, size_t pos) {
if (pos + 4 > size) return {{' ', ' ', ' ', ' '}};
return {{data[pos], data[pos + 1], data[pos + 2], data[pos + 3]}};
}
void EncodeKeyword(const Tag& keyword, uint8_t* data, size_t size, size_t pos) {
if (keyword.size() != 4 || pos + 3 >= size) return;
for (size_t i = 0; i < 4; ++i) data[pos + i] = keyword[i];
}
void AppendKeyword(const Tag& keyword, PaddedBytes* data) {
JXL_ASSERT(keyword.size() == 4);
data->append(keyword);
}
// Checks if a + b > size, taking possible integer overflow into account.
Status CheckOutOfBounds(size_t a, size_t b, size_t size) {
size_t pos = a + b;
if (pos > size) return JXL_FAILURE("Out of bounds");
if (pos < a) return JXL_FAILURE("Out of bounds"); // overflow happened
return true;
}
Status CheckIs32Bit(uint64_t v) {
static constexpr const uint64_t kUpper32 = ~static_cast<uint64_t>(0xFFFFFFFF);
if ((v & kUpper32) != 0) return JXL_FAILURE("32-bit value expected");
return true;
}
PaddedBytes ICCInitialHeaderPrediction() {
PaddedBytes result(kICCHeaderSize);
for (size_t i = 0; i < kICCHeaderSize; i++) {
result[i] = 0;
}
result[8] = 4;
EncodeKeyword(kMntrTag, result.data(), result.size(), 12);
EncodeKeyword(kRgb_Tag, result.data(), result.size(), 16);
EncodeKeyword(kXyz_Tag, result.data(), result.size(), 20);
EncodeKeyword(kAcspTag, result.data(), result.size(), 36);
result[68] = 0;
result[69] = 0;
result[70] = 246;
result[71] = 214;
result[72] = 0;
result[73] = 1;
result[74] = 0;
result[75] = 0;
result[76] = 0;
result[77] = 0;
result[78] = 211;
result[79] = 45;
return result;
}
void ICCPredictHeader(const uint8_t* icc, size_t size, uint8_t* header,
size_t pos) {
if (pos == 8 && size >= 8) {
header[80] = icc[4];
header[81] = icc[5];
header[82] = icc[6];
header[83] = icc[7];
}
if (pos == 41 && size >= 41) {
if (icc[40] == 'A') {
header[41] = 'P';
header[42] = 'P';
header[43] = 'L';
}
if (icc[40] == 'M') {
header[41] = 'S';
header[42] = 'F';
header[43] = 'T';
}
}
if (pos == 42 && size >= 42) {
if (icc[40] == 'S' && icc[41] == 'G') {
header[42] = 'I';
header[43] = ' ';
}
if (icc[40] == 'S' && icc[41] == 'U') {
header[42] = 'N';
header[43] = 'W';
}
}
}
// Predicts a value with linear prediction of given order (0-2), for integers
// with width bytes and given stride in bytes between values.
// The start position is at start + i, and the relevant modulus of i describes
// which byte of the multi-byte integer is being handled.
// The value start + i must be at least stride * 4.
uint8_t LinearPredictICCValue(const uint8_t* data, size_t start, size_t i,
size_t stride, size_t width, int order) {
size_t pos = start + i;
if (width == 1) {
uint8_t p1 = data[pos - stride];
uint8_t p2 = data[pos - stride * 2];
uint8_t p3 = data[pos - stride * 3];
return PredictValue(p1, p2, p3, order);
} else if (width == 2) {
size_t p = start + (i & ~1);
uint16_t p1 = (data[p - stride * 1] << 8) + data[p - stride * 1 + 1];
uint16_t p2 = (data[p - stride * 2] << 8) + data[p - stride * 2 + 1];
uint16_t p3 = (data[p - stride * 3] << 8) + data[p - stride * 3 + 1];
uint16_t pred = PredictValue(p1, p2, p3, order);
return (i & 1) ? (pred & 255) : ((pred >> 8) & 255);
} else {
size_t p = start + (i & ~3);
uint32_t p1 = DecodeUint32(data, pos, p - stride);
uint32_t p2 = DecodeUint32(data, pos, p - stride * 2);
uint32_t p3 = DecodeUint32(data, pos, p - stride * 3);
uint32_t pred = PredictValue(p1, p2, p3, order);
unsigned shiftbytes = 3 - (i & 3);
return (pred >> (shiftbytes * 8)) & 255;
}
}
size_t ICCANSContext(size_t i, size_t b1, size_t b2) {
if (i <= 128) return 0;
return 1 + ByteKind1(b1) + ByteKind2(b2) * 8;
}
} // namespace jxl
|