1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/splines.h"
#include "lib/extras/codec.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_butteraugli_comparator.h"
#include "lib/jxl/enc_color_management.h"
#include "lib/jxl/enc_splines.h"
#include "lib/jxl/image_test_utils.h"
#include "lib/jxl/test_utils.h"
#include "lib/jxl/testing.h"
namespace jxl {
std::ostream& operator<<(std::ostream& os, const Spline::Point& p) {
return os << "(" << p.x << ", " << p.y << ")";
}
std::ostream& operator<<(std::ostream& os, const Spline& spline) {
return os << "(spline with " << spline.control_points.size()
<< " control points)";
}
namespace {
using ::testing::AllOf;
using ::testing::Field;
using ::testing::FloatNear;
using ::testing::Pointwise;
constexpr int kQuantizationAdjustment = 0;
const ColorCorrelationMap* const cmap = new ColorCorrelationMap;
const float kYToX = cmap->YtoXRatio(0);
const float kYToB = cmap->YtoBRatio(0);
constexpr float kTolerance = 0.003125;
std::vector<Spline> DequantizeSplines(const Splines& splines) {
const auto& quantized_splines = splines.QuantizedSplines();
const auto& starting_points = splines.StartingPoints();
JXL_CHECK(quantized_splines.size() == starting_points.size());
std::vector<Spline> dequantized;
uint64_t total = 0;
for (size_t i = 0; i < quantized_splines.size(); ++i) {
dequantized.emplace_back();
JXL_CHECK(quantized_splines[i].Dequantize(
starting_points[i], kQuantizationAdjustment, kYToX, kYToB, 2u << 30u,
&total, dequantized.back()));
}
return dequantized;
}
MATCHER(ControlPointIs, "") {
const Spline::Point& actual = std::get<0>(arg);
const Spline::Point& expected = std::get<1>(arg);
return testing::ExplainMatchResult(
AllOf(Field(&Spline::Point::x, FloatNear(expected.x, kTolerance)),
Field(&Spline::Point::y, FloatNear(expected.y, kTolerance))),
actual, result_listener);
}
MATCHER(ControlPointsMatch, "") {
const Spline& actual = std::get<0>(arg);
const Spline& expected = std::get<1>(arg);
return testing::ExplainMatchResult(
Field(&Spline::control_points,
Pointwise(ControlPointIs(), expected.control_points)),
actual, result_listener);
}
MATCHER(SplinesMatch, "") {
const Spline& actual = std::get<0>(arg);
const Spline& expected = std::get<1>(arg);
if (!testing::ExplainMatchResult(ControlPointsMatch(), arg,
result_listener)) {
return false;
}
for (int i = 0; i < 3; ++i) {
size_t color_dct_size =
sizeof(expected.color_dct[i]) / sizeof(expected.color_dct[i][0]);
for (size_t j = 0; j < color_dct_size; j++) {
testing::StringMatchResultListener color_dct_listener;
if (!testing::ExplainMatchResult(
FloatNear(expected.color_dct[i][j], kTolerance),
actual.color_dct[i][j], &color_dct_listener)) {
*result_listener << ", where color_dct[" << i << "][" << j
<< "] don't match, " << color_dct_listener.str();
return false;
}
}
}
size_t sigma_dct_size =
sizeof(expected.sigma_dct) / sizeof(expected.sigma_dct[0]);
for (size_t i = 0; i < sigma_dct_size; i++) {
testing::StringMatchResultListener sigma_listener;
if (!testing::ExplainMatchResult(
FloatNear(expected.sigma_dct[i], kTolerance), actual.sigma_dct[i],
&sigma_listener)) {
*result_listener << ", where sigma_dct[" << i << "] don't match, "
<< sigma_listener.str();
return false;
}
}
return true;
}
} // namespace
TEST(SplinesTest, Serialization) {
std::vector<Spline> spline_data = {
{/*control_points=*/{
{109, 54}, {218, 159}, {80, 3}, {110, 274}, {94, 185}, {17, 277}},
/*color_dct=*/
{{36.3, 39.7, 23.2, 67.5, 4.4, 71.5, 62.3, 32.3, 92.2, 10.1, 10.8,
9.2, 6.1, 10.5, 79.1, 7, 24.6, 90.8, 5.5, 84, 43.8, 49,
33.5, 78.9, 54.5, 77.9, 62.1, 51.4, 36.4, 14.3, 83.7, 35.4},
{9.4, 53.4, 9.5, 74.9, 72.7, 26.7, 7.9, 0.9, 84.9, 23.2, 26.5,
31.1, 91, 11.7, 74.1, 39.3, 23.7, 82.5, 4.8, 2.7, 61.2, 96.4,
13.7, 66.7, 62.9, 82.4, 5.9, 98.7, 21.5, 7.9, 51.7, 63.1},
{48, 39.3, 6.9, 26.3, 33.3, 6.2, 1.7, 98.9, 59.9, 59.6, 95,
61.3, 82.7, 53, 6.1, 30.4, 34.7, 96.9, 93.4, 17, 38.8, 80.8,
63, 18.6, 43.6, 32.3, 61, 20.2, 24.3, 28.3, 69.1, 62.4}},
/*sigma_dct=*/{32.7, 21.5, 44.4, 1.8, 45.8, 90.6, 29.3, 59.2,
23.7, 85.2, 84.8, 27.2, 42.1, 84.1, 50.6, 17.6,
93.7, 4.9, 2.6, 69.8, 94.9, 52, 24.3, 18.8,
12.1, 95.7, 28.5, 81.4, 89.9, 31.4, 74.8, 52}},
{/*control_points=*/{{172, 309},
{196, 277},
{42, 238},
{114, 350},
{307, 290},
{316, 269},
{124, 66},
{233, 267}},
/*color_dct=*/
{{15, 28.9, 22, 6.6, 41.8, 83, 8.6, 56.8, 68.9, 9.7, 5.4,
19.8, 70.8, 90, 52.5, 65.2, 7.8, 23.5, 26.4, 72.2, 64.7, 87.1,
1.3, 67.5, 46, 68.4, 65.4, 35.5, 29.1, 13, 41.6, 23.9},
{47.7, 79.4, 62.7, 29.1, 96.8, 18.5, 17.6, 15.2, 80.5, 56, 96.2,
59.9, 26.7, 96.1, 92.3, 42.1, 35.8, 54, 23.2, 55, 76, 35.8,
58.4, 88.7, 2.4, 78.1, 95.6, 27.5, 6.6, 78.5, 24.1, 69.8},
{43.8, 96.5, 0.9, 95.1, 49.1, 71.2, 25.1, 33.6, 75.2, 95, 82.1,
19.7, 10.5, 44.9, 50, 93.3, 83.5, 99.5, 64.6, 54, 3.5, 99.7,
45.3, 82.1, 22.4, 37.9, 60, 32.2, 12.6, 4.6, 65.5, 96.4}},
/*sigma_dct=*/{72.5, 2.6, 41.7, 2.2, 39.7, 79.1, 69.6, 19.9,
92.3, 71.5, 41.9, 62.1, 30, 49.4, 70.3, 45.3,
62.5, 47.2, 46.7, 41.2, 90.8, 46.8, 91.2, 55,
8.1, 69.6, 25.4, 84.7, 61.7, 27.6, 3.7, 46.9}},
{/*control_points=*/{{100, 186},
{257, 97},
{170, 49},
{25, 169},
{309, 104},
{232, 237},
{385, 101},
{122, 168},
{26, 300},
{390, 88}},
/*color_dct=*/
{{16.9, 64.8, 4.2, 10.6, 23.5, 17, 79.3, 5.7, 60.4, 16.6, 94.9,
63.7, 87.6, 10.5, 3.8, 61.1, 22.9, 81.9, 80.4, 40.5, 45.9, 25.4,
39.8, 30, 50.2, 90.4, 27.9, 93.7, 65.1, 48.2, 22.3, 43.9},
{24.9, 66, 3.5, 90.2, 97.1, 15.8, 35.6, 0.6, 68, 39.6, 24.4,
85.9, 57.7, 77.6, 47.5, 67.9, 4.3, 5.4, 91.2, 58.5, 0.1, 52.2,
3.5, 47.8, 63.2, 43.5, 85.8, 35.8, 50.2, 35.9, 19.2, 48.2},
{82.8, 44.9, 76.4, 39.5, 94.1, 14.3, 89.8, 10, 10.5, 74.5, 56.3,
65.8, 7.8, 23.3, 52.8, 99.3, 56.8, 46, 76.7, 13.5, 67, 22.4,
29.9, 43.3, 70.3, 26, 74.3, 53.9, 62, 19.1, 49.3, 46.7}},
/*sigma_dct=*/{83.5, 1.7, 25.1, 18.7, 46.5, 75.3, 28, 62.3,
50.3, 23.3, 85.6, 96, 45.8, 33.1, 33.4, 52.9,
26.3, 58.5, 19.6, 70, 92.6, 22.5, 57, 21.6,
76.8, 87.5, 22.9, 66.3, 35.7, 35.6, 56.8, 67.2}},
};
std::vector<QuantizedSpline> quantized_splines;
std::vector<Spline::Point> starting_points;
for (const Spline& spline : spline_data) {
quantized_splines.emplace_back(spline, kQuantizationAdjustment, kYToX,
kYToB);
starting_points.push_back(spline.control_points.front());
}
Splines splines(kQuantizationAdjustment, std::move(quantized_splines),
std::move(starting_points));
const std::vector<Spline> quantized_spline_data = DequantizeSplines(splines);
EXPECT_THAT(quantized_spline_data,
Pointwise(ControlPointsMatch(), spline_data));
BitWriter writer;
EncodeSplines(splines, &writer, kLayerSplines, HistogramParams(), nullptr);
writer.ZeroPadToByte();
const size_t bits_written = writer.BitsWritten();
printf("Wrote %" PRIuS " bits of splines.\n", bits_written);
BitReader reader(writer.GetSpan());
Splines decoded_splines;
ASSERT_TRUE(decoded_splines.Decode(&reader, /*num_pixels=*/1000));
ASSERT_TRUE(reader.JumpToByteBoundary());
EXPECT_EQ(reader.TotalBitsConsumed(), bits_written);
ASSERT_TRUE(reader.Close());
const std::vector<Spline> decoded_spline_data =
DequantizeSplines(decoded_splines);
EXPECT_THAT(decoded_spline_data,
Pointwise(SplinesMatch(), quantized_spline_data));
}
#ifdef JXL_CRASH_ON_ERROR
TEST(SplinesTest, DISABLED_TooManySplinesTest) {
#else
TEST(SplinesTest, TooManySplinesTest) {
#endif
// This is more than the limit for 1000 pixels.
const size_t kNumSplines = 300;
std::vector<QuantizedSpline> quantized_splines;
std::vector<Spline::Point> starting_points;
for (size_t i = 0; i < kNumSplines; i++) {
Spline spline = {
/*control_points=*/{{1.f + i, 2}, {10.f + i, 25}, {30.f + i, 300}},
/*color_dct=*/
{{1.f, 0.2f, 0.1f}, {35.7f, 10.3f}, {35.7f, 7.8f}},
/*sigma_dct=*/{10.f, 0.f, 0.f, 2.f}};
quantized_splines.emplace_back(spline, kQuantizationAdjustment, kYToX,
kYToB);
starting_points.push_back(spline.control_points.front());
}
Splines splines(kQuantizationAdjustment, std::move(quantized_splines),
std::move(starting_points));
BitWriter writer;
EncodeSplines(splines, &writer, kLayerSplines,
HistogramParams(SpeedTier::kFalcon, 1), nullptr);
writer.ZeroPadToByte();
// Re-read splines.
BitReader reader(writer.GetSpan());
Splines decoded_splines;
EXPECT_FALSE(decoded_splines.Decode(&reader, /*num_pixels=*/1000));
EXPECT_TRUE(reader.Close());
}
#ifdef JXL_CRASH_ON_ERROR
TEST(SplinesTest, DISABLED_DuplicatePoints) {
#else
TEST(SplinesTest, DuplicatePoints) {
#endif
std::vector<Spline::Point> control_points{
{9, 54}, {118, 159}, {97, 3}, // Repeated.
{97, 3}, {10, 40}, {150, 25}, {120, 300}};
Spline spline{control_points,
/*color_dct=*/
{{1.f, 0.2f, 0.1f}, {35.7f, 10.3f}, {35.7f, 7.8f}},
/*sigma_dct=*/{10.f, 0.f, 0.f, 2.f}};
std::vector<Spline> spline_data{spline};
std::vector<QuantizedSpline> quantized_splines;
std::vector<Spline::Point> starting_points;
for (const Spline& spline : spline_data) {
quantized_splines.emplace_back(spline, kQuantizationAdjustment, kYToX,
kYToB);
starting_points.push_back(spline.control_points.front());
}
Splines splines(kQuantizationAdjustment, std::move(quantized_splines),
std::move(starting_points));
Image3F image(320, 320);
ZeroFillImage(&image);
EXPECT_FALSE(
splines.InitializeDrawCache(image.xsize(), image.ysize(), *cmap));
}
TEST(SplinesTest, Drawing) {
CodecInOut io_expected;
const PaddedBytes orig = jxl::test::ReadTestData("jxl/splines.pfm");
ASSERT_TRUE(SetFromBytes(Span<const uint8_t>(orig), &io_expected,
/*pool=*/nullptr));
std::vector<Spline::Point> control_points{{9, 54}, {118, 159}, {97, 3},
{10, 40}, {150, 25}, {120, 300}};
// Use values that survive quant/decorellation roundtrip.
const Spline spline{
control_points,
/*color_dct=*/
{{0.4989345073699951171875000f, 0.4997999966144561767578125f},
{0.4772970676422119140625000f, 0.f, 0.5250000357627868652343750f},
{-0.0176776945590972900390625f, 0.4900000095367431640625000f,
0.5250000357627868652343750f}},
/*sigma_dct=*/
{0.9427147507667541503906250f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.6665999889373779296875000f}};
std::vector<Spline> spline_data = {spline};
std::vector<QuantizedSpline> quantized_splines;
std::vector<Spline::Point> starting_points;
for (const Spline& spline : spline_data) {
quantized_splines.emplace_back(spline, kQuantizationAdjustment, kYToX,
kYToB);
starting_points.push_back(spline.control_points.front());
}
Splines splines(kQuantizationAdjustment, std::move(quantized_splines),
std::move(starting_points));
Image3F image(320, 320);
ZeroFillImage(&image);
ASSERT_TRUE(splines.InitializeDrawCache(image.xsize(), image.ysize(), *cmap));
splines.AddTo(&image, Rect(image), Rect(image));
CodecInOut io_actual;
io_actual.SetFromImage(CopyImage(image), ColorEncoding::SRGB());
ASSERT_TRUE(io_actual.frames[0].TransformTo(io_expected.Main().c_current(),
GetJxlCms()));
JXL_ASSERT_OK(VerifyRelativeError(
*io_expected.Main().color(), *io_actual.Main().color(), 1e-2f, 1e-1f, _));
}
TEST(SplinesTest, ClearedEveryFrame) {
CodecInOut io_expected;
const PaddedBytes bytes_expected =
jxl::test::ReadTestData("jxl/spline_on_first_frame.png");
ASSERT_TRUE(SetFromBytes(Span<const uint8_t>(bytes_expected), &io_expected,
/*pool=*/nullptr));
CodecInOut io_actual;
const PaddedBytes bytes_actual =
jxl::test::ReadTestData("jxl/spline_on_first_frame.jxl");
ASSERT_TRUE(
test::DecodeFile({}, Span<const uint8_t>(bytes_actual), &io_actual));
ASSERT_TRUE(
io_actual.frames[0].TransformTo(ColorEncoding::SRGB(), GetJxlCms()));
for (size_t c = 0; c < 3; ++c) {
for (size_t y = 0; y < io_actual.ysize(); ++y) {
float* const JXL_RESTRICT row = io_actual.Main().color()->PlaneRow(c, y);
for (size_t x = 0; x < io_actual.xsize(); ++x) {
row[x] = Clamp1(row[x], 0.f, 1.f);
}
}
}
JXL_ASSERT_OK(VerifyRelativeError(
*io_expected.Main().color(), *io_actual.Main().color(), 1e-2f, 1e-1f, _));
}
} // namespace jxl
|