1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
/*
* Copyright 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pc/sctp_data_channel.h"
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include "absl/cleanup/cleanup.h"
#include "media/sctp/sctp_transport_internal.h"
#include "pc/proxy.h"
#include "pc/sctp_utils.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/system/unused.h"
#include "rtc_base/thread.h"
namespace webrtc {
namespace {
static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024;
static std::atomic<int> g_unique_id{0};
int GenerateUniqueId() {
return ++g_unique_id;
}
// Define proxy for DataChannelInterface.
BEGIN_PRIMARY_PROXY_MAP(DataChannel)
PROXY_PRIMARY_THREAD_DESTRUCTOR()
PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*)
PROXY_METHOD0(void, UnregisterObserver)
BYPASS_PROXY_CONSTMETHOD0(std::string, label)
BYPASS_PROXY_CONSTMETHOD0(bool, reliable)
BYPASS_PROXY_CONSTMETHOD0(bool, ordered)
BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime)
BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits)
BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxRetransmitsOpt)
BYPASS_PROXY_CONSTMETHOD0(absl::optional<int>, maxPacketLifeTime)
BYPASS_PROXY_CONSTMETHOD0(std::string, protocol)
BYPASS_PROXY_CONSTMETHOD0(bool, negotiated)
// Can't bypass the proxy since the id may change.
PROXY_CONSTMETHOD0(int, id)
BYPASS_PROXY_CONSTMETHOD0(Priority, priority)
PROXY_CONSTMETHOD0(DataState, state)
PROXY_CONSTMETHOD0(RTCError, error)
PROXY_CONSTMETHOD0(uint32_t, messages_sent)
PROXY_CONSTMETHOD0(uint64_t, bytes_sent)
PROXY_CONSTMETHOD0(uint32_t, messages_received)
PROXY_CONSTMETHOD0(uint64_t, bytes_received)
PROXY_CONSTMETHOD0(uint64_t, buffered_amount)
PROXY_METHOD0(void, Close)
// TODO(bugs.webrtc.org/11547): Change to run on the network thread.
PROXY_METHOD1(bool, Send, const DataBuffer&)
END_PROXY_MAP(DataChannel)
} // namespace
InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base)
: DataChannelInit(base), open_handshake_role(kOpener) {
// If the channel is externally negotiated, do not send the OPEN message.
if (base.negotiated) {
open_handshake_role = kNone;
} else {
// Datachannel is externally negotiated. Ignore the id value.
// Specified in createDataChannel, WebRTC spec section 6.1 bullet 13.
id = -1;
}
// Backwards compatibility: If maxRetransmits or maxRetransmitTime
// are negative, the feature is not enabled.
// Values are clamped to a 16bit range.
if (maxRetransmits) {
if (*maxRetransmits < 0) {
RTC_LOG(LS_ERROR)
<< "Accepting maxRetransmits < 0 for backwards compatibility";
maxRetransmits = absl::nullopt;
} else if (*maxRetransmits > std::numeric_limits<uint16_t>::max()) {
maxRetransmits = std::numeric_limits<uint16_t>::max();
}
}
if (maxRetransmitTime) {
if (*maxRetransmitTime < 0) {
RTC_LOG(LS_ERROR)
<< "Accepting maxRetransmitTime < 0 for backwards compatibility";
maxRetransmitTime = absl::nullopt;
} else if (*maxRetransmitTime > std::numeric_limits<uint16_t>::max()) {
maxRetransmitTime = std::numeric_limits<uint16_t>::max();
}
}
}
bool SctpSidAllocator::AllocateSid(rtc::SSLRole role, int* sid) {
int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1;
while (!IsSidAvailable(potential_sid)) {
potential_sid += 2;
if (potential_sid > static_cast<int>(cricket::kMaxSctpSid)) {
return false;
}
}
*sid = potential_sid;
used_sids_.insert(potential_sid);
return true;
}
bool SctpSidAllocator::ReserveSid(int sid) {
if (!IsSidAvailable(sid)) {
return false;
}
used_sids_.insert(sid);
return true;
}
void SctpSidAllocator::ReleaseSid(int sid) {
auto it = used_sids_.find(sid);
if (it != used_sids_.end()) {
used_sids_.erase(it);
}
}
bool SctpSidAllocator::IsSidAvailable(int sid) const {
if (sid < static_cast<int>(cricket::kMinSctpSid) ||
sid > static_cast<int>(cricket::kMaxSctpSid)) {
return false;
}
return used_sids_.find(sid) == used_sids_.end();
}
rtc::scoped_refptr<SctpDataChannel> SctpDataChannel::Create(
SctpDataChannelControllerInterface* controller,
const std::string& label,
const InternalDataChannelInit& config,
rtc::Thread* signaling_thread,
rtc::Thread* network_thread) {
auto channel = rtc::make_ref_counted<SctpDataChannel>(
config, controller, label, signaling_thread, network_thread);
if (!channel->Init()) {
return nullptr;
}
return channel;
}
// static
rtc::scoped_refptr<DataChannelInterface> SctpDataChannel::CreateProxy(
rtc::scoped_refptr<SctpDataChannel> channel) {
// TODO(bugs.webrtc.org/11547): incorporate the network thread in the proxy.
auto* signaling_thread = channel->signaling_thread_;
return DataChannelProxy::Create(signaling_thread, std::move(channel));
}
SctpDataChannel::SctpDataChannel(const InternalDataChannelInit& config,
SctpDataChannelControllerInterface* controller,
const std::string& label,
rtc::Thread* signaling_thread,
rtc::Thread* network_thread)
: signaling_thread_(signaling_thread),
network_thread_(network_thread),
internal_id_(GenerateUniqueId()),
label_(label),
config_(config),
observer_(nullptr),
controller_(controller) {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_UNUSED(network_thread_);
}
void SctpDataChannel::DetachFromController() {
RTC_DCHECK_RUN_ON(signaling_thread_);
controller_detached_ = true;
}
bool SctpDataChannel::Init() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (config_.id < -1 ||
(config_.maxRetransmits && *config_.maxRetransmits < 0) ||
(config_.maxRetransmitTime && *config_.maxRetransmitTime < 0)) {
RTC_LOG(LS_ERROR) << "Failed to initialize the SCTP data channel due to "
"invalid DataChannelInit.";
return false;
}
if (config_.maxRetransmits && config_.maxRetransmitTime) {
RTC_LOG(LS_ERROR)
<< "maxRetransmits and maxRetransmitTime should not be both set.";
return false;
}
switch (config_.open_handshake_role) {
case webrtc::InternalDataChannelInit::kNone: // pre-negotiated
handshake_state_ = kHandshakeReady;
break;
case webrtc::InternalDataChannelInit::kOpener:
handshake_state_ = kHandshakeShouldSendOpen;
break;
case webrtc::InternalDataChannelInit::kAcker:
handshake_state_ = kHandshakeShouldSendAck;
break;
}
// Try to connect to the transport in case the transport channel already
// exists.
OnTransportChannelCreated();
// Checks if the transport is ready to send because the initial channel
// ready signal may have been sent before the DataChannel creation.
// This has to be done async because the upper layer objects (e.g.
// Chrome glue and WebKit) are not wired up properly until after this
// function returns.
RTC_DCHECK(!controller_detached_);
if (controller_->ReadyToSendData()) {
AddRef();
absl::Cleanup release = [this] { Release(); };
rtc::Thread::Current()->PostTask([this, release = std::move(release)] {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ != kClosed)
OnTransportReady(true);
});
}
return true;
}
SctpDataChannel::~SctpDataChannel() {
RTC_DCHECK_RUN_ON(signaling_thread_);
}
void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
observer_ = observer;
DeliverQueuedReceivedData();
}
void SctpDataChannel::UnregisterObserver() {
RTC_DCHECK_RUN_ON(signaling_thread_);
observer_ = nullptr;
}
bool SctpDataChannel::reliable() const {
// May be called on any thread.
return !config_.maxRetransmits && !config_.maxRetransmitTime;
}
uint64_t SctpDataChannel::buffered_amount() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return queued_send_data_.byte_count();
}
void SctpDataChannel::Close() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ == kClosing || state_ == kClosed)
return;
SetState(kClosing);
// Will send queued data before beginning the underlying closing procedure.
UpdateState();
}
SctpDataChannel::DataState SctpDataChannel::state() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return state_;
}
RTCError SctpDataChannel::error() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return error_;
}
uint32_t SctpDataChannel::messages_sent() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return messages_sent_;
}
uint64_t SctpDataChannel::bytes_sent() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return bytes_sent_;
}
uint32_t SctpDataChannel::messages_received() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return messages_received_;
}
uint64_t SctpDataChannel::bytes_received() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
return bytes_received_;
}
bool SctpDataChannel::Send(const DataBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
// TODO(bugs.webrtc.org/11547): Expect this method to be called on the network
// thread. Bring buffer management etc to the network thread and keep the
// operational state management on the signaling thread.
if (state_ != kOpen) {
return false;
}
// If the queue is non-empty, we're waiting for SignalReadyToSend,
// so just add to the end of the queue and keep waiting.
if (!queued_send_data_.Empty()) {
if (!QueueSendDataMessage(buffer)) {
// Queue is full
return false;
}
return true;
}
SendDataMessage(buffer, true);
// Always return true for SCTP DataChannel per the spec.
return true;
}
void SctpDataChannel::SetSctpSid(int sid) {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_DCHECK_LT(config_.id, 0);
RTC_DCHECK_GE(sid, 0);
RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck);
RTC_DCHECK_EQ(state_, kConnecting);
if (config_.id == sid) {
return;
}
const_cast<InternalDataChannelInit&>(config_).id = sid;
RTC_DCHECK(!controller_detached_);
controller_->AddSctpDataStream(sid);
}
void SctpDataChannel::OnClosingProcedureStartedRemotely(int sid) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (sid == config_.id && state_ != kClosing && state_ != kClosed) {
// Don't bother sending queued data since the side that initiated the
// closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy
// discussion about this.
queued_send_data_.Clear();
queued_control_data_.Clear();
// Just need to change state to kClosing, SctpTransport will handle the
// rest of the closing procedure and OnClosingProcedureComplete will be
// called later.
started_closing_procedure_ = true;
SetState(kClosing);
}
}
void SctpDataChannel::OnClosingProcedureComplete(int sid) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (sid == config_.id) {
// If the closing procedure is complete, we should have finished sending
// all pending data and transitioned to kClosing already.
RTC_DCHECK_EQ(state_, kClosing);
RTC_DCHECK(queued_send_data_.Empty());
DisconnectFromTransport();
SetState(kClosed);
}
}
void SctpDataChannel::OnTransportChannelCreated() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (controller_detached_) {
return;
}
if (!connected_to_transport_) {
connected_to_transport_ = controller_->ConnectDataChannel(this);
}
// The sid may have been unassigned when controller_->ConnectDataChannel was
// done. So always add the streams even if connected_to_transport_ is true.
if (config_.id >= 0) {
controller_->AddSctpDataStream(config_.id);
}
}
void SctpDataChannel::OnTransportChannelClosed(RTCError error) {
// The SctpTransport is unusable, which could come from multiplie reasons:
// - the SCTP m= section was rejected
// - the DTLS transport is closed
// - the SCTP transport is closed
CloseAbruptlyWithError(std::move(error));
}
DataChannelStats SctpDataChannel::GetStats() const {
RTC_DCHECK_RUN_ON(signaling_thread_);
DataChannelStats stats{internal_id_, id(), label(),
protocol(), state(), messages_sent(),
messages_received(), bytes_sent(), bytes_received()};
return stats;
}
void SctpDataChannel::OnDataReceived(const cricket::ReceiveDataParams& params,
const rtc::CopyOnWriteBuffer& payload) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (params.sid != config_.id) {
return;
}
if (params.type == DataMessageType::kControl) {
if (handshake_state_ != kHandshakeWaitingForAck) {
// Ignore it if we are not expecting an ACK message.
RTC_LOG(LS_WARNING)
<< "DataChannel received unexpected CONTROL message, sid = "
<< params.sid;
return;
}
if (ParseDataChannelOpenAckMessage(payload)) {
// We can send unordered as soon as we receive the ACK message.
handshake_state_ = kHandshakeReady;
RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = "
<< params.sid;
} else {
RTC_LOG(LS_WARNING)
<< "DataChannel failed to parse OPEN_ACK message, sid = "
<< params.sid;
}
return;
}
RTC_DCHECK(params.type == DataMessageType::kBinary ||
params.type == DataMessageType::kText);
RTC_LOG(LS_VERBOSE) << "DataChannel received DATA message, sid = "
<< params.sid;
// We can send unordered as soon as we receive any DATA message since the
// remote side must have received the OPEN (and old clients do not send
// OPEN_ACK).
if (handshake_state_ == kHandshakeWaitingForAck) {
handshake_state_ = kHandshakeReady;
}
bool binary = (params.type == webrtc::DataMessageType::kBinary);
auto buffer = std::make_unique<DataBuffer>(payload, binary);
if (state_ == kOpen && observer_) {
++messages_received_;
bytes_received_ += buffer->size();
observer_->OnMessage(*buffer.get());
} else {
if (queued_received_data_.byte_count() + payload.size() >
kMaxQueuedReceivedDataBytes) {
RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size.";
queued_received_data_.Clear();
CloseAbruptlyWithError(
RTCError(RTCErrorType::RESOURCE_EXHAUSTED,
"Queued received data exceeds the max buffer size."));
return;
}
queued_received_data_.PushBack(std::move(buffer));
}
}
void SctpDataChannel::OnTransportReady(bool writable) {
RTC_DCHECK_RUN_ON(signaling_thread_);
writable_ = writable;
if (!writable) {
return;
}
SendQueuedControlMessages();
SendQueuedDataMessages();
UpdateState();
}
void SctpDataChannel::CloseAbruptlyWithError(RTCError error) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ == kClosed) {
return;
}
if (connected_to_transport_) {
DisconnectFromTransport();
}
// Closing abruptly means any queued data gets thrown away.
queued_send_data_.Clear();
queued_control_data_.Clear();
// Still go to "kClosing" before "kClosed", since observers may be expecting
// that.
SetState(kClosing);
error_ = std::move(error);
SetState(kClosed);
}
void SctpDataChannel::CloseAbruptlyWithDataChannelFailure(
const std::string& message) {
RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message);
error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE);
CloseAbruptlyWithError(std::move(error));
}
void SctpDataChannel::UpdateState() {
RTC_DCHECK_RUN_ON(signaling_thread_);
// UpdateState determines what to do from a few state variables. Include
// all conditions required for each state transition here for
// clarity. OnTransportReady(true) will send any queued data and then invoke
// UpdateState().
switch (state_) {
case kConnecting: {
if (connected_to_transport_) {
if (handshake_state_ == kHandshakeShouldSendOpen) {
rtc::CopyOnWriteBuffer payload;
WriteDataChannelOpenMessage(label_, config_, &payload);
SendControlMessage(payload);
} else if (handshake_state_ == kHandshakeShouldSendAck) {
rtc::CopyOnWriteBuffer payload;
WriteDataChannelOpenAckMessage(&payload);
SendControlMessage(payload);
}
if (writable_ && (handshake_state_ == kHandshakeReady ||
handshake_state_ == kHandshakeWaitingForAck)) {
SetState(kOpen);
// If we have received buffers before the channel got writable.
// Deliver them now.
DeliverQueuedReceivedData();
}
}
break;
}
case kOpen: {
break;
}
case kClosing: {
// Wait for all queued data to be sent before beginning the closing
// procedure.
if (queued_send_data_.Empty() && queued_control_data_.Empty()) {
// For SCTP data channels, we need to wait for the closing procedure
// to complete; after calling RemoveSctpDataStream,
// OnClosingProcedureComplete will end up called asynchronously
// afterwards.
if (connected_to_transport_ && !started_closing_procedure_ &&
!controller_detached_ && config_.id >= 0) {
started_closing_procedure_ = true;
controller_->RemoveSctpDataStream(config_.id);
}
}
break;
}
case kClosed:
break;
}
}
void SctpDataChannel::SetState(DataState state) {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (state_ == state) {
return;
}
state_ = state;
if (observer_) {
observer_->OnStateChange();
}
if (state_ == kOpen) {
SignalOpened(this);
} else if (state_ == kClosed) {
SignalClosed(this);
}
}
void SctpDataChannel::DisconnectFromTransport() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (!connected_to_transport_ || controller_detached_)
return;
controller_->DisconnectDataChannel(this);
connected_to_transport_ = false;
}
void SctpDataChannel::DeliverQueuedReceivedData() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (!observer_) {
return;
}
while (!queued_received_data_.Empty()) {
std::unique_ptr<DataBuffer> buffer = queued_received_data_.PopFront();
++messages_received_;
bytes_received_ += buffer->size();
observer_->OnMessage(*buffer);
}
}
void SctpDataChannel::SendQueuedDataMessages() {
RTC_DCHECK_RUN_ON(signaling_thread_);
if (queued_send_data_.Empty()) {
return;
}
RTC_DCHECK(state_ == kOpen || state_ == kClosing);
while (!queued_send_data_.Empty()) {
std::unique_ptr<DataBuffer> buffer = queued_send_data_.PopFront();
if (!SendDataMessage(*buffer, false)) {
// Return the message to the front of the queue if sending is aborted.
queued_send_data_.PushFront(std::move(buffer));
break;
}
}
}
bool SctpDataChannel::SendDataMessage(const DataBuffer& buffer,
bool queue_if_blocked) {
RTC_DCHECK_RUN_ON(signaling_thread_);
SendDataParams send_params;
if (controller_detached_) {
return false;
}
send_params.ordered = config_.ordered;
// Send as ordered if it is still going through OPEN/ACK signaling.
if (handshake_state_ != kHandshakeReady && !config_.ordered) {
send_params.ordered = true;
RTC_LOG(LS_VERBOSE)
<< "Sending data as ordered for unordered DataChannel "
"because the OPEN_ACK message has not been received.";
}
send_params.max_rtx_count = config_.maxRetransmits;
send_params.max_rtx_ms = config_.maxRetransmitTime;
send_params.type =
buffer.binary ? DataMessageType::kBinary : DataMessageType::kText;
cricket::SendDataResult send_result = cricket::SDR_SUCCESS;
bool success =
controller_->SendData(config_.id, send_params, buffer.data, &send_result);
if (success) {
++messages_sent_;
bytes_sent_ += buffer.size();
if (observer_ && buffer.size() > 0) {
observer_->OnBufferedAmountChange(buffer.size());
}
return true;
}
if (send_result == cricket::SDR_BLOCK) {
if (!queue_if_blocked || QueueSendDataMessage(buffer)) {
return false;
}
}
// Close the channel if the error is not SDR_BLOCK, or if queuing the
// message failed.
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, "
"send_result = "
<< send_result;
CloseAbruptlyWithError(
RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data"));
return false;
}
bool SctpDataChannel::QueueSendDataMessage(const DataBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
size_t start_buffered_amount = queued_send_data_.byte_count();
if (start_buffered_amount + buffer.size() >
DataChannelInterface::MaxSendQueueSize()) {
RTC_LOG(LS_ERROR) << "Can't buffer any more data for the data channel.";
return false;
}
queued_send_data_.PushBack(std::make_unique<DataBuffer>(buffer));
return true;
}
void SctpDataChannel::SendQueuedControlMessages() {
RTC_DCHECK_RUN_ON(signaling_thread_);
PacketQueue control_packets;
control_packets.Swap(&queued_control_data_);
while (!control_packets.Empty()) {
std::unique_ptr<DataBuffer> buf = control_packets.PopFront();
SendControlMessage(buf->data);
}
}
void SctpDataChannel::QueueControlMessage(
const rtc::CopyOnWriteBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
queued_control_data_.PushBack(std::make_unique<DataBuffer>(buffer, true));
}
bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) {
RTC_DCHECK_RUN_ON(signaling_thread_);
RTC_DCHECK(writable_);
RTC_DCHECK_GE(config_.id, 0);
if (controller_detached_) {
return false;
}
bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen;
RTC_DCHECK(!is_open_message || !config_.negotiated);
SendDataParams send_params;
// Send data as ordered before we receive any message from the remote peer to
// make sure the remote peer will not receive any data before it receives the
// OPEN message.
send_params.ordered = config_.ordered || is_open_message;
send_params.type = DataMessageType::kControl;
cricket::SendDataResult send_result = cricket::SDR_SUCCESS;
bool retval =
controller_->SendData(config_.id, send_params, buffer, &send_result);
if (retval) {
RTC_LOG(LS_VERBOSE) << "Sent CONTROL message on channel " << config_.id;
if (handshake_state_ == kHandshakeShouldSendAck) {
handshake_state_ = kHandshakeReady;
} else if (handshake_state_ == kHandshakeShouldSendOpen) {
handshake_state_ = kHandshakeWaitingForAck;
}
} else if (send_result == cricket::SDR_BLOCK) {
QueueControlMessage(buffer);
} else {
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send"
" the CONTROL message, send_result = "
<< send_result;
CloseAbruptlyWithError(RTCError(RTCErrorType::NETWORK_ERROR,
"Failed to send a CONTROL message"));
}
return retval;
}
// static
void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) {
g_unique_id = new_value;
}
SctpDataChannel* DowncastProxiedDataChannelInterfaceToSctpDataChannelForTesting(
DataChannelInterface* channel) {
return static_cast<SctpDataChannel*>(
static_cast<DataChannelProxy*>(channel)->internal());
}
} // namespace webrtc
|