1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
use rand::{Rng, SeedableRng};
use base64::engine::{general_purpose::STANDARD, Engine};
use base64::*;
use base64::engine::general_purpose::{GeneralPurpose, NO_PAD};
// generate random contents of the specified length and test encode/decode roundtrip
fn roundtrip_random<E: Engine>(
byte_buf: &mut Vec<u8>,
str_buf: &mut String,
engine: &E,
byte_len: usize,
approx_values_per_byte: u8,
max_rounds: u64,
) {
// let the short ones be short but don't let it get too crazy large
let num_rounds = calculate_number_of_rounds(byte_len, approx_values_per_byte, max_rounds);
let mut r = rand::rngs::SmallRng::from_entropy();
let mut decode_buf = Vec::new();
for _ in 0..num_rounds {
byte_buf.clear();
str_buf.clear();
decode_buf.clear();
while byte_buf.len() < byte_len {
byte_buf.push(r.gen::<u8>());
}
engine.encode_string(&byte_buf, str_buf);
engine.decode_vec(&str_buf, &mut decode_buf).unwrap();
assert_eq!(byte_buf, &decode_buf);
}
}
fn calculate_number_of_rounds(byte_len: usize, approx_values_per_byte: u8, max: u64) -> u64 {
// don't overflow
let mut prod = approx_values_per_byte as u64;
for _ in 0..byte_len {
if prod > max {
return max;
}
prod = prod.saturating_mul(prod);
}
prod
}
#[test]
fn roundtrip_random_short_standard() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
for input_len in 0..40 {
roundtrip_random(&mut byte_buf, &mut str_buf, &STANDARD, input_len, 4, 10000);
}
}
#[test]
fn roundtrip_random_with_fast_loop_standard() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
for input_len in 40..100 {
roundtrip_random(&mut byte_buf, &mut str_buf, &STANDARD, input_len, 4, 1000);
}
}
#[test]
fn roundtrip_random_short_no_padding() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
for input_len in 0..40 {
roundtrip_random(&mut byte_buf, &mut str_buf, &engine, input_len, 4, 10000);
}
}
#[test]
fn roundtrip_random_no_padding() {
let mut byte_buf: Vec<u8> = Vec::new();
let mut str_buf = String::new();
let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
for input_len in 40..100 {
roundtrip_random(&mut byte_buf, &mut str_buf, &engine, input_len, 4, 1000);
}
}
#[test]
fn roundtrip_decode_trailing_10_bytes() {
// This is a special case because we decode 8 byte blocks of input at a time as much as we can,
// ideally unrolled to 32 bytes at a time, in stages 1 and 2. Since we also write a u64's worth
// of bytes (8) to the output, we always write 2 garbage bytes that then will be overwritten by
// the NEXT block. However, if the next block only contains 2 bytes, it will decode to 1 byte,
// and therefore be too short to cover up the trailing 2 garbage bytes. Thus, we have stage 3
// to handle that case.
for num_quads in 0..25 {
let mut s: String = "ABCD".repeat(num_quads);
s.push_str("EFGHIJKLZg");
let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
let decoded = engine.decode(&s).unwrap();
assert_eq!(num_quads * 3 + 7, decoded.len());
assert_eq!(s, engine.encode(&decoded));
}
}
#[test]
fn display_wrapper_matches_normal_encode() {
let mut bytes = Vec::<u8>::with_capacity(256);
for i in 0..255 {
bytes.push(i);
}
bytes.push(255);
assert_eq!(
STANDARD.encode(&bytes),
format!("{}", display::Base64Display::new(&bytes, &STANDARD))
);
}
#[test]
fn encode_engine_slice_error_when_buffer_too_small() {
for num_triples in 1..100 {
let input = "AAA".repeat(num_triples);
let mut vec = vec![0; (num_triples - 1) * 4];
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
EncodeSliceError::OutputSliceTooSmall,
STANDARD.encode_slice(&input, &mut vec).unwrap_err()
);
vec.push(0);
assert_eq!(
num_triples * 4,
STANDARD.encode_slice(&input, &mut vec).unwrap()
);
}
}
|