1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
|
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This code writes out minidump files:
// http://msdn.microsoft.com/en-us/library/ms680378(VS.85,loband).aspx
//
// Minidumps are a Microsoft format which Breakpad uses for recording crash
// dumps. This code has to run in a compromised environment (the address space
// may have received SIGSEGV), thus the following rules apply:
// * You may not enter the dynamic linker. This means that we cannot call
// any symbols in a shared library (inc libc). Because of this we replace
// libc functions in linux_libc_support.h.
// * You may not call syscalls via the libc wrappers. This rule is a subset
// of the first rule but it bears repeating. We have direct wrappers
// around the system calls in linux_syscall_support.h.
// * You may not malloc. There's an alternative allocator in memory.h and
// a canonical instance in the LinuxDumper object. We use the placement
// new form to allocate objects and we don't delete them.
#include "linux/handler/minidump_descriptor.h"
#include "linux/minidump_writer/minidump_writer.h"
#include "minidump_file_writer-inl.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <link.h>
#include <stdio.h>
#if defined(__ANDROID__)
#include <sys/system_properties.h>
#endif
#include <sys/types.h>
#include <sys/ucontext.h>
#include <sys/user.h>
#include <sys/utsname.h>
#include <time.h>
#include <unistd.h>
#include <algorithm>
#include "linux/dump_writer_common/thread_info.h"
#include "linux/dump_writer_common/ucontext_reader.h"
#include "linux/handler/exception_handler.h"
#include "linux/minidump_writer/cpu_set.h"
#include "linux/minidump_writer/line_reader.h"
#include "linux/minidump_writer/linux_dumper.h"
#include "linux/minidump_writer/linux_ptrace_dumper.h"
#include "linux/minidump_writer/proc_cpuinfo_reader.h"
#include "minidump_file_writer.h"
#include "common/linux/file_id.h"
#include "common/linux/linux_libc_support.h"
#include "common/minidump_type_helper.h"
#include "google_breakpad/common/minidump_format.h"
#include "third_party/lss/linux_syscall_support.h"
namespace {
using google_breakpad::AppMemoryList;
using google_breakpad::auto_wasteful_vector;
using google_breakpad::ExceptionHandler;
using google_breakpad::CpuSet;
using google_breakpad::kDefaultBuildIdSize;
using google_breakpad::LineReader;
using google_breakpad::LinuxDumper;
using google_breakpad::LinuxPtraceDumper;
using google_breakpad::MDTypeHelper;
using google_breakpad::MappingEntry;
using google_breakpad::MappingInfo;
using google_breakpad::MappingList;
using google_breakpad::MinidumpFileWriter;
using google_breakpad::PageAllocator;
using google_breakpad::ProcCpuInfoReader;
using google_breakpad::RawContextCPU;
using google_breakpad::ThreadInfo;
using google_breakpad::TypedMDRVA;
using google_breakpad::UContextReader;
using google_breakpad::UntypedMDRVA;
using google_breakpad::wasteful_vector;
typedef MDTypeHelper<sizeof(void*)>::MDRawDebug MDRawDebug;
typedef MDTypeHelper<sizeof(void*)>::MDRawLinkMap MDRawLinkMap;
class MinidumpWriter {
public:
// The following kLimit* constants are for when minidump_size_limit_ is set
// and the minidump size might exceed it.
//
// Estimate for how big each thread's stack will be (in bytes).
static const unsigned kLimitAverageThreadStackLength = 8 * 1024;
// Number of threads whose stack size we don't want to limit. These base
// threads will simply be the first N threads returned by the dumper (although
// the crashing thread will never be limited). Threads beyond this count are
// the extra threads.
static const unsigned kLimitBaseThreadCount = 20;
// Maximum stack size to dump for any extra thread (in bytes).
static const unsigned kLimitMaxExtraThreadStackLen = 2 * 1024;
// Make sure this number of additional bytes can fit in the minidump
// (exclude the stack data).
static const unsigned kLimitMinidumpFudgeFactor = 64 * 1024;
MinidumpWriter(const char* minidump_path,
int minidump_fd,
const ExceptionHandler::CrashContext* context,
const MappingList& mappings,
const AppMemoryList& appmem,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks,
LinuxDumper* dumper)
: fd_(minidump_fd),
path_(minidump_path),
ucontext_(context ? &context->context : NULL),
#if !defined(__ARM_EABI__) && !defined(__mips__)
float_state_(context ? &context->float_state : NULL),
#endif
dumper_(dumper),
minidump_size_limit_(-1),
memory_blocks_(dumper_->allocator()),
mapping_list_(mappings),
app_memory_list_(appmem),
skip_stacks_if_mapping_unreferenced_(
skip_stacks_if_mapping_unreferenced),
principal_mapping_address_(principal_mapping_address),
principal_mapping_(nullptr),
sanitize_stacks_(sanitize_stacks) {
// Assert there should be either a valid fd or a valid path, not both.
assert(fd_ != -1 || minidump_path);
assert(fd_ == -1 || !minidump_path);
}
bool Init() {
if (!dumper_->Init())
return false;
if (!dumper_->ThreadsSuspend() || !dumper_->LateInit())
return false;
if (skip_stacks_if_mapping_unreferenced_) {
principal_mapping_ =
dumper_->FindMappingNoBias(principal_mapping_address_);
if (!CrashingThreadReferencesPrincipalMapping())
return false;
}
if (fd_ != -1)
minidump_writer_.SetFile(fd_);
else if (!minidump_writer_.Open(path_))
return false;
return true;
}
~MinidumpWriter() {
// Don't close the file descriptor when it's been provided explicitly.
// Callers might still need to use it.
if (fd_ == -1)
minidump_writer_.Close();
dumper_->ThreadsResume();
}
bool CrashingThreadReferencesPrincipalMapping() {
if (!ucontext_ || !principal_mapping_)
return false;
const uintptr_t low_addr =
principal_mapping_->system_mapping_info.start_addr;
const uintptr_t high_addr =
principal_mapping_->system_mapping_info.end_addr;
const uintptr_t stack_pointer = UContextReader::GetStackPointer(ucontext_);
const uintptr_t pc = UContextReader::GetInstructionPointer(ucontext_);
if (pc >= low_addr && pc < high_addr)
return true;
uint8_t* stack_copy;
const void* stack;
size_t stack_len;
if (!dumper_->GetStackInfo(&stack, &stack_len, stack_pointer))
return false;
stack_copy = reinterpret_cast<uint8_t*>(Alloc(stack_len));
dumper_->CopyFromProcess(stack_copy, GetCrashThread(), stack, stack_len);
uintptr_t stack_pointer_offset =
stack_pointer - reinterpret_cast<uintptr_t>(stack);
return dumper_->StackHasPointerToMapping(
stack_copy, stack_len, stack_pointer_offset, *principal_mapping_);
}
bool Dump() {
// A minidump file contains a number of tagged streams. This is the number
// of stream which we write.
unsigned kNumWriters = 14;
TypedMDRVA<MDRawDirectory> dir(&minidump_writer_);
{
// Ensure the header gets flushed, as that happens in the destructor.
// If we crash somewhere below, we should have a mostly-intact dump
TypedMDRVA<MDRawHeader> header(&minidump_writer_);
if (!header.Allocate())
return false;
if (!dir.AllocateArray(kNumWriters))
return false;
my_memset(header.get(), 0, sizeof(MDRawHeader));
header.get()->signature = MD_HEADER_SIGNATURE;
header.get()->version = MD_HEADER_VERSION;
header.get()->time_date_stamp = time(NULL);
header.get()->stream_count = kNumWriters;
header.get()->stream_directory_rva = dir.position();
}
unsigned dir_index = 0;
MDRawDirectory dirent;
if (!WriteThreadListStream(&dirent))
return false;
dir.CopyIndex(dir_index++, &dirent);
if (!WriteThreadNamesStream(&dirent))
return false;
dir.CopyIndex(dir_index++, &dirent);
if (!WriteMappings(&dirent))
return false;
dir.CopyIndex(dir_index++, &dirent);
if (!WriteAppMemory())
return false;
if (!WriteMemoryListStream(&dirent))
return false;
dir.CopyIndex(dir_index++, &dirent);
if (!WriteExceptionStream(&dirent))
return false;
dir.CopyIndex(dir_index++, &dirent);
if (!WriteSystemInfoStream(&dirent))
return false;
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_CPU_INFO;
if (!WriteFile(&dirent.location, "/proc/cpuinfo"))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_PROC_STATUS;
if (!WriteProcFile(&dirent.location, GetCrashThread(), "status"))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_LSB_RELEASE;
if (!WriteFile(&dirent.location, "/etc/lsb-release") &&
!WriteFile(&dirent.location, "/etc/os-release")) {
NullifyDirectoryEntry(&dirent);
}
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_CMD_LINE;
if (!WriteProcFile(&dirent.location, GetCrashThread(), "cmdline"))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_ENVIRON;
if (!WriteProcFile(&dirent.location, GetCrashThread(), "environ"))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_AUXV;
if (!WriteProcFile(&dirent.location, GetCrashThread(), "auxv"))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_MAPS;
if (!WriteProcFile(&dirent.location, GetCrashThread(), "maps"))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
dirent.stream_type = MD_LINUX_DSO_DEBUG;
if (!WriteDSODebugStream(&dirent))
NullifyDirectoryEntry(&dirent);
dir.CopyIndex(dir_index++, &dirent);
// If you add more directory entries, don't forget to update kNumWriters,
// above.
dumper_->ThreadsResume();
return true;
}
bool FillThreadStack(MDRawThread* thread, uintptr_t stack_pointer,
uintptr_t pc, int max_stack_len, uint8_t** stack_copy) {
*stack_copy = NULL;
const void* stack;
size_t stack_len;
thread->stack.start_of_memory_range = stack_pointer;
thread->stack.memory.data_size = 0;
thread->stack.memory.rva = minidump_writer_.position();
if (dumper_->GetStackInfo(&stack, &stack_len, stack_pointer)) {
if (max_stack_len >= 0 &&
stack_len > static_cast<unsigned int>(max_stack_len)) {
stack_len = max_stack_len;
// Skip empty chunks of length max_stack_len.
uintptr_t int_stack = reinterpret_cast<uintptr_t>(stack);
if (max_stack_len > 0) {
while (int_stack + max_stack_len < stack_pointer) {
int_stack += max_stack_len;
}
}
stack = reinterpret_cast<const void*>(int_stack);
}
*stack_copy = reinterpret_cast<uint8_t*>(Alloc(stack_len));
dumper_->CopyFromProcess(*stack_copy, thread->thread_id, stack,
stack_len);
uintptr_t stack_pointer_offset =
stack_pointer - reinterpret_cast<uintptr_t>(stack);
if (skip_stacks_if_mapping_unreferenced_) {
if (!principal_mapping_) {
return true;
}
uintptr_t low_addr = principal_mapping_->system_mapping_info.start_addr;
uintptr_t high_addr = principal_mapping_->system_mapping_info.end_addr;
if ((pc < low_addr || pc > high_addr) &&
!dumper_->StackHasPointerToMapping(*stack_copy, stack_len,
stack_pointer_offset,
*principal_mapping_)) {
return true;
}
}
if (sanitize_stacks_) {
dumper_->SanitizeStackCopy(*stack_copy, stack_len, stack_pointer,
stack_pointer_offset);
}
UntypedMDRVA memory(&minidump_writer_);
if (!memory.Allocate(stack_len))
return false;
memory.Copy(*stack_copy, stack_len);
thread->stack.start_of_memory_range = reinterpret_cast<uintptr_t>(stack);
thread->stack.memory = memory.location();
memory_blocks_.push_back(thread->stack);
}
return true;
}
// Write information about the threads.
bool WriteThreadListStream(MDRawDirectory* dirent) {
const unsigned num_threads = dumper_->threads().size();
TypedMDRVA<uint32_t> list(&minidump_writer_);
if (!list.AllocateObjectAndArray(num_threads, sizeof(MDRawThread)))
return false;
dirent->stream_type = MD_THREAD_LIST_STREAM;
dirent->location = list.location();
*list.get() = num_threads;
// If there's a minidump size limit, check if it might be exceeded. Since
// most of the space is filled with stack data, just check against that.
// If this expects to exceed the limit, set extra_thread_stack_len such
// that any thread beyond the first kLimitBaseThreadCount threads will
// have only kLimitMaxExtraThreadStackLen bytes dumped.
int extra_thread_stack_len = -1; // default to no maximum
if (minidump_size_limit_ >= 0) {
const unsigned estimated_total_stack_size = num_threads *
kLimitAverageThreadStackLength;
const off_t estimated_minidump_size = minidump_writer_.position() +
estimated_total_stack_size + kLimitMinidumpFudgeFactor;
if (estimated_minidump_size > minidump_size_limit_)
extra_thread_stack_len = kLimitMaxExtraThreadStackLen;
}
for (unsigned i = 0; i < num_threads; ++i) {
MDRawThread thread;
my_memset(&thread, 0, sizeof(thread));
thread.thread_id = dumper_->threads()[i];
// We have a different source of information for the crashing thread. If
// we used the actual state of the thread we would find it running in the
// signal handler with the alternative stack, which would be deeply
// unhelpful.
if (static_cast<pid_t>(thread.thread_id) == GetCrashThread() &&
ucontext_ &&
!dumper_->IsPostMortem()) {
uint8_t* stack_copy;
const uintptr_t stack_ptr = UContextReader::GetStackPointer(ucontext_);
if (!FillThreadStack(&thread, stack_ptr,
UContextReader::GetInstructionPointer(ucontext_),
-1, &stack_copy))
return false;
// Copy 256 bytes around crashing instruction pointer to minidump.
const size_t kIPMemorySize = 256;
uint64_t ip = UContextReader::GetInstructionPointer(ucontext_);
// Bound it to the upper and lower bounds of the memory map
// it's contained within. If it's not in mapped memory,
// don't bother trying to write it.
bool ip_is_mapped = false;
MDMemoryDescriptor ip_memory_d;
for (unsigned j = 0; j < dumper_->mappings().size(); ++j) {
const MappingInfo& mapping = *dumper_->mappings()[j];
if (ip >= mapping.start_addr &&
ip < mapping.start_addr + mapping.size) {
ip_is_mapped = true;
// Try to get 128 bytes before and after the IP, but
// settle for whatever's available.
ip_memory_d.start_of_memory_range =
std::max(mapping.start_addr,
uintptr_t(ip - (kIPMemorySize / 2)));
uintptr_t end_of_range =
std::min(uintptr_t(ip + (kIPMemorySize / 2)),
uintptr_t(mapping.start_addr + mapping.size));
ip_memory_d.memory.data_size =
end_of_range - ip_memory_d.start_of_memory_range;
break;
}
}
if (ip_is_mapped) {
UntypedMDRVA ip_memory(&minidump_writer_);
if (!ip_memory.Allocate(ip_memory_d.memory.data_size))
return false;
uint8_t* memory_copy =
reinterpret_cast<uint8_t*>(Alloc(ip_memory_d.memory.data_size));
dumper_->CopyFromProcess(
memory_copy,
thread.thread_id,
reinterpret_cast<void*>(ip_memory_d.start_of_memory_range),
ip_memory_d.memory.data_size);
ip_memory.Copy(memory_copy, ip_memory_d.memory.data_size);
ip_memory_d.memory = ip_memory.location();
memory_blocks_.push_back(ip_memory_d);
}
TypedMDRVA<RawContextCPU> cpu(&minidump_writer_);
if (!cpu.Allocate())
return false;
my_memset(cpu.get(), 0, sizeof(RawContextCPU));
#if !defined(__ARM_EABI__) && !defined(__mips__)
UContextReader::FillCPUContext(cpu.get(), ucontext_, float_state_);
#else
UContextReader::FillCPUContext(cpu.get(), ucontext_);
#endif
thread.thread_context = cpu.location();
crashing_thread_context_ = cpu.location();
} else {
ThreadInfo info;
if (!dumper_->GetThreadInfoByIndex(i, &info))
return false;
uint8_t* stack_copy;
int max_stack_len = -1; // default to no maximum for this thread
if (minidump_size_limit_ >= 0 && i >= kLimitBaseThreadCount)
max_stack_len = extra_thread_stack_len;
if (!FillThreadStack(&thread, info.stack_pointer,
info.GetInstructionPointer(), max_stack_len,
&stack_copy))
return false;
TypedMDRVA<RawContextCPU> cpu(&minidump_writer_);
if (!cpu.Allocate())
return false;
my_memset(cpu.get(), 0, sizeof(RawContextCPU));
info.FillCPUContext(cpu.get());
thread.thread_context = cpu.location();
if (dumper_->threads()[i] == GetCrashThread()) {
crashing_thread_context_ = cpu.location();
if (!dumper_->IsPostMortem()) {
// This is the crashing thread of a live process, but
// no context was provided, so set the crash address
// while the instruction pointer is already here.
dumper_->set_crash_address(info.GetInstructionPointer());
}
}
}
list.CopyIndexAfterObject(i, &thread, sizeof(thread));
}
return true;
}
bool WriteThreadName(pid_t tid, char* name, MDRawThreadName *thread_name) {
MDLocationDescriptor string_location;
if (!minidump_writer_.WriteString(name, 0, &string_location))
return false;
thread_name->thread_id = tid;
thread_name->rva_of_thread_name = string_location.rva;
return true;
}
// Write the threads' names.
bool WriteThreadNamesStream(MDRawDirectory* thread_names_stream) {
TypedMDRVA<MDRawThreadNamesList> list(&minidump_writer_);
const unsigned num_threads = dumper_->threads().size();
if (!list.AllocateObjectAndArray(num_threads, sizeof(MDRawThreadName))) {
return false;
}
thread_names_stream->stream_type = MD_THREAD_NAMES_STREAM;
thread_names_stream->location = list.location();
list.get()->number_of_thread_names = num_threads;
MDRawThreadName thread_name;
int thread_idx = 0;
for (unsigned int i = 0; i < num_threads; ++i) {
const pid_t tid = dumper_->threads()[i];
// This is a constant from the Linux kernel, documented in man 5 proc.
// The comm entries in /proc are no longer than this.
static const size_t TASK_COMM_LEN = 16;
char name[TASK_COMM_LEN];
memset(&thread_name, 0, sizeof(MDRawThreadName));
if (dumper_->GetThreadNameByIndex(i, name, sizeof(name))) {
if (WriteThreadName(tid, name, &thread_name)) {
list.CopyIndexAfterObject(thread_idx++, &thread_name,
sizeof(MDRawThreadName));
}
}
}
return true;
}
// Write application-provided memory regions.
bool WriteAppMemory() {
for (AppMemoryList::const_iterator iter = app_memory_list_.begin();
iter != app_memory_list_.end();
++iter) {
uint8_t* data_copy =
reinterpret_cast<uint8_t*>(dumper_->allocator()->Alloc(iter->length));
dumper_->CopyFromProcess(data_copy, GetCrashThread(), iter->ptr,
iter->length);
UntypedMDRVA memory(&minidump_writer_);
if (!memory.Allocate(iter->length)) {
return false;
}
memory.Copy(data_copy, iter->length);
MDMemoryDescriptor desc;
desc.start_of_memory_range = reinterpret_cast<uintptr_t>(iter->ptr);
desc.memory = memory.location();
memory_blocks_.push_back(desc);
}
return true;
}
static bool ShouldIncludeMapping(const MappingInfo& mapping) {
if (mapping.name[0] == 0 || // only want modules with filenames.
// Only want to include one mapping per shared lib.
// Avoid filtering executable mappings.
(mapping.offset != 0 && !mapping.exec) ||
mapping.size < 4096) { // too small to get a signature for.
return false;
}
return true;
}
// If there is caller-provided information about this mapping
// in the mapping_list_ list, return true. Otherwise, return false.
bool HaveMappingInfo(const MappingInfo& mapping) {
for (MappingList::const_iterator iter = mapping_list_.begin();
iter != mapping_list_.end();
++iter) {
// Ignore any mappings that are wholly contained within
// mappings in the mapping_info_ list.
if (mapping.start_addr >= iter->first.start_addr &&
(mapping.start_addr + mapping.size) <=
(iter->first.start_addr + iter->first.size)) {
return true;
}
}
return false;
}
// Write information about the mappings in effect. Because we are using the
// minidump format, the information about the mappings is pretty limited.
// Because of this, we also include the full, unparsed, /proc/$x/maps file in
// another stream in the file.
bool WriteMappings(MDRawDirectory* dirent) {
const unsigned num_mappings = dumper_->mappings().size();
unsigned num_output_mappings = mapping_list_.size();
for (unsigned i = 0; i < dumper_->mappings().size(); ++i) {
const MappingInfo& mapping = *dumper_->mappings()[i];
if (ShouldIncludeMapping(mapping) && !HaveMappingInfo(mapping))
num_output_mappings++;
}
TypedMDRVA<uint32_t> list(&minidump_writer_);
if (num_output_mappings) {
if (!list.AllocateObjectAndArray(num_output_mappings, MD_MODULE_SIZE))
return false;
} else {
// Still create the module list stream, although it will have zero
// modules.
if (!list.Allocate())
return false;
}
dirent->stream_type = MD_MODULE_LIST_STREAM;
dirent->location = list.location();
*list.get() = num_output_mappings;
// First write all the mappings from the dumper
unsigned int j = 0;
for (unsigned i = 0; i < num_mappings; ++i) {
const MappingInfo& mapping = *dumper_->mappings()[i];
if (!ShouldIncludeMapping(mapping) || HaveMappingInfo(mapping))
continue;
MDRawModule mod;
if (!FillRawModule(mapping, true, i, &mod, NULL))
return false;
list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE);
}
// Next write all the mappings provided by the caller
for (MappingList::const_iterator iter = mapping_list_.begin();
iter != mapping_list_.end();
++iter) {
MDRawModule mod;
if (!FillRawModule(iter->first, false, 0, &mod, &iter->second)) {
return false;
}
list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE);
}
return true;
}
// Fill the MDRawModule |mod| with information about the provided
// |mapping|. If |identifier| is non-NULL, use it instead of calculating
// a file ID from the mapping.
bool FillRawModule(const MappingInfo& mapping,
bool member,
unsigned int mapping_id,
MDRawModule* mod,
const std::vector<uint8_t>* identifier) {
my_memset(mod, 0, MD_MODULE_SIZE);
mod->base_of_image = mapping.start_addr;
mod->size_of_image = mapping.size;
auto_wasteful_vector<uint8_t, kDefaultBuildIdSize> identifier_bytes(
dumper_->allocator());
if (identifier) {
// GUID was provided by caller.
identifier_bytes.insert(identifier_bytes.end(),
identifier->begin(),
identifier->end());
} else {
// Note: ElfFileIdentifierForMapping() can manipulate the |mapping.name|.
if (!dumper_->ElfFileIdentifierForMapping(mapping,
member,
mapping_id,
identifier_bytes)) {
identifier_bytes.clear();
}
}
if (!identifier_bytes.empty()) {
UntypedMDRVA cv(&minidump_writer_);
if (!cv.Allocate(MDCVInfoELF_minsize + identifier_bytes.size()))
return false;
const uint32_t cv_signature = MD_CVINFOELF_SIGNATURE;
cv.Copy(&cv_signature, sizeof(cv_signature));
cv.Copy(cv.position() + sizeof(cv_signature), &identifier_bytes[0],
identifier_bytes.size());
mod->cv_record = cv.location();
}
char file_name[NAME_MAX];
char file_path[NAME_MAX];
dumper_->GetMappingEffectiveNameAndPath(
mapping, file_path, sizeof(file_path), file_name, sizeof(file_name));
MDLocationDescriptor ld;
if (!minidump_writer_.WriteString(file_path, my_strlen(file_path), &ld))
return false;
mod->module_name_rva = ld.rva;
return true;
}
bool WriteMemoryListStream(MDRawDirectory* dirent) {
TypedMDRVA<uint32_t> list(&minidump_writer_);
if (!memory_blocks_.empty()) {
if (!list.AllocateObjectAndArray(memory_blocks_.size(),
sizeof(MDMemoryDescriptor)))
return false;
} else {
// Still create the memory list stream, although it will have zero
// memory blocks.
if (!list.Allocate())
return false;
}
dirent->stream_type = MD_MEMORY_LIST_STREAM;
dirent->location = list.location();
*list.get() = memory_blocks_.size();
for (size_t i = 0; i < memory_blocks_.size(); ++i) {
list.CopyIndexAfterObject(i, &memory_blocks_[i],
sizeof(MDMemoryDescriptor));
}
return true;
}
bool WriteExceptionStream(MDRawDirectory* dirent) {
TypedMDRVA<MDRawExceptionStream> exc(&minidump_writer_);
if (!exc.Allocate())
return false;
MDRawExceptionStream* stream = exc.get();
my_memset(stream, 0, sizeof(MDRawExceptionStream));
dirent->stream_type = MD_EXCEPTION_STREAM;
dirent->location = exc.location();
stream->thread_id = GetCrashThread();
stream->exception_record.exception_code = dumper_->crash_signal();
stream->exception_record.exception_flags = dumper_->crash_signal_code();
stream->exception_record.exception_address = dumper_->crash_address();
const std::vector<uint64_t> crash_exception_info =
dumper_->crash_exception_info();
stream->exception_record.number_parameters = crash_exception_info.size();
memcpy(stream->exception_record.exception_information,
crash_exception_info.data(),
sizeof(uint64_t) * crash_exception_info.size());
stream->thread_context = crashing_thread_context_;
return true;
}
bool WriteSystemInfoStream(MDRawDirectory* dirent) {
TypedMDRVA<MDRawSystemInfo> si(&minidump_writer_);
if (!si.Allocate())
return false;
my_memset(si.get(), 0, sizeof(MDRawSystemInfo));
dirent->stream_type = MD_SYSTEM_INFO_STREAM;
dirent->location = si.location();
WriteCPUInformation(si.get());
WriteOSInformation(si.get());
return true;
}
bool WriteDSODebugStream(MDRawDirectory* dirent) {
ElfW(Phdr)* phdr = reinterpret_cast<ElfW(Phdr) *>(dumper_->auxv()[AT_PHDR]);
char* base;
int phnum = dumper_->auxv()[AT_PHNUM];
if (!phnum || !phdr)
return false;
// Assume the program base is at the beginning of the same page as the PHDR
base = reinterpret_cast<char *>(reinterpret_cast<uintptr_t>(phdr) & ~0xfff);
// Search for the program PT_DYNAMIC segment
ElfW(Addr) dyn_addr = 0;
for (; phnum >= 0; phnum--, phdr++) {
ElfW(Phdr) ph;
if (!dumper_->CopyFromProcess(&ph, dumper_->pid(), phdr, sizeof(ph)))
return false;
// Adjust base address with the virtual address of the PT_LOAD segment
// corresponding to offset 0
if (ph.p_type == PT_LOAD && ph.p_offset == 0) {
base -= ph.p_vaddr;
}
if (ph.p_type == PT_DYNAMIC) {
dyn_addr = ph.p_vaddr;
}
}
if (!dyn_addr)
return false;
ElfW(Dyn) *dynamic = reinterpret_cast<ElfW(Dyn) *>(dyn_addr + base);
// The dynamic linker makes information available that helps gdb find all
// DSOs loaded into the program. If this information is indeed available,
// dump it to a MD_LINUX_DSO_DEBUG stream.
struct r_debug* r_debug = NULL;
uint32_t dynamic_length = 0;
for (int i = 0; ; ++i) {
ElfW(Dyn) dyn;
dynamic_length += sizeof(dyn);
if (!dumper_->CopyFromProcess(&dyn, dumper_->pid(), dynamic + i, sizeof(dyn))) {
return false;
}
#ifdef __mips__
const int32_t debug_tag = DT_MIPS_RLD_MAP;
#else
const int32_t debug_tag = DT_DEBUG;
#endif
if (dyn.d_tag == debug_tag) {
r_debug = reinterpret_cast<struct r_debug*>(dyn.d_un.d_ptr);
continue;
} else if (dyn.d_tag == DT_NULL) {
break;
}
}
// The "r_map" field of that r_debug struct contains a linked list of all
// loaded DSOs.
// Our list of DSOs potentially is different from the ones in the crashing
// process. So, we have to be careful to never dereference pointers
// directly. Instead, we use CopyFromProcess() everywhere.
// See <link.h> for a more detailed discussion of the how the dynamic
// loader communicates with debuggers.
// Count the number of loaded DSOs
int dso_count = 0;
struct r_debug debug_entry;
if (!dumper_->CopyFromProcess(&debug_entry, dumper_->pid(), r_debug,
sizeof(debug_entry))) {
return false;
}
for (struct link_map* ptr = debug_entry.r_map; ptr; ) {
struct link_map map;
if (!dumper_->CopyFromProcess(&map, dumper_->pid(), ptr, sizeof(map)))
return false;
ptr = map.l_next;
dso_count++;
}
MDRVA linkmap_rva = MinidumpFileWriter::kInvalidMDRVA;
if (dso_count > 0) {
// If we have at least one DSO, create an array of MDRawLinkMap
// entries in the minidump file.
TypedMDRVA<MDRawLinkMap> linkmap(&minidump_writer_);
if (!linkmap.AllocateArray(dso_count))
return false;
linkmap_rva = linkmap.location().rva;
int idx = 0;
// Iterate over DSOs and write their information to mini dump
for (struct link_map* ptr = debug_entry.r_map; ptr; ) {
struct link_map map;
if (!dumper_->CopyFromProcess(&map, dumper_->pid(), ptr, sizeof(map)))
return false;
ptr = map.l_next;
char filename[257] = { 0 };
if (map.l_name) {
dumper_->CopyFromProcess(filename, dumper_->pid(), map.l_name,
sizeof(filename) - 1);
}
MDLocationDescriptor location;
if (!minidump_writer_.WriteString(filename, 0, &location))
return false;
MDRawLinkMap entry;
entry.name = location.rva;
entry.addr = map.l_addr;
entry.ld = reinterpret_cast<uintptr_t>(map.l_ld);
linkmap.CopyIndex(idx++, &entry);
}
}
// Write MD_LINUX_DSO_DEBUG record
TypedMDRVA<MDRawDebug> debug(&minidump_writer_);
if (!debug.AllocateObjectAndArray(1, dynamic_length))
return false;
my_memset(debug.get(), 0, sizeof(MDRawDebug));
dirent->stream_type = MD_LINUX_DSO_DEBUG;
dirent->location = debug.location();
debug.get()->version = debug_entry.r_version;
debug.get()->map = linkmap_rva;
debug.get()->dso_count = dso_count;
debug.get()->brk = debug_entry.r_brk;
debug.get()->ldbase = debug_entry.r_ldbase;
debug.get()->dynamic = reinterpret_cast<uintptr_t>(dynamic);
wasteful_vector<char> dso_debug_data(dumper_->allocator(), dynamic_length);
// The passed-in size to the constructor (above) is only a hint.
// Must call .resize() to do actual initialization of the elements.
dso_debug_data.resize(dynamic_length);
dumper_->CopyFromProcess(&dso_debug_data[0], dumper_->pid(), dynamic,
dynamic_length);
debug.CopyIndexAfterObject(0, &dso_debug_data[0], dynamic_length);
return true;
}
void set_minidump_size_limit(off_t limit) { minidump_size_limit_ = limit; }
private:
void* Alloc(unsigned bytes) {
return dumper_->allocator()->Alloc(bytes);
}
pid_t GetCrashThread() const {
return dumper_->crash_thread();
}
void NullifyDirectoryEntry(MDRawDirectory* dirent) {
dirent->stream_type = 0;
dirent->location.data_size = 0;
dirent->location.rva = 0;
}
#if defined(__i386__) || defined(__x86_64__) || defined(__mips__)
bool WriteCPUInformation(MDRawSystemInfo* sys_info) {
char vendor_id[sizeof(sys_info->cpu.x86_cpu_info.vendor_id) + 1] = {0};
static const char vendor_id_name[] = "vendor_id";
struct CpuInfoEntry {
const char* info_name;
int value;
bool found;
} cpu_info_table[] = {
{ "processor", -1, false },
#if defined(__i386__) || defined(__x86_64__)
{ "model", 0, false },
{ "stepping", 0, false },
{ "cpu family", 0, false },
#endif
};
// processor_architecture should always be set, do this first
sys_info->processor_architecture =
#if defined(__mips__)
# if _MIPS_SIM == _ABIO32
MD_CPU_ARCHITECTURE_MIPS;
# elif _MIPS_SIM == _ABI64
MD_CPU_ARCHITECTURE_MIPS64;
# else
# error "This mips ABI is currently not supported (n32)"
#endif
#elif defined(__i386__)
MD_CPU_ARCHITECTURE_X86;
#else
MD_CPU_ARCHITECTURE_AMD64;
#endif
const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0);
if (fd < 0)
return false;
{
PageAllocator allocator;
ProcCpuInfoReader* const reader = new(allocator) ProcCpuInfoReader(fd);
const char* field;
while (reader->GetNextField(&field)) {
bool is_first_entry = true;
for (CpuInfoEntry& entry : cpu_info_table) {
if (!is_first_entry && entry.found) {
// except for the 'processor' field, ignore repeated values.
continue;
}
is_first_entry = false;
if (!my_strcmp(field, entry.info_name)) {
size_t value_len;
const char* value = reader->GetValueAndLen(&value_len);
if (value_len == 0)
continue;
uintptr_t val;
if (my_read_decimal_ptr(&val, value) == value)
continue;
entry.value = static_cast<int>(val);
entry.found = true;
}
}
// special case for vendor_id
if (!my_strcmp(field, vendor_id_name)) {
size_t value_len;
const char* value = reader->GetValueAndLen(&value_len);
if (value_len > 0)
my_strlcpy(vendor_id, value, sizeof(vendor_id));
}
}
sys_close(fd);
}
// make sure we got everything we wanted
for (const CpuInfoEntry& entry : cpu_info_table) {
if (!entry.found) {
return false;
}
}
// cpu_info_table[0] holds the last cpu id listed in /proc/cpuinfo,
// assuming this is the highest id, change it to the number of CPUs
// by adding one.
cpu_info_table[0].value++;
sys_info->number_of_processors = cpu_info_table[0].value;
#if defined(__i386__) || defined(__x86_64__)
sys_info->processor_level = cpu_info_table[3].value;
sys_info->processor_revision = cpu_info_table[1].value << 8 |
cpu_info_table[2].value;
#endif
if (vendor_id[0] != '\0') {
my_memcpy(sys_info->cpu.x86_cpu_info.vendor_id, vendor_id,
sizeof(sys_info->cpu.x86_cpu_info.vendor_id));
}
return true;
}
#elif defined(__arm__) || defined(__aarch64__)
bool WriteCPUInformation(MDRawSystemInfo* sys_info) {
// The CPUID value is broken up in several entries in /proc/cpuinfo.
// This table is used to rebuild it from the entries.
const struct CpuIdEntry {
const char* field;
char format;
char bit_lshift;
char bit_length;
} cpu_id_entries[] = {
{ "CPU implementer", 'x', 24, 8 },
{ "CPU variant", 'x', 20, 4 },
{ "CPU part", 'x', 4, 12 },
{ "CPU revision", 'd', 0, 4 },
};
// The ELF hwcaps are listed in the "Features" entry as textual tags.
// This table is used to rebuild them.
const struct CpuFeaturesEntry {
const char* tag;
uint32_t hwcaps;
} cpu_features_entries[] = {
#if defined(__arm__)
{ "swp", MD_CPU_ARM_ELF_HWCAP_SWP },
{ "half", MD_CPU_ARM_ELF_HWCAP_HALF },
{ "thumb", MD_CPU_ARM_ELF_HWCAP_THUMB },
{ "26bit", MD_CPU_ARM_ELF_HWCAP_26BIT },
{ "fastmult", MD_CPU_ARM_ELF_HWCAP_FAST_MULT },
{ "fpa", MD_CPU_ARM_ELF_HWCAP_FPA },
{ "vfp", MD_CPU_ARM_ELF_HWCAP_VFP },
{ "edsp", MD_CPU_ARM_ELF_HWCAP_EDSP },
{ "java", MD_CPU_ARM_ELF_HWCAP_JAVA },
{ "iwmmxt", MD_CPU_ARM_ELF_HWCAP_IWMMXT },
{ "crunch", MD_CPU_ARM_ELF_HWCAP_CRUNCH },
{ "thumbee", MD_CPU_ARM_ELF_HWCAP_THUMBEE },
{ "neon", MD_CPU_ARM_ELF_HWCAP_NEON },
{ "vfpv3", MD_CPU_ARM_ELF_HWCAP_VFPv3 },
{ "vfpv3d16", MD_CPU_ARM_ELF_HWCAP_VFPv3D16 },
{ "tls", MD_CPU_ARM_ELF_HWCAP_TLS },
{ "vfpv4", MD_CPU_ARM_ELF_HWCAP_VFPv4 },
{ "idiva", MD_CPU_ARM_ELF_HWCAP_IDIVA },
{ "idivt", MD_CPU_ARM_ELF_HWCAP_IDIVT },
{ "idiv", MD_CPU_ARM_ELF_HWCAP_IDIVA | MD_CPU_ARM_ELF_HWCAP_IDIVT },
#elif defined(__aarch64__)
// No hwcaps on aarch64.
#endif
};
// processor_architecture should always be set, do this first
sys_info->processor_architecture =
#if defined(__aarch64__)
MD_CPU_ARCHITECTURE_ARM64_OLD;
#else
MD_CPU_ARCHITECTURE_ARM;
#endif
// /proc/cpuinfo is not readable under various sandboxed environments
// (e.g. Android services with the android:isolatedProcess attribute)
// prepare for this by setting default values now, which will be
// returned when this happens.
//
// Note: Bogus values are used to distinguish between failures (to
// read /sys and /proc files) and really badly configured kernels.
sys_info->number_of_processors = 0;
sys_info->processor_level = 1U; // There is no ARMv1
sys_info->processor_revision = 42;
sys_info->cpu.arm_cpu_info.cpuid = 0;
sys_info->cpu.arm_cpu_info.elf_hwcaps = 0;
// Counting the number of CPUs involves parsing two sysfs files,
// because the content of /proc/cpuinfo will only mirror the number
// of 'online' cores, and thus will vary with time.
// See http://www.kernel.org/doc/Documentation/cputopology.txt
{
CpuSet cpus_present;
CpuSet cpus_possible;
int fd = sys_open("/sys/devices/system/cpu/present", O_RDONLY, 0);
if (fd >= 0) {
cpus_present.ParseSysFile(fd);
sys_close(fd);
fd = sys_open("/sys/devices/system/cpu/possible", O_RDONLY, 0);
if (fd >= 0) {
cpus_possible.ParseSysFile(fd);
sys_close(fd);
cpus_present.IntersectWith(cpus_possible);
int cpu_count = cpus_present.GetCount();
if (cpu_count > 255)
cpu_count = 255;
sys_info->number_of_processors = static_cast<uint8_t>(cpu_count);
}
}
}
// Parse /proc/cpuinfo to reconstruct the CPUID value, as well
// as the ELF hwcaps field. For the latter, it would be easier to
// read /proc/self/auxv but unfortunately, this file is not always
// readable from regular Android applications on later versions
// (>= 4.1) of the Android platform.
const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0);
if (fd < 0) {
// Do not return false here to allow the minidump generation
// to happen properly.
return true;
}
{
PageAllocator allocator;
ProcCpuInfoReader* const reader =
new(allocator) ProcCpuInfoReader(fd);
const char* field;
while (reader->GetNextField(&field)) {
for (const CpuIdEntry& entry : cpu_id_entries) {
if (my_strcmp(entry.field, field) != 0)
continue;
uintptr_t result = 0;
const char* value = reader->GetValue();
const char* p = value;
if (value[0] == '0' && value[1] == 'x') {
p = my_read_hex_ptr(&result, value+2);
} else if (entry.format == 'x') {
p = my_read_hex_ptr(&result, value);
} else {
p = my_read_decimal_ptr(&result, value);
}
if (p == value)
continue;
result &= (1U << entry.bit_length)-1;
result <<= entry.bit_lshift;
sys_info->cpu.arm_cpu_info.cpuid |=
static_cast<uint32_t>(result);
}
#if defined(__arm__)
// Get the architecture version from the "Processor" field.
// Note that it is also available in the "CPU architecture" field,
// however, some existing kernels are misconfigured and will report
// invalid values here (e.g. 6, while the CPU is ARMv7-A based).
// The "Processor" field doesn't have this issue.
if (!my_strcmp(field, "Processor")) {
size_t value_len;
const char* value = reader->GetValueAndLen(&value_len);
// Expected format: <text> (v<level><endian>)
// Where <text> is some text like "ARMv7 Processor rev 2"
// and <level> is a decimal corresponding to the ARM
// architecture number. <endian> is either 'l' or 'b'
// and corresponds to the endianess, it is ignored here.
while (value_len > 0 && my_isspace(value[value_len-1]))
value_len--;
size_t nn = value_len;
while (nn > 0 && value[nn-1] != '(')
nn--;
if (nn > 0 && value[nn] == 'v') {
uintptr_t arch_level = 5;
my_read_decimal_ptr(&arch_level, value + nn + 1);
sys_info->processor_level = static_cast<uint16_t>(arch_level);
}
}
#elif defined(__aarch64__)
// The aarch64 architecture does not provide the architecture level
// in the Processor field, so we instead check the "CPU architecture"
// field.
if (!my_strcmp(field, "CPU architecture")) {
uintptr_t arch_level = 0;
const char* value = reader->GetValue();
const char* p = value;
p = my_read_decimal_ptr(&arch_level, value);
if (p == value)
continue;
sys_info->processor_level = static_cast<uint16_t>(arch_level);
}
#endif
// Rebuild the ELF hwcaps from the 'Features' field.
if (!my_strcmp(field, "Features")) {
size_t value_len;
const char* value = reader->GetValueAndLen(&value_len);
// Parse each space-separated tag.
while (value_len > 0) {
const char* tag = value;
size_t tag_len = value_len;
const char* p = my_strchr(tag, ' ');
if (p) {
tag_len = static_cast<size_t>(p - tag);
value += tag_len + 1;
value_len -= tag_len + 1;
} else {
tag_len = strlen(tag);
value_len = 0;
}
for (const CpuFeaturesEntry& entry : cpu_features_entries) {
if (tag_len == strlen(entry.tag) &&
!memcmp(tag, entry.tag, tag_len)) {
sys_info->cpu.arm_cpu_info.elf_hwcaps |= entry.hwcaps;
break;
}
}
}
}
}
sys_close(fd);
}
return true;
}
#else
# error "Unsupported CPU"
#endif
bool WriteFile(MDLocationDescriptor* result, const char* filename) {
const int fd = sys_open(filename, O_RDONLY, 0);
if (fd < 0)
return false;
// We can't stat the files because several of the files that we want to
// read are kernel seqfiles, which always have a length of zero. So we have
// to read as much as we can into a buffer.
static const unsigned kBufSize = 1024 - 2*sizeof(void*);
struct Buffers {
Buffers* next;
size_t len;
uint8_t data[kBufSize];
} *buffers = reinterpret_cast<Buffers*>(Alloc(sizeof(Buffers)));
buffers->next = NULL;
buffers->len = 0;
size_t total = 0;
for (Buffers* bufptr = buffers;;) {
ssize_t r;
do {
r = sys_read(fd, &bufptr->data[bufptr->len], kBufSize - bufptr->len);
} while (r == -1 && errno == EINTR);
if (r < 1)
break;
total += r;
bufptr->len += r;
if (bufptr->len == kBufSize) {
bufptr->next = reinterpret_cast<Buffers*>(Alloc(sizeof(Buffers)));
bufptr = bufptr->next;
bufptr->next = NULL;
bufptr->len = 0;
}
}
sys_close(fd);
if (!total)
return false;
UntypedMDRVA memory(&minidump_writer_);
if (!memory.Allocate(total))
return false;
for (MDRVA pos = memory.position(); buffers; buffers = buffers->next) {
// Check for special case of a zero-length buffer. This should only
// occur if a file's size happens to be a multiple of the buffer's
// size, in which case the final sys_read() will have resulted in
// zero bytes being read after the final buffer was just allocated.
if (buffers->len == 0) {
// This can only occur with final buffer.
assert(buffers->next == NULL);
continue;
}
memory.Copy(pos, &buffers->data, buffers->len);
pos += buffers->len;
}
*result = memory.location();
return true;
}
bool WriteOSInformation(MDRawSystemInfo* sys_info) {
#if defined(__ANDROID__)
sys_info->platform_id = MD_OS_ANDROID;
#else
sys_info->platform_id = MD_OS_LINUX;
#endif
struct utsname uts;
if (uname(&uts))
return false;
static const size_t buf_len = 512;
char buf[buf_len] = {0};
size_t space_left = buf_len - 1;
const char* info_table[] = {
uts.sysname,
uts.release,
uts.version,
uts.machine,
NULL
};
bool first_item = true;
for (const char** cur_info = info_table; *cur_info; cur_info++) {
static const char separator[] = " ";
size_t separator_len = sizeof(separator) - 1;
size_t info_len = my_strlen(*cur_info);
if (info_len == 0)
continue;
if (space_left < info_len + (first_item ? 0 : separator_len))
break;
if (!first_item) {
my_strlcat(buf, separator, sizeof(buf));
space_left -= separator_len;
}
first_item = false;
my_strlcat(buf, *cur_info, sizeof(buf));
space_left -= info_len;
}
MDLocationDescriptor location;
if (!minidump_writer_.WriteString(buf, 0, &location))
return false;
sys_info->csd_version_rva = location.rva;
return true;
}
bool WriteProcFile(MDLocationDescriptor* result, pid_t pid,
const char* filename) {
char buf[NAME_MAX];
if (!dumper_->BuildProcPath(buf, pid, filename))
return false;
return WriteFile(result, buf);
}
// Only one of the 2 member variables below should be set to a valid value.
const int fd_; // File descriptor where the minidum should be written.
const char* path_; // Path to the file where the minidum should be written.
const ucontext_t* const ucontext_; // also from the signal handler
#if !defined(__ARM_EABI__) && !defined(__mips__)
const google_breakpad::fpstate_t* const float_state_; // ditto
#endif
LinuxDumper* dumper_;
MinidumpFileWriter minidump_writer_;
off_t minidump_size_limit_;
MDLocationDescriptor crashing_thread_context_;
// Blocks of memory written to the dump. These are all currently
// written while writing the thread list stream, but saved here
// so a memory list stream can be written afterwards.
wasteful_vector<MDMemoryDescriptor> memory_blocks_;
// Additional information about some mappings provided by the caller.
const MappingList& mapping_list_;
// Additional memory regions to be included in the dump,
// provided by the caller.
const AppMemoryList& app_memory_list_;
// If set, skip recording any threads that do not reference the
// mapping containing principal_mapping_address_.
bool skip_stacks_if_mapping_unreferenced_;
uintptr_t principal_mapping_address_;
const MappingInfo* principal_mapping_;
// If true, apply stack sanitization to stored stack data.
bool sanitize_stacks_;
};
bool WriteMinidumpImpl(const char* minidump_path,
int minidump_fd,
off_t minidump_size_limit,
pid_t crashing_process,
const void* blob, size_t blob_size,
const MappingList& mappings,
const AppMemoryList& appmem,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
LinuxPtraceDumper dumper(crashing_process);
const ExceptionHandler::CrashContext* context = NULL;
if (blob) {
if (blob_size != sizeof(ExceptionHandler::CrashContext))
return false;
context = reinterpret_cast<const ExceptionHandler::CrashContext*>(blob);
dumper.SetCrashInfoFromSigInfo(context->siginfo);
dumper.set_crash_thread(context->tid);
}
MinidumpWriter writer(minidump_path, minidump_fd, context, mappings,
appmem, skip_stacks_if_mapping_unreferenced,
principal_mapping_address, sanitize_stacks, &dumper);
// Set desired limit for file size of minidump (-1 means no limit).
writer.set_minidump_size_limit(minidump_size_limit);
if (!writer.Init())
return false;
return writer.Dump();
}
} // namespace
namespace google_breakpad {
bool WriteMinidump(const char* minidump_path, pid_t crashing_process,
const void* blob, size_t blob_size,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
return WriteMinidumpImpl(minidump_path, -1, -1,
crashing_process, blob, blob_size,
MappingList(), AppMemoryList(),
skip_stacks_if_mapping_unreferenced,
principal_mapping_address,
sanitize_stacks);
}
bool WriteMinidump(int minidump_fd, pid_t crashing_process,
const void* blob, size_t blob_size,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
return WriteMinidumpImpl(NULL, minidump_fd, -1,
crashing_process, blob, blob_size,
MappingList(), AppMemoryList(),
skip_stacks_if_mapping_unreferenced,
principal_mapping_address,
sanitize_stacks);
}
bool WriteMinidump(const char* minidump_path, pid_t process,
pid_t process_blamed_thread) {
LinuxPtraceDumper dumper(process);
// MinidumpWriter will set crash address
dumper.set_crash_signal(MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED);
dumper.set_crash_thread(process_blamed_thread);
MappingList mapping_list;
AppMemoryList app_memory_list;
MinidumpWriter writer(minidump_path, -1, NULL, mapping_list,
app_memory_list, false, 0, false, &dumper);
if (!writer.Init())
return false;
return writer.Dump();
}
bool WriteMinidump(const char* minidump_path, pid_t crashing_process,
const void* blob, size_t blob_size,
const MappingList& mappings,
const AppMemoryList& appmem,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
return WriteMinidumpImpl(minidump_path, -1, -1, crashing_process,
blob, blob_size,
mappings, appmem,
skip_stacks_if_mapping_unreferenced,
principal_mapping_address,
sanitize_stacks);
}
bool WriteMinidump(int minidump_fd, pid_t crashing_process,
const void* blob, size_t blob_size,
const MappingList& mappings,
const AppMemoryList& appmem,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
return WriteMinidumpImpl(NULL, minidump_fd, -1, crashing_process,
blob, blob_size,
mappings, appmem,
skip_stacks_if_mapping_unreferenced,
principal_mapping_address,
sanitize_stacks);
}
bool WriteMinidump(const char* minidump_path, off_t minidump_size_limit,
pid_t crashing_process,
const void* blob, size_t blob_size,
const MappingList& mappings,
const AppMemoryList& appmem,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
return WriteMinidumpImpl(minidump_path, -1, minidump_size_limit,
crashing_process, blob, blob_size,
mappings, appmem,
skip_stacks_if_mapping_unreferenced,
principal_mapping_address,
sanitize_stacks);
}
bool WriteMinidump(int minidump_fd, off_t minidump_size_limit,
pid_t crashing_process,
const void* blob, size_t blob_size,
const MappingList& mappings,
const AppMemoryList& appmem,
bool skip_stacks_if_mapping_unreferenced,
uintptr_t principal_mapping_address,
bool sanitize_stacks) {
return WriteMinidumpImpl(NULL, minidump_fd, minidump_size_limit,
crashing_process, blob, blob_size,
mappings, appmem,
skip_stacks_if_mapping_unreferenced,
principal_mapping_address,
sanitize_stacks);
}
bool WriteMinidump(const char* filename,
const MappingList& mappings,
const AppMemoryList& appmem,
LinuxDumper* dumper) {
MinidumpWriter writer(filename, -1, NULL, mappings, appmem,
false, 0, false, dumper);
if (!writer.Init())
return false;
return writer.Dump();
}
} // namespace google_breakpad
|