summaryrefslogtreecommitdiffstats
path: root/media/libspeex_resampler/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /media/libspeex_resampler/src
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libspeex_resampler/src')
-rw-r--r--media/libspeex_resampler/src/arch.h232
-rw-r--r--media/libspeex_resampler/src/fixed_generic.h106
-rw-r--r--media/libspeex_resampler/src/moz.build47
-rw-r--r--media/libspeex_resampler/src/resample.c1268
-rw-r--r--media/libspeex_resampler/src/resample_neon.c342
-rw-r--r--media/libspeex_resampler/src/resample_sse.c130
-rw-r--r--media/libspeex_resampler/src/simd_detect.cpp27
-rw-r--r--media/libspeex_resampler/src/simd_detect.h43
-rw-r--r--media/libspeex_resampler/src/speex_resampler.h361
9 files changed, 2556 insertions, 0 deletions
diff --git a/media/libspeex_resampler/src/arch.h b/media/libspeex_resampler/src/arch.h
new file mode 100644
index 0000000000..1cac3d9c89
--- /dev/null
+++ b/media/libspeex_resampler/src/arch.h
@@ -0,0 +1,232 @@
+/* Copyright (C) 2003 Jean-Marc Valin */
+/**
+ @file arch.h
+ @brief Various architecture definitions Speex
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef ARCH_H
+#define ARCH_H
+
+/* A couple test to catch stupid option combinations */
+#ifdef FIXED_POINT
+
+#ifdef FLOATING_POINT
+#error You cannot compile as floating point and fixed point at the same time
+#endif
+#ifdef USE_SSE
+#error SSE is only for floating-point
+#endif
+#if defined(ARM4_ASM) + defined(ARM5E_ASM) + defined(BFIN_ASM) > 1
+#error Make up your mind. What CPU do you have?
+#endif
+#ifdef VORBIS_PSYCHO
+#error Vorbis-psy model currently not implemented in fixed-point
+#endif
+
+#else
+
+#ifndef FLOATING_POINT
+#error You now need to define either FIXED_POINT or FLOATING_POINT
+#endif
+#if defined(ARM4_ASM) || defined(ARM5E_ASM) || defined(BFIN_ASM)
+#error I suppose you can have a [ARM4/ARM5E/Blackfin] that has float instructions?
+#endif
+#ifdef FIXED_DEBUG
+#error "Don't you think enabling fixed-point is a good thing to do if you want to debug that?"
+#endif
+
+
+#endif
+
+#ifndef OUTSIDE_SPEEX
+#include "speex/speexdsp_types.h"
+#endif
+
+#define ABS(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute integer value. */
+#define ABS16(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute 16-bit value. */
+#define MIN16(a,b) ((a) < (b) ? (a) : (b)) /**< Maximum 16-bit value. */
+#define MAX16(a,b) ((a) > (b) ? (a) : (b)) /**< Maximum 16-bit value. */
+#define ABS32(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute 32-bit value. */
+#define MIN32(a,b) ((a) < (b) ? (a) : (b)) /**< Maximum 32-bit value. */
+#define MAX32(a,b) ((a) > (b) ? (a) : (b)) /**< Maximum 32-bit value. */
+
+#ifdef FIXED_POINT
+
+typedef spx_int16_t spx_word16_t;
+typedef spx_int32_t spx_word32_t;
+typedef spx_word32_t spx_mem_t;
+typedef spx_word16_t spx_coef_t;
+typedef spx_word16_t spx_lsp_t;
+typedef spx_word32_t spx_sig_t;
+
+#define Q15ONE 32767
+
+#define LPC_SCALING 8192
+#define SIG_SCALING 16384
+#define LSP_SCALING 8192.
+#define GAMMA_SCALING 32768.
+#define GAIN_SCALING 64
+#define GAIN_SCALING_1 0.015625
+
+#define LPC_SHIFT 13
+#define LSP_SHIFT 13
+#define SIG_SHIFT 14
+#define GAIN_SHIFT 6
+
+#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
+
+#define VERY_SMALL 0
+#define VERY_LARGE32 ((spx_word32_t)2147483647)
+#define VERY_LARGE16 ((spx_word16_t)32767)
+#define Q15_ONE ((spx_word16_t)32767)
+
+
+#ifdef FIXED_DEBUG
+#include "fixed_debug.h"
+#else
+
+#include "fixed_generic.h"
+
+#ifdef ARM5E_ASM
+#include "fixed_arm5e.h"
+#elif defined(ARM4_ASM)
+#include "fixed_arm4.h"
+#elif defined(BFIN_ASM)
+#include "fixed_bfin.h"
+#endif
+
+#endif
+
+
+#else
+
+typedef float spx_mem_t;
+typedef float spx_coef_t;
+typedef float spx_lsp_t;
+typedef float spx_sig_t;
+typedef float spx_word16_t;
+typedef float spx_word32_t;
+
+#define Q15ONE 1.0f
+#define LPC_SCALING 1.f
+#define SIG_SCALING 1.f
+#define LSP_SCALING 1.f
+#define GAMMA_SCALING 1.f
+#define GAIN_SCALING 1.f
+#define GAIN_SCALING_1 1.f
+
+
+#define VERY_SMALL 1e-15f
+#define VERY_LARGE32 1e15f
+#define VERY_LARGE16 1e15f
+#define Q15_ONE ((spx_word16_t)1.f)
+
+#define QCONST16(x,bits) (x)
+#define QCONST32(x,bits) (x)
+
+#define NEG16(x) (-(x))
+#define NEG32(x) (-(x))
+#define EXTRACT16(x) (x)
+#define EXTEND32(x) (x)
+#define SHR16(a,shift) (a)
+#define SHL16(a,shift) (a)
+#define SHR32(a,shift) (a)
+#define SHL32(a,shift) (a)
+#define PSHR16(a,shift) (a)
+#define PSHR32(a,shift) (a)
+#define VSHR32(a,shift) (a)
+#define SATURATE16(x,a) (x)
+#define SATURATE32(x,a) (x)
+#define SATURATE32PSHR(x,shift,a) (x)
+
+#define PSHR(a,shift) (a)
+#define SHR(a,shift) (a)
+#define SHL(a,shift) (a)
+#define SATURATE(x,a) (x)
+
+#define ADD16(a,b) ((a)+(b))
+#define SUB16(a,b) ((a)-(b))
+#define ADD32(a,b) ((a)+(b))
+#define SUB32(a,b) ((a)-(b))
+#define MULT16_16_16(a,b) ((a)*(b))
+#define MULT16_32_32(a,b) ((a)*(b))
+#define MULT16_16(a,b) ((spx_word32_t)(a)*(spx_word32_t)(b))
+#define MAC16_16(c,a,b) ((c)+(spx_word32_t)(a)*(spx_word32_t)(b))
+
+#define MULT16_32_Q15(a,b) ((a)*(b))
+#define MULT16_32_P15(a,b) ((a)*(b))
+
+#define MAC16_32_Q15(c,a,b) ((c)+(a)*(b))
+
+#define MAC16_16_Q11(c,a,b) ((c)+(a)*(b))
+#define MAC16_16_Q13(c,a,b) ((c)+(a)*(b))
+#define MAC16_16_P13(c,a,b) ((c)+(a)*(b))
+#define MULT16_16_Q11_32(a,b) ((a)*(b))
+#define MULT16_16_Q13(a,b) ((a)*(b))
+#define MULT16_16_Q14(a,b) ((a)*(b))
+#define MULT16_16_Q15(a,b) ((a)*(b))
+#define MULT16_16_P15(a,b) ((a)*(b))
+#define MULT16_16_P13(a,b) ((a)*(b))
+#define MULT16_16_P14(a,b) ((a)*(b))
+
+#define DIV32_16(a,b) (((spx_word32_t)(a))/(spx_word16_t)(b))
+#define PDIV32_16(a,b) (((spx_word32_t)(a))/(spx_word16_t)(b))
+#define DIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
+#define PDIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
+
+#define WORD2INT(x) ((x) < -32767.5f ? -32768 : \
+ ((x) > 32766.5f ? 32767 : (spx_int16_t)floor(.5 + (x))))
+#endif
+
+
+#if defined(CONFIG_TI_C54X) || defined(CONFIG_TI_C55X)
+
+/* 2 on TI C5x DSP */
+#define BYTES_PER_CHAR 2
+#define BITS_PER_CHAR 16
+#define LOG2_BITS_PER_CHAR 4
+
+#else
+
+#define BYTES_PER_CHAR 1
+#define BITS_PER_CHAR 8
+#define LOG2_BITS_PER_CHAR 3
+
+#endif
+
+
+
+#ifdef FIXED_DEBUG
+extern long long spx_mips;
+#endif
+
+
+#endif
diff --git a/media/libspeex_resampler/src/fixed_generic.h b/media/libspeex_resampler/src/fixed_generic.h
new file mode 100644
index 0000000000..09366c36ce
--- /dev/null
+++ b/media/libspeex_resampler/src/fixed_generic.h
@@ -0,0 +1,106 @@
+/* Copyright (C) 2003 Jean-Marc Valin */
+/**
+ @file fixed_generic.h
+ @brief Generic fixed-point operations
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef FIXED_GENERIC_H
+#define FIXED_GENERIC_H
+
+#define QCONST16(x,bits) ((spx_word16_t)(.5+(x)*(((spx_word32_t)1)<<(bits))))
+#define QCONST32(x,bits) ((spx_word32_t)(.5+(x)*(((spx_word32_t)1)<<(bits))))
+
+#define NEG16(x) (-(x))
+#define NEG32(x) (-(x))
+#define EXTRACT16(x) ((spx_word16_t)(x))
+#define EXTEND32(x) ((spx_word32_t)(x))
+#define SHR16(a,shift) ((a) >> (shift))
+#define SHL16(a,shift) ((a) << (shift))
+#define SHR32(a,shift) ((a) >> (shift))
+#define SHL32(a,shift) ((a) << (shift))
+#define PSHR16(a,shift) (SHR16((a)+((1<<((shift))>>1)),shift))
+#define PSHR32(a,shift) (SHR32((a)+((EXTEND32(1)<<((shift))>>1)),shift))
+#define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift)))
+#define SATURATE16(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+#define SATURATE32(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+
+#define SATURATE32PSHR(x,shift,a) (((x)>=(SHL32(a,shift))) ? (a) : \
+ (x)<=-(SHL32(a,shift)) ? -(a) : \
+ (PSHR32(x, shift)))
+
+#define SHR(a,shift) ((a) >> (shift))
+#define SHL(a,shift) ((spx_word32_t)(a) << (shift))
+#define PSHR(a,shift) (SHR((a)+((EXTEND32(1)<<((shift))>>1)),shift))
+#define SATURATE(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+
+
+#define ADD16(a,b) ((spx_word16_t)((spx_word16_t)(a)+(spx_word16_t)(b)))
+#define SUB16(a,b) ((spx_word16_t)(a)-(spx_word16_t)(b))
+#define ADD32(a,b) ((spx_word32_t)(a)+(spx_word32_t)(b))
+#define SUB32(a,b) ((spx_word32_t)(a)-(spx_word32_t)(b))
+
+
+/* result fits in 16 bits */
+#define MULT16_16_16(a,b) (((spx_word16_t)(a))*((spx_word16_t)(b)))
+/* result fits in 32 bits */
+#define MULT16_32_32(a,b) (((spx_word16_t)(a))*((spx_word32_t)(b)))
+
+/* (spx_word32_t)(spx_word16_t) gives TI compiler a hint that it's 16x16->32 multiply */
+#define MULT16_16(a,b) (((spx_word32_t)(spx_word16_t)(a))*((spx_word32_t)(spx_word16_t)(b)))
+
+#define MAC16_16(c,a,b) (ADD32((c),MULT16_16((a),(b))))
+
+#define MULT16_32_P15(a,b) ADD32(MULT16_32_32(a,SHR((b),15)), PSHR(MULT16_16((a),((b)&0x00007fff)),15))
+#define MULT16_32_Q15(a,b) ADD32(MULT16_32_32(a,SHR((b),15)), SHR(MULT16_16((a),((b)&0x00007fff)),15))
+#define MAC16_32_Q15(c,a,b) ADD32(c,MULT16_32_Q15(a,b))
+
+
+#define MAC16_16_Q11(c,a,b) (ADD32((c),SHR(MULT16_16((a),(b)),11)))
+#define MAC16_16_Q13(c,a,b) (ADD32((c),SHR(MULT16_16((a),(b)),13)))
+#define MAC16_16_P13(c,a,b) (ADD32((c),SHR(ADD32(4096,MULT16_16((a),(b))),13)))
+
+#define MULT16_16_Q11_32(a,b) (SHR(MULT16_16((a),(b)),11))
+#define MULT16_16_Q13(a,b) (SHR(MULT16_16((a),(b)),13))
+#define MULT16_16_Q14(a,b) (SHR(MULT16_16((a),(b)),14))
+#define MULT16_16_Q15(a,b) (SHR(MULT16_16((a),(b)),15))
+
+#define MULT16_16_P13(a,b) (SHR(ADD32(4096,MULT16_16((a),(b))),13))
+#define MULT16_16_P14(a,b) (SHR(ADD32(8192,MULT16_16((a),(b))),14))
+#define MULT16_16_P15(a,b) (SHR(ADD32(16384,MULT16_16((a),(b))),15))
+
+#define MUL_16_32_R15(a,bh,bl) ADD32(MULT16_16((a),(bh)), SHR(MULT16_16((a),(bl)),15))
+
+#define DIV32_16(a,b) ((spx_word16_t)(((spx_word32_t)(a))/((spx_word16_t)(b))))
+#define PDIV32_16(a,b) ((spx_word16_t)(((spx_word32_t)(a)+((spx_word16_t)(b)>>1))/((spx_word16_t)(b))))
+#define DIV32(a,b) (((spx_word32_t)(a))/((spx_word32_t)(b)))
+#define PDIV32(a,b) (((spx_word32_t)(a)+((spx_word16_t)(b)>>1))/((spx_word32_t)(b)))
+
+#endif
diff --git a/media/libspeex_resampler/src/moz.build b/media/libspeex_resampler/src/moz.build
new file mode 100644
index 0000000000..1150722ca5
--- /dev/null
+++ b/media/libspeex_resampler/src/moz.build
@@ -0,0 +1,47 @@
+# -*- Mode: python; indent-tabs-mode: nil; tab-width: 40 -*-
+# vim: set filetype=python:
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+Library('speex')
+
+EXPORTS.speex += [
+ 'speex_resampler.h',
+]
+
+SOURCES += [
+ 'resample.c',
+ 'simd_detect.cpp',
+]
+
+# We allow warnings for third-party code that can be updated from upstream.
+AllowCompilerWarnings()
+
+FINAL_LIBRARY = 'gkmedias'
+
+# We don't compile the full speex codec, only the resampler.
+DEFINES['OUTSIDE_SPEEX'] = True
+
+DEFINES['EXPORT'] = ''
+DEFINES['FLOATING_POINT'] = True
+
+# Only use SSE code when using floating point samples, and on x86
+if CONFIG['INTEL_ARCHITECTURE']:
+ DEFINES['USE_SSE'] = True
+ DEFINES['USE_SSE2'] = True
+ SOURCES += [
+ 'resample_sse.c'
+ ]
+ SOURCES['resample_sse.c'].flags += CONFIG['SSE2_FLAGS']
+
+if CONFIG['TARGET_CPU'] == 'arm' and CONFIG['BUILD_ARM_NEON']:
+ DEFINES['USE_NEON'] = True
+ SOURCES += [
+ 'resample_neon.c'
+ ]
+ SOURCES['resample_neon.c'].flags += CONFIG['NEON_FLAGS']
+
+# Suppress warnings in third-party code.
+if CONFIG['CC_TYPE'] in ('clang', 'gcc'):
+ CFLAGS += ['-Wno-sign-compare']
diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/src/resample.c
new file mode 100644
index 0000000000..b2efcca3a1
--- /dev/null
+++ b/media/libspeex_resampler/src/resample.c
@@ -0,0 +1,1268 @@
+/* Copyright (C) 2007-2008 Jean-Marc Valin
+ Copyright (C) 2008 Thorvald Natvig
+
+ File: resample.c
+ Arbitrary resampling code
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The name of the author may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+*/
+
+/*
+ The design goals of this code are:
+ - Very fast algorithm
+ - SIMD-friendly algorithm
+ - Low memory requirement
+ - Good *perceptual* quality (and not best SNR)
+
+ Warning: This resampler is relatively new. Although I think I got rid of
+ all the major bugs and I don't expect the API to change anymore, there
+ may be something I've missed. So use with caution.
+
+ This algorithm is based on this original resampling algorithm:
+ Smith, Julius O. Digital Audio Resampling Home Page
+ Center for Computer Research in Music and Acoustics (CCRMA),
+ Stanford University, 2007.
+ Web published at https://ccrma.stanford.edu/~jos/resample/.
+
+ There is one main difference, though. This resampler uses cubic
+ interpolation instead of linear interpolation in the above paper. This
+ makes the table much smaller and makes it possible to compute that table
+ on a per-stream basis. In turn, being able to tweak the table for each
+ stream makes it possible to both reduce complexity on simple ratios
+ (e.g. 2/3), and get rid of the rounding operations in the inner loop.
+ The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define RESAMPLE_HUGEMEM 1
+
+#ifdef OUTSIDE_SPEEX
+#include <stdlib.h>
+static void *speex_alloc(int size) {return calloc(size,1);}
+static void *speex_realloc(void *ptr, int size) {return realloc(ptr, size);}
+static void speex_free(void *ptr) {free(ptr);}
+#ifndef EXPORT
+#define EXPORT
+#endif
+#include "speex_resampler.h"
+#include "arch.h"
+#else /* OUTSIDE_SPEEX */
+
+#include "speex/speex_resampler.h"
+#include "arch.h"
+#include "os_support.h"
+#endif /* OUTSIDE_SPEEX */
+
+#include <math.h>
+#include <limits.h>
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+#define IMAX(a,b) ((a) > (b) ? (a) : (b))
+#define IMIN(a,b) ((a) < (b) ? (a) : (b))
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+#ifndef UINT32_MAX
+#define UINT32_MAX 4294967295U
+#endif
+
+#include "simd_detect.h"
+
+/* Number of elements to allocate on the stack */
+#ifdef VAR_ARRAYS
+#define FIXED_STACK_ALLOC 8192
+#else
+#define FIXED_STACK_ALLOC 1024
+#endif
+
+typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
+
+struct SpeexResamplerState_ {
+ spx_uint32_t in_rate;
+ spx_uint32_t out_rate;
+ spx_uint32_t num_rate;
+ spx_uint32_t den_rate;
+
+ int quality;
+ spx_uint32_t nb_channels;
+ spx_uint32_t filt_len;
+ spx_uint32_t mem_alloc_size;
+ spx_uint32_t buffer_size;
+ int int_advance;
+ int frac_advance;
+ float cutoff;
+ spx_uint32_t oversample;
+ int initialised;
+ int started;
+
+ /* These are per-channel */
+ spx_int32_t *last_sample;
+ spx_uint32_t *samp_frac_num;
+ spx_uint32_t *magic_samples;
+
+ spx_word16_t *mem;
+ spx_word16_t *sinc_table;
+ spx_uint32_t sinc_table_length;
+ resampler_basic_func resampler_ptr;
+
+ int in_stride;
+ int out_stride;
+} ;
+
+static const double kaiser12_table[68] = {
+ 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
+ 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
+ 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
+ 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
+ 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
+ 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
+ 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
+ 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
+ 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
+ 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
+ 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
+ 0.00001000, 0.00000000};
+/*
+static const double kaiser12_table[36] = {
+ 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
+ 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
+ 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
+ 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
+ 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
+ 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
+*/
+static const double kaiser10_table[36] = {
+ 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
+ 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
+ 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
+ 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
+ 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
+ 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};
+
+static const double kaiser8_table[36] = {
+ 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
+ 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
+ 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
+ 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
+ 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
+ 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
+
+static const double kaiser6_table[36] = {
+ 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
+ 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
+ 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
+ 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
+ 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
+ 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};
+
+struct FuncDef {
+ const double *table;
+ int oversample;
+};
+
+static const struct FuncDef kaiser12_funcdef = {kaiser12_table, 64};
+#define KAISER12 (&kaiser12_funcdef)
+static const struct FuncDef kaiser10_funcdef = {kaiser10_table, 32};
+#define KAISER10 (&kaiser10_funcdef)
+static const struct FuncDef kaiser8_funcdef = {kaiser8_table, 32};
+#define KAISER8 (&kaiser8_funcdef)
+static const struct FuncDef kaiser6_funcdef = {kaiser6_table, 32};
+#define KAISER6 (&kaiser6_funcdef)
+
+struct QualityMapping {
+ int base_length;
+ int oversample;
+ float downsample_bandwidth;
+ float upsample_bandwidth;
+ const struct FuncDef *window_func;
+};
+
+
+/* This table maps conversion quality to internal parameters. There are two
+ reasons that explain why the up-sampling bandwidth is larger than the
+ down-sampling bandwidth:
+ 1) When up-sampling, we can assume that the spectrum is already attenuated
+ close to the Nyquist rate (from an A/D or a previous resampling filter)
+ 2) Any aliasing that occurs very close to the Nyquist rate will be masked
+ by the sinusoids/noise just below the Nyquist rate (guaranteed only for
+ up-sampling).
+*/
+static const struct QualityMapping quality_map[11] = {
+ { 8, 4, 0.830f, 0.860f, KAISER6 }, /* Q0 */
+ { 16, 4, 0.850f, 0.880f, KAISER6 }, /* Q1 */
+ { 32, 4, 0.882f, 0.910f, KAISER6 }, /* Q2 */ /* 82.3% cutoff ( ~60 dB stop) 6 */
+ { 48, 8, 0.895f, 0.917f, KAISER8 }, /* Q3 */ /* 84.9% cutoff ( ~80 dB stop) 8 */
+ { 64, 8, 0.921f, 0.940f, KAISER8 }, /* Q4 */ /* 88.7% cutoff ( ~80 dB stop) 8 */
+ { 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */ /* 89.1% cutoff (~100 dB stop) 10 */
+ { 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */ /* 91.5% cutoff (~100 dB stop) 10 */
+ {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */ /* 93.1% cutoff (~100 dB stop) 10 */
+ {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */ /* 94.5% cutoff (~100 dB stop) 10 */
+ {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */ /* 95.5% cutoff (~100 dB stop) 10 */
+ {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */
+};
+/*8,24,40,56,80,104,128,160,200,256,320*/
+static double compute_func(float x, const struct FuncDef *func)
+{
+ float y, frac;
+ double interp[4];
+ int ind;
+ y = x*func->oversample;
+ ind = (int)floor(y);
+ frac = (y-ind);
+ /* CSE with handle the repeated powers */
+ interp[3] = -0.1666666667*frac + 0.1666666667*(frac*frac*frac);
+ interp[2] = frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac);
+ /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
+ interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
+ /* Just to make sure we don't have rounding problems */
+ interp[1] = 1.f-interp[3]-interp[2]-interp[0];
+
+ /*sum = frac*accum[1] + (1-frac)*accum[2];*/
+ return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
+}
+
+#if 0
+#include <stdio.h>
+int main(int argc, char **argv)
+{
+ int i;
+ for (i=0;i<256;i++)
+ {
+ printf ("%f\n", compute_func(i/256., KAISER12));
+ }
+ return 0;
+}
+#endif
+
+#ifdef FIXED_POINT
+/* The slow way of computing a sinc for the table. Should improve that some day */
+static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
+{
+ /*fprintf (stderr, "%f ", x);*/
+ float xx = x * cutoff;
+ if (fabs(x)<1e-6f)
+ return WORD2INT(32768.*cutoff);
+ else if (fabs(x) > .5f*N)
+ return 0;
+ /*FIXME: Can it really be any slower than this? */
+ return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func));
+}
+#else
+/* The slow way of computing a sinc for the table. Should improve that some day */
+static spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func)
+{
+ /*fprintf (stderr, "%f ", x);*/
+ float xx = x * cutoff;
+ if (fabs(x)<1e-6)
+ return cutoff;
+ else if (fabs(x) > .5*N)
+ return 0;
+ /*FIXME: Can it really be any slower than this? */
+ return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func);
+}
+#endif
+
+#ifdef FIXED_POINT
+static void cubic_coef(spx_word16_t x, spx_word16_t interp[4])
+{
+ /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
+ but I know it's MMSE-optimal on a sinc */
+ spx_word16_t x2, x3;
+ x2 = MULT16_16_P15(x, x);
+ x3 = MULT16_16_P15(x, x2);
+ interp[0] = PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(QCONST16(0.16667f, 15),x3),15);
+ interp[1] = EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32(x3)),1));
+ interp[3] = PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(QCONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15);
+ /* Just to make sure we don't have rounding problems */
+ interp[2] = Q15_ONE-interp[0]-interp[1]-interp[3];
+ if (interp[2]<32767)
+ interp[2]+=1;
+}
+#else
+static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4])
+{
+ /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
+ but I know it's MMSE-optimal on a sinc */
+ interp[0] = -0.16667f*frac + 0.16667f*frac*frac*frac;
+ interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac;
+ /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
+ interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac;
+ /* Just to make sure we don't have rounding problems */
+ interp[2] = 1.-interp[0]-interp[1]-interp[3];
+}
+#endif
+
+static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+{
+ const int N = st->filt_len;
+ int out_sample = 0;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const spx_word16_t *sinc_table = st->sinc_table;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ spx_word32_t sum;
+
+ while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
+ {
+ const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
+ const spx_word16_t *iptr = & in[last_sample];
+
+#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
+ if (!moz_speex_have_single_simd()) {
+#endif
+ int j;
+ sum = 0;
+ for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]);
+
+/* This code is slower on most DSPs which have only 2 accumulators.
+ Plus this this forces truncation to 32 bits and you lose the HW guard bits.
+ I think we can trust the compiler and let it vectorize and/or unroll itself.
+ spx_word32_t accum[4] = {0,0,0,0};
+ for(j=0;j<N;j+=4) {
+ accum[0] += MULT16_16(sinct[j], iptr[j]);
+ accum[1] += MULT16_16(sinct[j+1], iptr[j+1]);
+ accum[2] += MULT16_16(sinct[j+2], iptr[j+2]);
+ accum[3] += MULT16_16(sinct[j+3], iptr[j+3]);
+ }
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+*/
+ sum = SATURATE32PSHR(sum, 15, 32767);
+#ifdef OVERRIDE_INNER_PRODUCT_SINGLE
+ } else {
+ sum = inner_product_single(sinct, iptr, N);
+ }
+#endif
+
+ out[out_stride * out_sample++] = sum;
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
+ {
+ samp_frac_num -= den_rate;
+ last_sample++;
+ }
+ }
+
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+
+#ifdef FIXED_POINT
+#else
+/* This is the same as the previous function, except with a double-precision accumulator */
+static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+{
+ const int N = st->filt_len;
+ int out_sample = 0;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const spx_word16_t *sinc_table = st->sinc_table;
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ double sum;
+
+ while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
+ {
+ const spx_word16_t *sinct = & sinc_table[samp_frac_num*N];
+ const spx_word16_t *iptr = & in[last_sample];
+
+#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
+ if(moz_speex_have_double_simd()) {
+#endif
+ int j;
+ double accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j+=4) {
+ accum[0] += sinct[j]*iptr[j];
+ accum[1] += sinct[j+1]*iptr[j+1];
+ accum[2] += sinct[j+2]*iptr[j+2];
+ accum[3] += sinct[j+3]*iptr[j+3];
+ }
+ sum = accum[0] + accum[1] + accum[2] + accum[3];
+#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE
+ } else {
+ sum = inner_product_double(sinct, iptr, N);
+ }
+#endif
+
+ out[out_stride * out_sample++] = PSHR32(sum, 15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
+ {
+ samp_frac_num -= den_rate;
+ last_sample++;
+ }
+ }
+
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+#endif
+
+static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+{
+ const int N = st->filt_len;
+ int out_sample = 0;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ spx_word32_t sum;
+
+ while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
+ {
+ const spx_word16_t *iptr = & in[last_sample];
+
+ const int offset = samp_frac_num*st->oversample/st->den_rate;
+#ifdef FIXED_POINT
+ const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
+#else
+ const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
+#endif
+ spx_word16_t interp[4];
+
+
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+ if (!moz_speex_have_single_simd()) {
+#endif
+ int j;
+ spx_word32_t accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j++) {
+ const spx_word16_t curr_in=iptr[j];
+ accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
+ accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
+ accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
+ accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
+ }
+
+ cubic_coef(frac, interp);
+ sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
+ sum = SATURATE32PSHR(sum, 15, 32767);
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+ } else {
+ cubic_coef(frac, interp);
+ sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+ }
+#endif
+
+ out[out_stride * out_sample++] = sum;
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
+ {
+ samp_frac_num -= den_rate;
+ last_sample++;
+ }
+ }
+
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+
+#ifdef FIXED_POINT
+#else
+/* This is the same as the previous function, except with a double-precision accumulator */
+static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+{
+ const int N = st->filt_len;
+ int out_sample = 0;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+ spx_word32_t sum;
+
+ while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
+ {
+ const spx_word16_t *iptr = & in[last_sample];
+
+ const int offset = samp_frac_num*st->oversample/st->den_rate;
+#ifdef FIXED_POINT
+ const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate);
+#else
+ const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate;
+#endif
+ spx_word16_t interp[4];
+
+
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+ if (!moz_speex_have_double_simd()) {
+#endif
+ int j;
+ double accum[4] = {0,0,0,0};
+
+ for(j=0;j<N;j++) {
+ const double curr_in=iptr[j];
+ accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
+ accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
+ accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
+ accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
+ }
+
+ cubic_coef(frac, interp);
+ sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]);
+#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+ } else {
+ cubic_coef(frac, interp);
+ sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
+ }
+#endif
+
+ out[out_stride * out_sample++] = PSHR32(sum,15);
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
+ {
+ samp_frac_num -= den_rate;
+ last_sample++;
+ }
+ }
+
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+#endif
+
+/* This resampler is used to produce zero output in situations where memory
+ for the filter could not be allocated. The expected numbers of input and
+ output samples are still processed so that callers failing to check error
+ codes are not surprised, possibly getting into infinite loops. */
+static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+{
+ int out_sample = 0;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+ const int out_stride = st->out_stride;
+ const int int_advance = st->int_advance;
+ const int frac_advance = st->frac_advance;
+ const spx_uint32_t den_rate = st->den_rate;
+
+ (void)in;
+ while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len))
+ {
+ out[out_stride * out_sample++] = 0;
+ last_sample += int_advance;
+ samp_frac_num += frac_advance;
+ if (samp_frac_num >= den_rate)
+ {
+ samp_frac_num -= den_rate;
+ last_sample++;
+ }
+ }
+
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+
+static int multiply_frac(spx_uint32_t *result, spx_uint32_t value, spx_uint32_t num, spx_uint32_t den)
+{
+ spx_uint32_t major = value / den;
+ spx_uint32_t remain = value % den;
+ /* TODO: Could use 64 bits operation to check for overflow. But only guaranteed in C99+ */
+ if (remain > UINT32_MAX / num || major > UINT32_MAX / num
+ || major * num > UINT32_MAX - remain * num / den)
+ return RESAMPLER_ERR_OVERFLOW;
+ *result = remain * num / den + major * num;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+static int update_filter(SpeexResamplerState *st)
+{
+ spx_uint32_t old_length = st->filt_len;
+ spx_uint32_t old_alloc_size = st->mem_alloc_size;
+ int use_direct;
+ spx_uint32_t min_sinc_table_length;
+ spx_uint32_t min_alloc_size;
+
+ st->int_advance = st->num_rate/st->den_rate;
+ st->frac_advance = st->num_rate%st->den_rate;
+ st->oversample = quality_map[st->quality].oversample;
+ st->filt_len = quality_map[st->quality].base_length;
+
+ if (st->num_rate > st->den_rate)
+ {
+ /* down-sampling */
+ st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
+ if (multiply_frac(&st->filt_len,st->filt_len,st->num_rate,st->den_rate) != RESAMPLER_ERR_SUCCESS)
+ goto fail;
+ /* Round up to make sure we have a multiple of 8 for SSE */
+ st->filt_len = ((st->filt_len-1)&(~0x7))+8;
+ if (2*st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (4*st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (8*st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (16*st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (st->oversample < 1)
+ st->oversample = 1;
+ } else {
+ /* up-sampling */
+ st->cutoff = quality_map[st->quality].upsample_bandwidth;
+ }
+
+ use_direct =
+#ifdef RESAMPLE_HUGEMEM
+ /* Choose the direct resampler, even with higher initialization costs,
+ when resampling any multiple of 100 to 44100. */
+ st->den_rate <= 441
+#else
+ /* Choose the resampling type that requires the least amount of memory */
+ st->filt_len*st->den_rate <= st->filt_len*st->oversample+8
+#endif
+ && INT_MAX/sizeof(spx_word16_t)/st->den_rate >= st->filt_len;
+ if (use_direct)
+ {
+ min_sinc_table_length = st->filt_len*st->den_rate;
+ } else {
+ if ((INT_MAX/sizeof(spx_word16_t)-8)/st->oversample < st->filt_len)
+ goto fail;
+
+ min_sinc_table_length = st->filt_len*st->oversample+8;
+ }
+ if (st->sinc_table_length < min_sinc_table_length)
+ {
+ spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t));
+ if (!sinc_table)
+ goto fail;
+
+ st->sinc_table = sinc_table;
+ st->sinc_table_length = min_sinc_table_length;
+ }
+ if (use_direct)
+ {
+ spx_uint32_t i;
+ for (i=0;i<st->den_rate;i++)
+ {
+ spx_int32_t j;
+ for (j=0;j<st->filt_len;j++)
+ {
+ st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-(spx_int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_map[st->quality].window_func);
+ }
+ }
+#ifdef FIXED_POINT
+ st->resampler_ptr = resampler_basic_direct_single;
+#else
+ if (st->quality>8)
+ st->resampler_ptr = resampler_basic_direct_double;
+ else
+ st->resampler_ptr = resampler_basic_direct_single;
+#endif
+ /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/
+ } else {
+ spx_int32_t i;
+ for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++)
+ st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func);
+#ifdef FIXED_POINT
+ st->resampler_ptr = resampler_basic_interpolate_single;
+#else
+ if (st->quality>8)
+ st->resampler_ptr = resampler_basic_interpolate_double;
+ else
+ st->resampler_ptr = resampler_basic_interpolate_single;
+#endif
+ /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/
+ }
+
+ /* Here's the place where we update the filter memory to take into account
+ the change in filter length. It's probably the messiest part of the code
+ due to handling of lots of corner cases. */
+
+ /* Adding buffer_size to filt_len won't overflow here because filt_len
+ could be multiplied by sizeof(spx_word16_t) above. */
+ min_alloc_size = st->filt_len-1 + st->buffer_size;
+ if (min_alloc_size > st->mem_alloc_size)
+ {
+ spx_word16_t *mem;
+ if (INT_MAX/sizeof(spx_word16_t)/st->nb_channels < min_alloc_size)
+ goto fail;
+ else if (!(mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(*mem))))
+ goto fail;
+
+ st->mem = mem;
+ st->mem_alloc_size = min_alloc_size;
+ }
+ if (!st->started)
+ {
+ spx_uint32_t i;
+ for (i=0;i<st->nb_channels*st->mem_alloc_size;i++)
+ st->mem[i] = 0;
+ /*speex_warning("reinit filter");*/
+ } else if (st->filt_len > old_length)
+ {
+ spx_uint32_t i;
+ /* Increase the filter length */
+ /*speex_warning("increase filter size");*/
+ for (i=st->nb_channels;i--;)
+ {
+ spx_uint32_t j;
+ spx_uint32_t olen = old_length;
+ spx_uint32_t start = i*st->mem_alloc_size;
+ spx_uint32_t magic_samples = st->magic_samples[i];
+ /*if (st->magic_samples[i])*/
+ {
+ /* Try and remove the magic samples as if nothing had happened */
+
+ /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
+ olen = old_length + 2*magic_samples;
+ for (j=old_length-1+magic_samples;j--;)
+ st->mem[start+j+magic_samples] = st->mem[i*old_alloc_size+j];
+ for (j=0;j<magic_samples;j++)
+ st->mem[start+j] = 0;
+ st->magic_samples[i] = 0;
+ }
+ if (st->filt_len > olen)
+ {
+ /* If the new filter length is still bigger than the "augmented" length */
+ /* Copy data going backward */
+ for (j=0;j<olen-1;j++)
+ st->mem[start+(st->filt_len-2-j)] = st->mem[start+(olen-2-j)];
+ /* Then put zeros for lack of anything better */
+ for (;j<st->filt_len-1;j++)
+ st->mem[start+(st->filt_len-2-j)] = 0;
+ /* Adjust last_sample */
+ st->last_sample[i] += (st->filt_len - olen)/2;
+ } else {
+ /* Put back some of the magic! */
+ magic_samples = (olen - st->filt_len)/2;
+ for (j=0;j<st->filt_len-1+magic_samples;j++)
+ st->mem[start+j] = st->mem[start+j+magic_samples];
+ st->magic_samples[i] = magic_samples;
+ }
+ }
+ } else if (st->filt_len < old_length)
+ {
+ spx_uint32_t i;
+ /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
+ samples so they can be used directly as input the next time(s) */
+ for (i=0;i<st->nb_channels;i++)
+ {
+ spx_uint32_t j;
+ spx_uint32_t old_magic = st->magic_samples[i];
+ st->magic_samples[i] = (old_length - st->filt_len)/2;
+ /* We must copy some of the memory that's no longer used */
+ /* Copy data going backward */
+ for (j=0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++)
+ st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]];
+ st->magic_samples[i] += old_magic;
+ }
+ }
+ return RESAMPLER_ERR_SUCCESS;
+
+fail:
+ st->resampler_ptr = resampler_basic_zero;
+ /* st->mem may still contain consumed input samples for the filter.
+ Restore filt_len so that filt_len - 1 still points to the position after
+ the last of these samples. */
+ st->filt_len = old_length;
+ return RESAMPLER_ERR_ALLOC_FAILED;
+}
+
+EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
+{
+ return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err);
+}
+
+EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
+{
+ SpeexResamplerState *st;
+ int filter_err;
+
+ if (nb_channels == 0 || ratio_num == 0 || ratio_den == 0 || quality > 10 || quality < 0)
+ {
+ if (err)
+ *err = RESAMPLER_ERR_INVALID_ARG;
+ return NULL;
+ }
+ st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
+ if (!st)
+ {
+ if (err)
+ *err = RESAMPLER_ERR_ALLOC_FAILED;
+ return NULL;
+ }
+ st->initialised = 0;
+ st->started = 0;
+ st->in_rate = 0;
+ st->out_rate = 0;
+ st->num_rate = 0;
+ st->den_rate = 0;
+ st->quality = -1;
+ st->sinc_table_length = 0;
+ st->mem_alloc_size = 0;
+ st->filt_len = 0;
+ st->mem = 0;
+ st->resampler_ptr = 0;
+
+ st->cutoff = 1.f;
+ st->nb_channels = nb_channels;
+ st->in_stride = 1;
+ st->out_stride = 1;
+
+ st->buffer_size = 160;
+
+ /* Per channel data */
+ if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t))))
+ goto fail;
+ if (!(st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
+ goto fail;
+ if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
+ goto fail;
+
+ speex_resampler_set_quality(st, quality);
+ speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
+
+ filter_err = update_filter(st);
+ if (filter_err == RESAMPLER_ERR_SUCCESS)
+ {
+ st->initialised = 1;
+ } else {
+ speex_resampler_destroy(st);
+ st = NULL;
+ }
+ if (err)
+ *err = filter_err;
+
+ return st;
+
+fail:
+ if (err)
+ *err = RESAMPLER_ERR_ALLOC_FAILED;
+ speex_resampler_destroy(st);
+ return NULL;
+}
+
+EXPORT void speex_resampler_destroy(SpeexResamplerState *st)
+{
+ speex_free(st->mem);
+ speex_free(st->sinc_table);
+ speex_free(st->last_sample);
+ speex_free(st->magic_samples);
+ speex_free(st->samp_frac_num);
+ speex_free(st);
+}
+
+static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len)
+{
+ int j=0;
+ const int N = st->filt_len;
+ int out_sample = 0;
+ spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
+ spx_uint32_t ilen;
+
+ st->started = 1;
+
+ /* Call the right resampler through the function ptr */
+ out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
+
+ if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
+ *in_len = st->last_sample[channel_index];
+ *out_len = out_sample;
+ st->last_sample[channel_index] -= *in_len;
+
+ ilen = *in_len;
+
+ for(j=0;j<N-1;++j)
+ mem[j] = mem[j+ilen];
+
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) {
+ spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
+ spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
+ const int N = st->filt_len;
+
+ speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
+
+ st->magic_samples[channel_index] -= tmp_in_len;
+
+ /* If we couldn't process all "magic" input samples, save the rest for next time */
+ if (st->magic_samples[channel_index])
+ {
+ spx_uint32_t i;
+ for (i=0;i<st->magic_samples[channel_index];i++)
+ mem[N-1+i]=mem[N-1+i+tmp_in_len];
+ }
+ *out += out_len*st->out_stride;
+ return out_len;
+}
+
+#ifdef FIXED_POINT
+EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
+#else
+EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
+#endif
+{
+ int j;
+ spx_uint32_t ilen = *in_len;
+ spx_uint32_t olen = *out_len;
+ spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
+ const int filt_offs = st->filt_len - 1;
+ const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
+ const int istride = st->in_stride;
+
+ if (st->magic_samples[channel_index])
+ olen -= speex_resampler_magic(st, channel_index, &out, olen);
+ if (! st->magic_samples[channel_index]) {
+ while (ilen && olen) {
+ spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
+ spx_uint32_t ochunk = olen;
+
+ if (in) {
+ for(j=0;j<ichunk;++j)
+ x[j+filt_offs]=in[j*istride];
+ } else {
+ for(j=0;j<ichunk;++j)
+ x[j+filt_offs]=0;
+ }
+ speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk);
+ ilen -= ichunk;
+ olen -= ochunk;
+ out += ochunk * st->out_stride;
+ if (in)
+ in += ichunk * istride;
+ }
+ }
+ *in_len -= ilen;
+ *out_len -= olen;
+ return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
+}
+
+#ifdef FIXED_POINT
+EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
+#else
+EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
+#endif
+{
+ int j;
+ const int istride_save = st->in_stride;
+ const int ostride_save = st->out_stride;
+ spx_uint32_t ilen = *in_len;
+ spx_uint32_t olen = *out_len;
+ spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size;
+ const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1);
+#ifdef VAR_ARRAYS
+ const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC;
+ spx_word16_t ystack[ylen];
+#else
+ const unsigned int ylen = FIXED_STACK_ALLOC;
+ spx_word16_t ystack[FIXED_STACK_ALLOC];
+#endif
+
+ st->out_stride = 1;
+
+ while (ilen && olen) {
+ spx_word16_t *y = ystack;
+ spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
+ spx_uint32_t ochunk = (olen > ylen) ? ylen : olen;
+ spx_uint32_t omagic = 0;
+
+ if (st->magic_samples[channel_index]) {
+ omagic = speex_resampler_magic(st, channel_index, &y, ochunk);
+ ochunk -= omagic;
+ olen -= omagic;
+ }
+ if (! st->magic_samples[channel_index]) {
+ if (in) {
+ for(j=0;j<ichunk;++j)
+#ifdef FIXED_POINT
+ x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]);
+#else
+ x[j+st->filt_len-1]=in[j*istride_save];
+#endif
+ } else {
+ for(j=0;j<ichunk;++j)
+ x[j+st->filt_len-1]=0;
+ }
+
+ speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk);
+ } else {
+ ichunk = 0;
+ ochunk = 0;
+ }
+
+ for (j=0;j<ochunk+omagic;++j)
+#ifdef FIXED_POINT
+ out[j*ostride_save] = ystack[j];
+#else
+ out[j*ostride_save] = WORD2INT(ystack[j]);
+#endif
+
+ ilen -= ichunk;
+ olen -= ochunk;
+ out += (ochunk+omagic) * ostride_save;
+ if (in)
+ in += ichunk * istride_save;
+ }
+ st->out_stride = ostride_save;
+ *in_len -= ilen;
+ *out_len -= olen;
+
+ return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+ spx_uint32_t bak_out_len = *out_len;
+ spx_uint32_t bak_in_len = *in_len;
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ st->in_stride = st->out_stride = st->nb_channels;
+ for (i=0;i<st->nb_channels;i++)
+ {
+ *out_len = bak_out_len;
+ *in_len = bak_in_len;
+ if (in != NULL)
+ speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
+ else
+ speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len);
+ }
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+ spx_uint32_t bak_out_len = *out_len;
+ spx_uint32_t bak_in_len = *in_len;
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ st->in_stride = st->out_stride = st->nb_channels;
+ for (i=0;i<st->nb_channels;i++)
+ {
+ *out_len = bak_out_len;
+ *in_len = bak_in_len;
+ if (in != NULL)
+ speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
+ else
+ speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len);
+ }
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate)
+{
+ return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate);
+}
+
+EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate)
+{
+ *in_rate = st->in_rate;
+ *out_rate = st->out_rate;
+}
+
+static inline spx_uint32_t compute_gcd(spx_uint32_t a, spx_uint32_t b)
+{
+ while (b != 0)
+ {
+ spx_uint32_t temp = a;
+
+ a = b;
+ b = temp % b;
+ }
+ return a;
+}
+
+EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
+{
+ spx_uint32_t fact;
+ spx_uint32_t old_den;
+ spx_uint32_t i;
+
+ if (ratio_num == 0 || ratio_den == 0)
+ return RESAMPLER_ERR_INVALID_ARG;
+
+ if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
+ return RESAMPLER_ERR_SUCCESS;
+
+ old_den = st->den_rate;
+ st->in_rate = in_rate;
+ st->out_rate = out_rate;
+ st->num_rate = ratio_num;
+ st->den_rate = ratio_den;
+
+ fact = compute_gcd(st->num_rate, st->den_rate);
+
+ st->num_rate /= fact;
+ st->den_rate /= fact;
+
+ if (old_den > 0)
+ {
+ for (i=0;i<st->nb_channels;i++)
+ {
+ if (multiply_frac(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS) {
+ st->samp_frac_num[i] = st->den_rate-1;
+ }
+ /* Safety net */
+ if (st->samp_frac_num[i] >= st->den_rate)
+ st->samp_frac_num[i] = st->den_rate-1;
+ }
+ }
+
+ if (st->initialised)
+ return update_filter(st);
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den)
+{
+ *ratio_num = st->num_rate;
+ *ratio_den = st->den_rate;
+}
+
+EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
+{
+ if (quality > 10 || quality < 0)
+ return RESAMPLER_ERR_INVALID_ARG;
+ if (st->quality == quality)
+ return RESAMPLER_ERR_SUCCESS;
+ st->quality = quality;
+ if (st->initialised)
+ return update_filter(st);
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
+{
+ *quality = st->quality;
+}
+
+EXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride)
+{
+ st->in_stride = stride;
+}
+
+EXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride)
+{
+ *stride = st->in_stride;
+}
+
+EXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride)
+{
+ st->out_stride = stride;
+}
+
+EXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride)
+{
+ *stride = st->out_stride;
+}
+
+EXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st)
+{
+ return st->filt_len / 2;
+}
+
+EXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st)
+{
+ return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate;
+}
+
+EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st)
+{
+ spx_uint32_t i;
+ for (i=0;i<st->nb_channels;i++)
+ st->last_sample[i] = st->filt_len/2;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT int speex_resampler_set_skip_frac_num(SpeexResamplerState *st, spx_uint32_t skip_frac_num)
+{
+ spx_uint32_t i;
+ spx_uint32_t last_sample = skip_frac_num / st->den_rate;
+ spx_uint32_t samp_frac_num = skip_frac_num % st->den_rate;
+ for (i=0;i<st->nb_channels;i++) {
+ st->last_sample[i] = last_sample;
+ st->samp_frac_num[i] = samp_frac_num;
+ }
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st)
+{
+ spx_uint32_t i;
+ for (i=0;i<st->nb_channels;i++)
+ {
+ st->last_sample[i] = 0;
+ st->magic_samples[i] = 0;
+ st->samp_frac_num[i] = 0;
+ }
+ for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
+ st->mem[i] = 0;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+EXPORT const char *speex_resampler_strerror(int err)
+{
+ switch (err)
+ {
+ case RESAMPLER_ERR_SUCCESS:
+ return "Success.";
+ case RESAMPLER_ERR_ALLOC_FAILED:
+ return "Memory allocation failed.";
+ case RESAMPLER_ERR_BAD_STATE:
+ return "Bad resampler state.";
+ case RESAMPLER_ERR_INVALID_ARG:
+ return "Invalid argument.";
+ case RESAMPLER_ERR_PTR_OVERLAP:
+ return "Input and output buffers overlap.";
+ default:
+ return "Unknown error. Bad error code or strange version mismatch.";
+ }
+}
diff --git a/media/libspeex_resampler/src/resample_neon.c b/media/libspeex_resampler/src/resample_neon.c
new file mode 100644
index 0000000000..ba97637af3
--- /dev/null
+++ b/media/libspeex_resampler/src/resample_neon.c
@@ -0,0 +1,342 @@
+/* Copyright (C) 2007-2008 Jean-Marc Valin
+ * Copyright (C) 2008 Thorvald Natvig
+ * Copyright (C) 2011 Texas Instruments
+ * author Jyri Sarha
+ */
+/**
+ @file resample_neon.h
+ @brief Resampler functions (NEON version)
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include <stdint.h>
+#include "simd_detect.h"
+
+#ifdef FIXED_POINT
+#if defined(__aarch64__)
+static inline int32_t saturate_32bit_to_16bit(int32_t a) {
+ int32_t ret;
+ asm ("fmov s0, %w[a]\n"
+ "sqxtn h0, s0\n"
+ "sxtl v0.4s, v0.4h\n"
+ "fmov %w[ret], s0\n"
+ : [ret] "=r" (ret)
+ : [a] "r" (a)
+ : "v0" );
+ return ret;
+}
+#elif defined(__thumb2__)
+static inline int32_t saturate_32bit_to_16bit(int32_t a) {
+ int32_t ret;
+ asm ("ssat %[ret], #16, %[a]"
+ : [ret] "=r" (ret)
+ : [a] "r" (a)
+ : );
+ return ret;
+}
+#else
+static inline int32_t saturate_32bit_to_16bit(int32_t a) {
+ int32_t ret;
+ asm ("vmov.s32 d0[0], %[a]\n"
+ "vqmovn.s32 d0, q0\n"
+ "vmov.s16 %[ret], d0[0]\n"
+ : [ret] "=r" (ret)
+ : [a] "r" (a)
+ : "q0");
+ return ret;
+}
+#endif
+#undef WORD2INT
+#define WORD2INT(x) (saturate_32bit_to_16bit(x))
+
+#define OVERRIDE_INNER_PRODUCT_SINGLE
+/* Only works when len % 4 == 0 and len >= 4 */
+#if defined(__aarch64__)
+inline int32_t inner_product_single(const int16_t *a, const int16_t *b, unsigned int len)
+{
+ int32_t ret;
+ uint32_t remainder = len % 16;
+ len = len - remainder;
+
+ asm volatile (" cmp %w[len], #0\n"
+ " b.ne 1f\n"
+ " ld1 {v16.4h}, [%[b]], #8\n"
+ " ld1 {v20.4h}, [%[a]], #8\n"
+ " subs %w[remainder], %w[remainder], #4\n"
+ " smull v0.4s, v16.4h, v20.4h\n"
+ " b.ne 4f\n"
+ " b 5f\n"
+ "1:"
+ " ld1 {v16.4h, v17.4h, v18.4h, v19.4h}, [%[b]], #32\n"
+ " ld1 {v20.4h, v21.4h, v22.4h, v23.4h}, [%[a]], #32\n"
+ " subs %w[len], %w[len], #16\n"
+ " smull v0.4s, v16.4h, v20.4h\n"
+ " smlal v0.4s, v17.4h, v21.4h\n"
+ " smlal v0.4s, v18.4h, v22.4h\n"
+ " smlal v0.4s, v19.4h, v23.4h\n"
+ " b.eq 3f\n"
+ "2:"
+ " ld1 {v16.4h, v17.4h, v18.4h, v19.4h}, [%[b]], #32\n"
+ " ld1 {v20.4h, v21.4h, v22.4h, v23.4h}, [%[a]], #32\n"
+ " subs %w[len], %w[len], #16\n"
+ " smlal v0.4s, v16.4h, v20.4h\n"
+ " smlal v0.4s, v17.4h, v21.4h\n"
+ " smlal v0.4s, v18.4h, v22.4h\n"
+ " smlal v0.4s, v19.4h, v23.4h\n"
+ " b.ne 2b\n"
+ "3:"
+ " cmp %w[remainder], #0\n"
+ " b.eq 5f\n"
+ "4:"
+ " ld1 {v18.4h}, [%[b]], #8\n"
+ " ld1 {v22.4h}, [%[a]], #8\n"
+ " subs %w[remainder], %w[remainder], #4\n"
+ " smlal v0.4s, v18.4h, v22.4h\n"
+ " b.ne 4b\n"
+ "5:"
+ " saddlv d0, v0.4s\n"
+ " sqxtn s0, d0\n"
+ " sqrshrn h0, s0, #15\n"
+ " sxtl v0.4s, v0.4h\n"
+ " fmov %w[ret], s0\n"
+ : [ret] "=r" (ret), [a] "+r" (a), [b] "+r" (b),
+ [len] "+r" (len), [remainder] "+r" (remainder)
+ :
+ : "cc", "v0",
+ "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23");
+ return ret;
+}
+#else
+inline int32_t inner_product_single(const int16_t *a, const int16_t *b, unsigned int len)
+{
+ int32_t ret;
+ uint32_t remainder = len % 16;
+ len = len - remainder;
+
+ asm volatile (" cmp %[len], #0\n"
+ " bne 1f\n"
+ " vld1.16 {d16}, [%[b]]!\n"
+ " vld1.16 {d20}, [%[a]]!\n"
+ " subs %[remainder], %[remainder], #4\n"
+ " vmull.s16 q0, d16, d20\n"
+ " beq 5f\n"
+ " b 4f\n"
+ "1:"
+ " vld1.16 {d16, d17, d18, d19}, [%[b]]!\n"
+ " vld1.16 {d20, d21, d22, d23}, [%[a]]!\n"
+ " subs %[len], %[len], #16\n"
+ " vmull.s16 q0, d16, d20\n"
+ " vmlal.s16 q0, d17, d21\n"
+ " vmlal.s16 q0, d18, d22\n"
+ " vmlal.s16 q0, d19, d23\n"
+ " beq 3f\n"
+ "2:"
+ " vld1.16 {d16, d17, d18, d19}, [%[b]]!\n"
+ " vld1.16 {d20, d21, d22, d23}, [%[a]]!\n"
+ " subs %[len], %[len], #16\n"
+ " vmlal.s16 q0, d16, d20\n"
+ " vmlal.s16 q0, d17, d21\n"
+ " vmlal.s16 q0, d18, d22\n"
+ " vmlal.s16 q0, d19, d23\n"
+ " bne 2b\n"
+ "3:"
+ " cmp %[remainder], #0\n"
+ " beq 5f\n"
+ "4:"
+ " vld1.16 {d16}, [%[b]]!\n"
+ " vld1.16 {d20}, [%[a]]!\n"
+ " subs %[remainder], %[remainder], #4\n"
+ " vmlal.s16 q0, d16, d20\n"
+ " bne 4b\n"
+ "5:"
+ " vaddl.s32 q0, d0, d1\n"
+ " vadd.s64 d0, d0, d1\n"
+ " vqmovn.s64 d0, q0\n"
+ " vqrshrn.s32 d0, q0, #15\n"
+ " vmov.s16 %[ret], d0[0]\n"
+ : [ret] "=r" (ret), [a] "+r" (a), [b] "+r" (b),
+ [len] "+r" (len), [remainder] "+r" (remainder)
+ :
+ : "cc", "q0",
+ "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23");
+
+ return ret;
+}
+#endif // !defined(__aarch64__)
+
+#elif defined(FLOATING_POINT)
+#if defined(__aarch64__)
+static inline int32_t saturate_float_to_16bit(float a) {
+ int32_t ret;
+ asm ("fcvtas s1, %s[a]\n"
+ "sqxtn h1, s1\n"
+ "sxtl v1.4s, v1.4h\n"
+ "fmov %w[ret], s1\n"
+ : [ret] "=r" (ret)
+ : [a] "w" (a)
+ : "v1");
+ return ret;
+}
+#else
+static inline int32_t saturate_float_to_16bit(float a) {
+ int32_t ret;
+ asm ("vmov.f32 d0[0], %[a]\n"
+ "vcvt.s32.f32 d0, d0, #15\n"
+ "vqrshrn.s32 d0, q0, #15\n"
+ "vmov.s16 %[ret], d0[0]\n"
+ : [ret] "=r" (ret)
+ : [a] "r" (a)
+ : "q0");
+ return ret;
+}
+#endif
+
+#undef WORD2INT
+#define WORD2INT(x) (saturate_float_to_16bit(x))
+
+#define OVERRIDE_INNER_PRODUCT_SINGLE
+/* Only works when len % 4 == 0 and len >= 4 */
+#if defined(__aarch64__)
+inline float inner_product_single(const float *a, const float *b, unsigned int len)
+{
+ float ret;
+ uint32_t remainder = len % 16;
+ len = len - remainder;
+
+ asm volatile (" cmp %w[len], #0\n"
+ " b.ne 1f\n"
+ " ld1 {v16.4s}, [%[b]], #16\n"
+ " ld1 {v20.4s}, [%[a]], #16\n"
+ " subs %w[remainder], %w[remainder], #4\n"
+ " fmul v1.4s, v16.4s, v20.4s\n"
+ " b.ne 4f\n"
+ " b 5f\n"
+ "1:"
+ " ld1 {v16.4s, v17.4s, v18.4s, v19.4s}, [%[b]], #64\n"
+ " ld1 {v20.4s, v21.4s, v22.4s, v23.4s}, [%[a]], #64\n"
+ " subs %w[len], %w[len], #16\n"
+ " fmul v1.4s, v16.4s, v20.4s\n"
+ " fmul v2.4s, v17.4s, v21.4s\n"
+ " fmul v3.4s, v18.4s, v22.4s\n"
+ " fmul v4.4s, v19.4s, v23.4s\n"
+ " b.eq 3f\n"
+ "2:"
+ " ld1 {v16.4s, v17.4s, v18.4s, v19.4s}, [%[b]], #64\n"
+ " ld1 {v20.4s, v21.4s, v22.4s, v23.4s}, [%[a]], #64\n"
+ " subs %w[len], %w[len], #16\n"
+ " fmla v1.4s, v16.4s, v20.4s\n"
+ " fmla v2.4s, v17.4s, v21.4s\n"
+ " fmla v3.4s, v18.4s, v22.4s\n"
+ " fmla v4.4s, v19.4s, v23.4s\n"
+ " b.ne 2b\n"
+ "3:"
+ " fadd v16.4s, v1.4s, v2.4s\n"
+ " fadd v17.4s, v3.4s, v4.4s\n"
+ " cmp %w[remainder], #0\n"
+ " fadd v1.4s, v16.4s, v17.4s\n"
+ " b.eq 5f\n"
+ "4:"
+ " ld1 {v18.4s}, [%[b]], #16\n"
+ " ld1 {v22.4s}, [%[a]], #16\n"
+ " subs %w[remainder], %w[remainder], #4\n"
+ " fmla v1.4s, v18.4s, v22.4s\n"
+ " b.ne 4b\n"
+ "5:"
+ " faddp v1.4s, v1.4s, v1.4s\n"
+ " faddp %[ret].4s, v1.4s, v1.4s\n"
+ : [ret] "=w" (ret), [a] "+r" (a), [b] "+r" (b),
+ [len] "+r" (len), [remainder] "+r" (remainder)
+ :
+ : "cc", "v1", "v2", "v3", "v4",
+ "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23");
+ return ret;
+}
+#else
+inline float inner_product_single(const float *a, const float *b, unsigned int len)
+{
+ float ret;
+ uint32_t remainder = len % 16;
+ len = len - remainder;
+
+ asm volatile (" cmp %[len], #0\n"
+ " bne 1f\n"
+ " vld1.32 {q4}, [%[b]]!\n"
+ " vld1.32 {q8}, [%[a]]!\n"
+ " subs %[remainder], %[remainder], #4\n"
+ " vmul.f32 q0, q4, q8\n"
+ " bne 4f\n"
+ " b 5f\n"
+ "1:"
+ " vld1.32 {q4, q5}, [%[b]]!\n"
+ " vld1.32 {q8, q9}, [%[a]]!\n"
+ " vld1.32 {q6, q7}, [%[b]]!\n"
+ " vld1.32 {q10, q11}, [%[a]]!\n"
+ " subs %[len], %[len], #16\n"
+ " vmul.f32 q0, q4, q8\n"
+ " vmul.f32 q1, q5, q9\n"
+ " vmul.f32 q2, q6, q10\n"
+ " vmul.f32 q3, q7, q11\n"
+ " beq 3f\n"
+ "2:"
+ " vld1.32 {q4, q5}, [%[b]]!\n"
+ " vld1.32 {q8, q9}, [%[a]]!\n"
+ " vld1.32 {q6, q7}, [%[b]]!\n"
+ " vld1.32 {q10, q11}, [%[a]]!\n"
+ " subs %[len], %[len], #16\n"
+ " vmla.f32 q0, q4, q8\n"
+ " vmla.f32 q1, q5, q9\n"
+ " vmla.f32 q2, q6, q10\n"
+ " vmla.f32 q3, q7, q11\n"
+ " bne 2b\n"
+ "3:"
+ " vadd.f32 q4, q0, q1\n"
+ " vadd.f32 q5, q2, q3\n"
+ " cmp %[remainder], #0\n"
+ " vadd.f32 q0, q4, q5\n"
+ " beq 5f\n"
+ "4:"
+ " vld1.32 {q6}, [%[b]]!\n"
+ " vld1.32 {q10}, [%[a]]!\n"
+ " subs %[remainder], %[remainder], #4\n"
+ " vmla.f32 q0, q6, q10\n"
+ " bne 4b\n"
+ "5:"
+ " vadd.f32 d0, d0, d1\n"
+ " vpadd.f32 d0, d0, d0\n"
+ " vmov.f32 %[ret], d0[0]\n"
+ : [ret] "=r" (ret), [a] "+r" (a), [b] "+r" (b),
+ [len] "+l" (len), [remainder] "+l" (remainder)
+ :
+ : "cc", "q0", "q1", "q2", "q3",
+ "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11");
+ return ret;
+}
+#endif // defined(__aarch64__)
+#endif
diff --git a/media/libspeex_resampler/src/resample_sse.c b/media/libspeex_resampler/src/resample_sse.c
new file mode 100644
index 0000000000..c3a864ccff
--- /dev/null
+++ b/media/libspeex_resampler/src/resample_sse.c
@@ -0,0 +1,130 @@
+/* Copyright (C) 2007-2008 Jean-Marc Valin
+ * Copyright (C) 2008 Thorvald Natvig
+ */
+/**
+ @file resample_sse.h
+ @brief Resampler functions (SSE version)
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "simd_detect.h"
+
+#include <xmmintrin.h>
+
+#define OVERRIDE_INNER_PRODUCT_SINGLE
+float inner_product_single(const float *a, const float *b, unsigned int len)
+{
+ int i;
+ float ret;
+ __m128 sum = _mm_setzero_ps();
+ for (i=0;i<len;i+=8)
+ {
+ sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i)));
+ sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4)));
+ }
+ sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
+ sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
+ _mm_store_ss(&ret, sum);
+ return ret;
+}
+
+#define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+float interpolate_product_single(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
+ int i;
+ float ret;
+ __m128 sum = _mm_setzero_ps();
+ __m128 f = _mm_loadu_ps(frac);
+ for(i=0;i<len;i+=2)
+ {
+ sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample)));
+ sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample)));
+ }
+ sum = _mm_mul_ps(f, sum);
+ sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum));
+ sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55));
+ _mm_store_ss(&ret, sum);
+ return ret;
+}
+
+#ifdef USE_SSE2
+#include <emmintrin.h>
+#define OVERRIDE_INNER_PRODUCT_DOUBLE
+
+double inner_product_double(const float *a, const float *b, unsigned int len)
+{
+ int i;
+ double ret;
+ __m128d sum = _mm_setzero_pd();
+ __m128 t;
+ for (i=0;i<len;i+=8)
+ {
+ t = _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i));
+ sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
+ sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
+
+ t = _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4));
+ sum = _mm_add_pd(sum, _mm_cvtps_pd(t));
+ sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
+ }
+ sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
+ _mm_store_sd(&ret, sum);
+ return ret;
+}
+
+#define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) {
+ int i;
+ double ret;
+ __m128d sum;
+ __m128d sum1 = _mm_setzero_pd();
+ __m128d sum2 = _mm_setzero_pd();
+ __m128 f = _mm_loadu_ps(frac);
+ __m128d f1 = _mm_cvtps_pd(f);
+ __m128d f2 = _mm_cvtps_pd(_mm_movehl_ps(f,f));
+ __m128 t;
+ for(i=0;i<len;i+=2)
+ {
+ t = _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample));
+ sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
+ sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
+
+ t = _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample));
+ sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t));
+ sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t)));
+ }
+ sum1 = _mm_mul_pd(f1, sum1);
+ sum2 = _mm_mul_pd(f2, sum2);
+ sum = _mm_add_pd(sum1, sum2);
+ sum = _mm_add_sd(sum, _mm_unpackhi_pd(sum, sum));
+ _mm_store_sd(&ret, sum);
+ return ret;
+}
+
+#endif
diff --git a/media/libspeex_resampler/src/simd_detect.cpp b/media/libspeex_resampler/src/simd_detect.cpp
new file mode 100644
index 0000000000..8dbd51d487
--- /dev/null
+++ b/media/libspeex_resampler/src/simd_detect.cpp
@@ -0,0 +1,27 @@
+/* vim: set shiftwidth=2 tabstop=8 autoindent cindent expandtab: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "simd_detect.h"
+
+#include "mozilla/SSE.h"
+#include "mozilla/arm.h"
+
+#ifdef USE_SSE2
+int moz_speex_have_double_simd() {
+ return mozilla::supports_sse2() ? 1 : 0;
+}
+#endif
+
+#ifdef USE_SSE
+int moz_speex_have_single_simd() {
+ return mozilla::supports_sse() ? 1 : 0;
+}
+#endif
+
+#ifdef USE_NEON
+int moz_speex_have_single_simd() {
+ return mozilla::supports_neon() ? 1 : 0;
+}
+#endif
diff --git a/media/libspeex_resampler/src/simd_detect.h b/media/libspeex_resampler/src/simd_detect.h
new file mode 100644
index 0000000000..70f71c6a85
--- /dev/null
+++ b/media/libspeex_resampler/src/simd_detect.h
@@ -0,0 +1,43 @@
+/* vim: set shiftwidth=2 tabstop=8 autoindent cindent expandtab: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef simd_detect_h
+#define simd_detect_h
+
+#include "speex_resampler.h"
+#include "arch.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+int moz_speex_have_single_simd();
+int moz_speex_have_double_simd();
+
+#if defined(USE_SSE) || defined(USE_NEON)
+#define OVERRIDE_INNER_PRODUCT_SINGLE
+#define inner_product_single CAT_PREFIX(RANDOM_PREFIX,_inner_product_single)
+spx_word32_t inner_product_single(const spx_word16_t *a, const spx_word16_t *b, unsigned int len);
+#endif
+#if defined(USE_SSE)
+#define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE
+#define interpolate_product_single CAT_PREFIX(RANDOM_PREFIX,_interpolate_product_single)
+spx_word32_t interpolate_product_single(const spx_word16_t *a, const spx_word16_t *b, unsigned int len, const spx_uint32_t oversample, float *frac);
+#endif
+
+#if defined(USE_SSE2)
+#define OVERRIDE_INNER_PRODUCT_DOUBLE
+#define inner_product_double CAT_PREFIX(RANDOM_PREFIX,_inner_product_double)
+double inner_product_double(const float *a, const float *b, unsigned int len);
+#define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE
+#define interpolate_product_double CAT_PREFIX(RANDOM_PREFIX,_interpolate_product_double)
+double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac);
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // simd_detect_h
diff --git a/media/libspeex_resampler/src/speex_resampler.h b/media/libspeex_resampler/src/speex_resampler.h
new file mode 100644
index 0000000000..65fb078276
--- /dev/null
+++ b/media/libspeex_resampler/src/speex_resampler.h
@@ -0,0 +1,361 @@
+/* Copyright (C) 2007 Jean-Marc Valin
+
+ File: speex_resampler.h
+ Resampling code
+
+ The design goals of this code are:
+ - Very fast algorithm
+ - Low memory requirement
+ - Good *perceptual* quality (and not best SNR)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The name of the author may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+*/
+
+
+#ifndef SPEEX_RESAMPLER_H
+#define SPEEX_RESAMPLER_H
+
+#if 1 /* OUTSIDE_SPEEX */
+
+/********* WARNING: MENTAL SANITY ENDS HERE *************/
+
+/* If the resampler is defined outside of Speex, we change the symbol names so that
+ there won't be any clash if linking with Speex later on. */
+
+/* #define RANDOM_PREFIX your software name here */
+#define RANDOM_PREFIX moz_speex
+#ifndef RANDOM_PREFIX
+#error "Please define RANDOM_PREFIX (above) to something specific to your project to prevent symbol name clashes"
+#endif
+
+#define CAT_PREFIX2(a,b) a ## b
+#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
+
+#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
+#define speex_resampler_init_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_init_frac)
+#define speex_resampler_destroy CAT_PREFIX(RANDOM_PREFIX,_resampler_destroy)
+#define speex_resampler_process_float CAT_PREFIX(RANDOM_PREFIX,_resampler_process_float)
+#define speex_resampler_process_int CAT_PREFIX(RANDOM_PREFIX,_resampler_process_int)
+#define speex_resampler_process_interleaved_float CAT_PREFIX(RANDOM_PREFIX,_resampler_process_interleaved_float)
+#define speex_resampler_process_interleaved_int CAT_PREFIX(RANDOM_PREFIX,_resampler_process_interleaved_int)
+#define speex_resampler_set_rate CAT_PREFIX(RANDOM_PREFIX,_resampler_set_rate)
+#define speex_resampler_get_rate CAT_PREFIX(RANDOM_PREFIX,_resampler_get_rate)
+#define speex_resampler_set_rate_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_set_rate_frac)
+#define speex_resampler_get_ratio CAT_PREFIX(RANDOM_PREFIX,_resampler_get_ratio)
+#define speex_resampler_set_quality CAT_PREFIX(RANDOM_PREFIX,_resampler_set_quality)
+#define speex_resampler_get_quality CAT_PREFIX(RANDOM_PREFIX,_resampler_get_quality)
+#define speex_resampler_set_input_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_set_input_stride)
+#define speex_resampler_get_input_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_get_input_stride)
+#define speex_resampler_set_output_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_set_output_stride)
+#define speex_resampler_get_output_stride CAT_PREFIX(RANDOM_PREFIX,_resampler_get_output_stride)
+#define speex_resampler_get_input_latency CAT_PREFIX(RANDOM_PREFIX,_resampler_get_input_latency)
+#define speex_resampler_get_output_latency CAT_PREFIX(RANDOM_PREFIX,_resampler_get_output_latency)
+#define speex_resampler_skip_zeros CAT_PREFIX(RANDOM_PREFIX,_resampler_skip_zeros)
+#define speex_resampler_set_skip_frac_num CAT_PREFIX(RANDOM_PREFIX,_resampler_set_skip_frac_num)
+#define speex_resampler_reset_mem CAT_PREFIX(RANDOM_PREFIX,_resampler_reset_mem)
+#define speex_resampler_strerror CAT_PREFIX(RANDOM_PREFIX,_resampler_strerror)
+
+#define spx_int16_t short
+#define spx_int32_t int
+#define spx_uint16_t unsigned short
+#define spx_uint32_t unsigned int
+
+#define speex_assert(cond)
+
+#else /* OUTSIDE_SPEEX */
+
+#include "speexdsp_types.h"
+
+#endif /* OUTSIDE_SPEEX */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define SPEEX_RESAMPLER_QUALITY_MAX 10
+#define SPEEX_RESAMPLER_QUALITY_MIN 0
+#define SPEEX_RESAMPLER_QUALITY_DEFAULT 4
+#define SPEEX_RESAMPLER_QUALITY_VOIP 3
+#define SPEEX_RESAMPLER_QUALITY_DESKTOP 5
+
+enum {
+ RESAMPLER_ERR_SUCCESS = 0,
+ RESAMPLER_ERR_ALLOC_FAILED = 1,
+ RESAMPLER_ERR_BAD_STATE = 2,
+ RESAMPLER_ERR_INVALID_ARG = 3,
+ RESAMPLER_ERR_PTR_OVERLAP = 4,
+ RESAMPLER_ERR_OVERFLOW = 5,
+
+ RESAMPLER_ERR_MAX_ERROR
+};
+
+struct SpeexResamplerState_;
+typedef struct SpeexResamplerState_ SpeexResamplerState;
+
+/** Create a new resampler with integer input and output rates.
+ * @param nb_channels Number of channels to be processed
+ * @param in_rate Input sampling rate (integer number of Hz).
+ * @param out_rate Output sampling rate (integer number of Hz).
+ * @param quality Resampling quality between 0 and 10, where 0 has poor quality
+ * and 10 has very high quality.
+ * @return Newly created resampler state
+ * @retval NULL Error: not enough memory
+ */
+SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
+ spx_uint32_t in_rate,
+ spx_uint32_t out_rate,
+ int quality,
+ int *err);
+
+/** Create a new resampler with fractional input/output rates. The sampling
+ * rate ratio is an arbitrary rational number with both the numerator and
+ * denominator being 32-bit integers.
+ * @param nb_channels Number of channels to be processed
+ * @param ratio_num Numerator of the sampling rate ratio
+ * @param ratio_den Denominator of the sampling rate ratio
+ * @param in_rate Input sampling rate rounded to the nearest integer (in Hz).
+ * @param out_rate Output sampling rate rounded to the nearest integer (in Hz).
+ * @param quality Resampling quality between 0 and 10, where 0 has poor quality
+ * and 10 has very high quality.
+ * @return Newly created resampler state
+ * @retval NULL Error: not enough memory
+ */
+SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
+ spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den,
+ spx_uint32_t in_rate,
+ spx_uint32_t out_rate,
+ int quality,
+ int *err);
+
+/** Destroy a resampler state.
+ * @param st Resampler state
+ */
+void speex_resampler_destroy(SpeexResamplerState *st);
+
+/** Resample a float array. The input and output buffers must *not* overlap.
+ * @param st Resampler state
+ * @param channel_index Index of the channel to process for the multi-channel
+ * base (0 otherwise)
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the
+ * number of samples processed
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples written
+ */
+int speex_resampler_process_float(SpeexResamplerState *st,
+ spx_uint32_t channel_index,
+ const float *in,
+ spx_uint32_t *in_len,
+ float *out,
+ spx_uint32_t *out_len);
+
+/** Resample an int array. The input and output buffers must *not* overlap.
+ * @param st Resampler state
+ * @param channel_index Index of the channel to process for the multi-channel
+ * base (0 otherwise)
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the number
+ * of samples processed
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples written
+ */
+int speex_resampler_process_int(SpeexResamplerState *st,
+ spx_uint32_t channel_index,
+ const spx_int16_t *in,
+ spx_uint32_t *in_len,
+ spx_int16_t *out,
+ spx_uint32_t *out_len);
+
+/** Resample an interleaved float array. The input and output buffers must *not* overlap.
+ * @param st Resampler state
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the number
+ * of samples processed. This is all per-channel.
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples written.
+ * This is all per-channel.
+ */
+int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
+ const float *in,
+ spx_uint32_t *in_len,
+ float *out,
+ spx_uint32_t *out_len);
+
+/** Resample an interleaved int array. The input and output buffers must *not* overlap.
+ * @param st Resampler state
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the number
+ * of samples processed. This is all per-channel.
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples written.
+ * This is all per-channel.
+ */
+int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
+ const spx_int16_t *in,
+ spx_uint32_t *in_len,
+ spx_int16_t *out,
+ spx_uint32_t *out_len);
+
+/** Set (change) the input/output sampling rates (integer value).
+ * @param st Resampler state
+ * @param in_rate Input sampling rate (integer number of Hz).
+ * @param out_rate Output sampling rate (integer number of Hz).
+ */
+int speex_resampler_set_rate(SpeexResamplerState *st,
+ spx_uint32_t in_rate,
+ spx_uint32_t out_rate);
+
+/** Get the current input/output sampling rates (integer value).
+ * @param st Resampler state
+ * @param in_rate Input sampling rate (integer number of Hz) copied.
+ * @param out_rate Output sampling rate (integer number of Hz) copied.
+ */
+void speex_resampler_get_rate(SpeexResamplerState *st,
+ spx_uint32_t *in_rate,
+ spx_uint32_t *out_rate);
+
+/** Set (change) the input/output sampling rates and resampling ratio
+ * (fractional values in Hz supported).
+ * @param st Resampler state
+ * @param ratio_num Numerator of the sampling rate ratio
+ * @param ratio_den Denominator of the sampling rate ratio
+ * @param in_rate Input sampling rate rounded to the nearest integer (in Hz).
+ * @param out_rate Output sampling rate rounded to the nearest integer (in Hz).
+ */
+int speex_resampler_set_rate_frac(SpeexResamplerState *st,
+ spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den,
+ spx_uint32_t in_rate,
+ spx_uint32_t out_rate);
+
+/** Get the current resampling ratio. This will be reduced to the least
+ * common denominator.
+ * @param st Resampler state
+ * @param ratio_num Numerator of the sampling rate ratio copied
+ * @param ratio_den Denominator of the sampling rate ratio copied
+ */
+void speex_resampler_get_ratio(SpeexResamplerState *st,
+ spx_uint32_t *ratio_num,
+ spx_uint32_t *ratio_den);
+
+/** Set (change) the conversion quality.
+ * @param st Resampler state
+ * @param quality Resampling quality between 0 and 10, where 0 has poor
+ * quality and 10 has very high quality.
+ */
+int speex_resampler_set_quality(SpeexResamplerState *st,
+ int quality);
+
+/** Get the conversion quality.
+ * @param st Resampler state
+ * @param quality Resampling quality between 0 and 10, where 0 has poor
+ * quality and 10 has very high quality.
+ */
+void speex_resampler_get_quality(SpeexResamplerState *st,
+ int *quality);
+
+/** Set (change) the input stride.
+ * @param st Resampler state
+ * @param stride Input stride
+ */
+void speex_resampler_set_input_stride(SpeexResamplerState *st,
+ spx_uint32_t stride);
+
+/** Get the input stride.
+ * @param st Resampler state
+ * @param stride Input stride copied
+ */
+void speex_resampler_get_input_stride(SpeexResamplerState *st,
+ spx_uint32_t *stride);
+
+/** Set (change) the output stride.
+ * @param st Resampler state
+ * @param stride Output stride
+ */
+void speex_resampler_set_output_stride(SpeexResamplerState *st,
+ spx_uint32_t stride);
+
+/** Get the output stride.
+ * @param st Resampler state copied
+ * @param stride Output stride
+ */
+void speex_resampler_get_output_stride(SpeexResamplerState *st,
+ spx_uint32_t *stride);
+
+/** Get the latency introduced by the resampler measured in input samples.
+ * @param st Resampler state
+ */
+int speex_resampler_get_input_latency(SpeexResamplerState *st);
+
+/** Get the latency introduced by the resampler measured in output samples.
+ * @param st Resampler state
+ */
+int speex_resampler_get_output_latency(SpeexResamplerState *st);
+
+/** Make sure that the first samples to go out of the resamplers don't have
+ * leading zeros. This is only useful before starting to use a newly created
+ * resampler. It is recommended to use that when resampling an audio file, as
+ * it will generate a file with the same length. For real-time processing,
+ * it is probably easier not to use this call (so that the output duration
+ * is the same for the first frame).
+ * @param st Resampler state
+ */
+int speex_resampler_skip_zeros(SpeexResamplerState *st);
+
+/** Set the numerator in a fraction determining the advance through input
+ * samples before writing any output samples. The denominator of the fraction
+ * is the value returned from speex_resampler_get_ratio() in ratio_den. This
+ * is only useful before starting to use a newly created or reset resampler.
+ * If the first input sample is interpreted as the signal at time
+ * input_latency*in_rate, then the first output sample represents the signal
+ * at the time frac_num/ratio_num*out_rate.
+ * This is intended for careful alignment of output sample points wrt input
+ * sample points. Large values are not an efficient offset into the in buffer.
+ * @param st Resampler state
+ * @param skip_frac_num Numerator of the offset fraction,
+ * between 0 and ratio_den-1.
+ */
+int speex_resampler_set_skip_frac_num(SpeexResamplerState *st,
+ spx_uint32_t skip_frac_num);
+
+/** Reset a resampler so a new (unrelated) stream can be processed.
+ * @param st Resampler state
+ */
+int speex_resampler_reset_mem(SpeexResamplerState *st);
+
+/** Returns the English meaning for an error code
+ * @param err Error code
+ * @return English string
+ */
+const char *speex_resampler_strerror(int err);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif