diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /security/sandbox/chromium/base/thread_annotations.h | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/sandbox/chromium/base/thread_annotations.h')
-rw-r--r-- | security/sandbox/chromium/base/thread_annotations.h | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/thread_annotations.h b/security/sandbox/chromium/base/thread_annotations.h new file mode 100644 index 0000000000..fdd32f8490 --- /dev/null +++ b/security/sandbox/chromium/base/thread_annotations.h @@ -0,0 +1,264 @@ +// Copyright (c) 2018 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// This header file contains macro definitions for thread safety annotations +// that allow developers to document the locking policies of multi-threaded +// code. The annotations can also help program analysis tools to identify +// potential thread safety issues. +// +// Note that the annotations we use are described as deprecated in the Clang +// documentation, linked below. E.g. we use EXCLUSIVE_LOCKS_REQUIRED where the +// Clang docs use REQUIRES. +// +// http://clang.llvm.org/docs/ThreadSafetyAnalysis.html +// +// We use the deprecated Clang annotations to match Abseil (relevant header +// linked below) and its ecosystem of libraries. We will follow Abseil with +// respect to upgrading to more modern annotations. +// +// https://github.com/abseil/abseil-cpp/blob/master/absl/base/thread_annotations.h +// +// These annotations are implemented using compiler attributes. Using the macros +// defined here instead of raw attributes allow for portability and future +// compatibility. +// +// When referring to mutexes in the arguments of the attributes, you should +// use variable names or more complex expressions (e.g. my_object->mutex_) +// that evaluate to a concrete mutex object whenever possible. If the mutex +// you want to refer to is not in scope, you may use a member pointer +// (e.g. &MyClass::mutex_) to refer to a mutex in some (unknown) object. + +#ifndef BASE_THREAD_ANNOTATIONS_H_ +#define BASE_THREAD_ANNOTATIONS_H_ + +#include "base/logging.h" +#include "build/build_config.h" + +#if defined(__clang__) +#define THREAD_ANNOTATION_ATTRIBUTE__(x) __attribute__((x)) +#else +#define THREAD_ANNOTATION_ATTRIBUTE__(x) // no-op +#endif + +// GUARDED_BY() +// +// Documents if a shared field or global variable needs to be protected by a +// mutex. GUARDED_BY() allows the user to specify a particular mutex that +// should be held when accessing the annotated variable. +// +// Example: +// +// Mutex mu; +// int p1 GUARDED_BY(mu); +#define GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x)) + +// PT_GUARDED_BY() +// +// Documents if the memory location pointed to by a pointer should be guarded +// by a mutex when dereferencing the pointer. +// +// Example: +// Mutex mu; +// int *p1 PT_GUARDED_BY(mu); +// +// Note that a pointer variable to a shared memory location could itself be a +// shared variable. +// +// Example: +// +// // `q`, guarded by `mu1`, points to a shared memory location that is +// // guarded by `mu2`: +// int *q GUARDED_BY(mu1) PT_GUARDED_BY(mu2); +#define PT_GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x)) + +// ACQUIRED_AFTER() / ACQUIRED_BEFORE() +// +// Documents the acquisition order between locks that can be held +// simultaneously by a thread. For any two locks that need to be annotated +// to establish an acquisition order, only one of them needs the annotation. +// (i.e. You don't have to annotate both locks with both ACQUIRED_AFTER +// and ACQUIRED_BEFORE.) +// +// Example: +// +// Mutex m1; +// Mutex m2 ACQUIRED_AFTER(m1); +#define ACQUIRED_AFTER(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__)) + +#define ACQUIRED_BEFORE(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__)) + +// EXCLUSIVE_LOCKS_REQUIRED() / SHARED_LOCKS_REQUIRED() +// +// Documents a function that expects a mutex to be held prior to entry. +// The mutex is expected to be held both on entry to, and exit from, the +// function. +// +// Example: +// +// Mutex mu1, mu2; +// int a GUARDED_BY(mu1); +// int b GUARDED_BY(mu2); +// +// void foo() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2) { ... }; +#define EXCLUSIVE_LOCKS_REQUIRED(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__)) + +#define SHARED_LOCKS_REQUIRED(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__)) + +// LOCKS_EXCLUDED() +// +// Documents the locks acquired in the body of the function. These locks +// cannot be held when calling this function (as Abseil's `Mutex` locks are +// non-reentrant). +#define LOCKS_EXCLUDED(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__)) + +// LOCK_RETURNED() +// +// Documents a function that returns a mutex without acquiring it. For example, +// a public getter method that returns a pointer to a private mutex should +// be annotated with LOCK_RETURNED. +#define LOCK_RETURNED(x) THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x)) + +// LOCKABLE +// +// Documents if a class/type is a lockable type (such as the `Mutex` class). +#define LOCKABLE THREAD_ANNOTATION_ATTRIBUTE__(lockable) + +// SCOPED_LOCKABLE +// +// Documents if a class does RAII locking (such as the `MutexLock` class). +// The constructor should use `LOCK_FUNCTION()` to specify the mutex that is +// acquired, and the destructor should use `UNLOCK_FUNCTION()` with no +// arguments; the analysis will assume that the destructor unlocks whatever the +// constructor locked. +#define SCOPED_LOCKABLE THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable) + +// EXCLUSIVE_LOCK_FUNCTION() +// +// Documents functions that acquire a lock in the body of a function, and do +// not release it. +#define EXCLUSIVE_LOCK_FUNCTION(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__)) + +// SHARED_LOCK_FUNCTION() +// +// Documents functions that acquire a shared (reader) lock in the body of a +// function, and do not release it. +#define SHARED_LOCK_FUNCTION(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__)) + +// UNLOCK_FUNCTION() +// +// Documents functions that expect a lock to be held on entry to the function, +// and release it in the body of the function. +#define UNLOCK_FUNCTION(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__)) + +// EXCLUSIVE_TRYLOCK_FUNCTION() / SHARED_TRYLOCK_FUNCTION() +// +// Documents functions that try to acquire a lock, and return success or failure +// (or a non-boolean value that can be interpreted as a boolean). +// The first argument should be `true` for functions that return `true` on +// success, or `false` for functions that return `false` on success. The second +// argument specifies the mutex that is locked on success. If unspecified, this +// mutex is assumed to be `this`. +#define EXCLUSIVE_TRYLOCK_FUNCTION(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__)) + +#define SHARED_TRYLOCK_FUNCTION(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__)) + +// ASSERT_EXCLUSIVE_LOCK() / ASSERT_SHARED_LOCK() +// +// Documents functions that dynamically check to see if a lock is held, and fail +// if it is not held. +#define ASSERT_EXCLUSIVE_LOCK(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__)) + +#define ASSERT_SHARED_LOCK(...) \ + THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__)) + +// NO_THREAD_SAFETY_ANALYSIS +// +// Turns off thread safety checking within the body of a particular function. +// This annotation is used to mark functions that are known to be correct, but +// the locking behavior is more complicated than the analyzer can handle. +#define NO_THREAD_SAFETY_ANALYSIS \ + THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis) + +//------------------------------------------------------------------------------ +// Tool-Supplied Annotations +//------------------------------------------------------------------------------ + +// TS_UNCHECKED should be placed around lock expressions that are not valid +// C++ syntax, but which are present for documentation purposes. These +// annotations will be ignored by the analysis. +#define TS_UNCHECKED(x) "" + +// TS_FIXME is used to mark lock expressions that are not valid C++ syntax. +// It is used by automated tools to mark and disable invalid expressions. +// The annotation should either be fixed, or changed to TS_UNCHECKED. +#define TS_FIXME(x) "" + +// Like NO_THREAD_SAFETY_ANALYSIS, this turns off checking within the body of +// a particular function. However, this attribute is used to mark functions +// that are incorrect and need to be fixed. It is used by automated tools to +// avoid breaking the build when the analysis is updated. +// Code owners are expected to eventually fix the routine. +#define NO_THREAD_SAFETY_ANALYSIS_FIXME NO_THREAD_SAFETY_ANALYSIS + +// Similar to NO_THREAD_SAFETY_ANALYSIS_FIXME, this macro marks a GUARDED_BY +// annotation that needs to be fixed, because it is producing thread safety +// warning. It disables the GUARDED_BY. +#define GUARDED_BY_FIXME(x) + +// Disables warnings for a single read operation. This can be used to avoid +// warnings when it is known that the read is not actually involved in a race, +// but the compiler cannot confirm that. +#define TS_UNCHECKED_READ(x) thread_safety_analysis::ts_unchecked_read(x) + +namespace thread_safety_analysis { + +// Takes a reference to a guarded data member, and returns an unguarded +// reference. +template <typename T> +inline const T& ts_unchecked_read(const T& v) NO_THREAD_SAFETY_ANALYSIS { + return v; +} + +template <typename T> +inline T& ts_unchecked_read(T& v) NO_THREAD_SAFETY_ANALYSIS { + return v; +} + +} // namespace thread_safety_analysis + +// The above is imported as-is from abseil-cpp. The following Chromium-specific +// synonyms are added for Chromium concepts (SequenceChecker/ThreadChecker). +#if DCHECK_IS_ON() + +// Equivalent to GUARDED_BY for SequenceChecker/ThreadChecker. Currently, +// clang's error message "requires holding mutex" is misleading. Usage of this +// macro is discouraged until the message is updated. +// TODO(etiennep): Update comment above once clang's error message is updated. +#define GUARDED_BY_CONTEXT(name) GUARDED_BY(name) + +// Equivalent to EXCLUSIVE_LOCKS_REQUIRED for SequenceChecker/ThreadChecker. +// Currently, clang's error message "requires holding mutex" is misleading. +// Usage of this macro is discouraged until the message is updated. +// TODO(etiennep): Update comment above once clang's error message is updated. +#define VALID_CONTEXT_REQUIRED(name) EXCLUSIVE_LOCKS_REQUIRED(name) + +#else // DCHECK_IS_ON() + +#define GUARDED_BY_CONTEXT(name) +#define VALID_CONTEXT_REQUIRED(name) + +#endif // DCHECK_IS_ON() + +#endif // BASE_THREAD_ANNOTATIONS_H_ |