summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webnn/resources/utils.js
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:14:29 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:14:29 +0000
commitfbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8 (patch)
tree4c1ccaf5486d4f2009f9a338a98a83e886e29c97 /testing/web-platform/tests/webnn/resources/utils.js
parentReleasing progress-linux version 124.0.1-1~progress7.99u1. (diff)
downloadfirefox-fbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8.tar.xz
firefox-fbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8.zip
Merging upstream version 125.0.1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'testing/web-platform/tests/webnn/resources/utils.js')
-rw-r--r--testing/web-platform/tests/webnn/resources/utils.js172
1 files changed, 113 insertions, 59 deletions
diff --git a/testing/web-platform/tests/webnn/resources/utils.js b/testing/web-platform/tests/webnn/resources/utils.js
index f91d6622d3..375c71174a 100644
--- a/testing/web-platform/tests/webnn/resources/utils.js
+++ b/testing/web-platform/tests/webnn/resources/utils.js
@@ -1,7 +1,5 @@
'use strict';
-const ExecutionArray = ['sync', 'async'];
-
// https://webmachinelearning.github.io/webnn/#enumdef-mloperanddatatype
const TypedArrayDict = {
// workaround use Uint16 for Float16
@@ -193,7 +191,7 @@ const getMatmulPrecisionTolerance = (resources, operationName) => {
};
/**
- * Get ULP tolerance of averagePool2d operation.
+ * Get ULP tolerance of averagePool2d or l2Pool2d operation.
* @param {Object} resources - Resources used for building a graph
* @param {String} operationName - An operation name
* @returns {Number} A tolerance number
@@ -284,6 +282,32 @@ const getReductionPrecisionTolerance = (resources, operationName) => {
return tolerance;
};
+/**
+ * Get ULP tolerance of resample2d operations.
+ * @param {Object} resources - Resources used for building a graph
+ * @param {String} operationName - An operation name
+ * @returns {Number} A tolerance number
+ */
+const getResample2dPrecisionTolerance = (resources, operationName) => {
+ const options = {...resources.options};
+ let tolerance;
+ if (options.mode && options.mode === 'linear') {
+ // interpolation mode is linear
+ const precisionType = resources.expected.type;
+ if (precisionType === 'float32') {
+ tolerance = 84;
+ } else if (precisionType === 'float16') {
+ tolerance = 10;
+ } else {
+ tolerance = 1;
+ }
+ } else {
+ // interpolation mode is nearest-neighbor
+ tolerance = 0;
+ }
+ return tolerance;
+};
+
// Refer to precision metrics on https://github.com/webmachinelearning/webnn/issues/265#issuecomment-1256242643
const PrecisionMetrics = {
argMax: {ULP: {int64: 0}},
@@ -292,6 +316,7 @@ const PrecisionMetrics = {
cast: {ULP: {float32: 1, float16: 1, int32: 0, uint32: 0, int64: 0, int8: 0, uint8: 0}},
clamp: {ULP: {float32: 0, float16: 0}},
concat: {ULP: {float32: 0, float16: 0}},
+ constant: {ULP: {float32: 2, float16: 2, int32: 0, uint32: 0, int64: 0, int8: 0, uint8: 0}},
conv2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
convTranspose2d: {ULP: {float32: getConv2dPrecisionTolerance, float16: getConv2dPrecisionTolerance}},
// Begin Element-wise binary operations
@@ -340,6 +365,7 @@ const PrecisionMetrics = {
pad: {ULP: {float32: 0, float16: 0}},
// Begin Pooling operations
averagePool2d: {ULP: {float32: getAveragePool2dPrecisionTolerance, float16: getAveragePool2dPrecisionTolerance}},
+ l2Pool2d: {ULP: {float32: getAveragePool2dPrecisionTolerance, float16: getAveragePool2dPrecisionTolerance}},
maxPool2d: {ULP: {float32: 0, float16: 0}},
// End Pooling operations
prelu: {ULP: {float32: 1, float16: 1}},
@@ -356,6 +382,7 @@ const PrecisionMetrics = {
reduceSumSquare: {ULP: {float32: getReductionPrecisionTolerance, float16: getReductionPrecisionTolerance}},
// End Reduction operations
relu: {ULP: {float32: 0, float16: 0}},
+ resample2d: {ULP: {float32: getResample2dPrecisionTolerance, float16: getResample2dPrecisionTolerance}},
reshape: {ULP: {float32: 0, float16: 0}},
sigmoid: {ULP: {float32: 32+2, float16: 3}}, // float32 (leaving a few ULP for roundoff)
slice: {ULP: {float32: 0, float16: 0}},
@@ -365,6 +392,7 @@ const PrecisionMetrics = {
split: {ULP: {float32: 0, float16: 0}},
tanh: {ATOL: {float32: 1/1024, float16: 1/512}},
transpose: {ULP: {float32: 0, float16: 0}},
+ triangular: {ULP: {float32: 0, float16: 0}},
where: {ULP: {float32: 0, float16: 0}},
};
@@ -635,6 +663,13 @@ const buildConcat = (operationName, builder, resources) => {
return namedOutputOperand;
};
+const buildConstantRange = (operationName, builder, resources) => {
+ const namedOutputOperand = {};
+ // invoke builder.constant(start, step, outputShape, type)
+ namedOutputOperand[resources.expected.name] = builder[operationName](resources.inputs.start, resources.inputs.step, resources.outputShape, resources.type);
+ return namedOutputOperand;
+};
+
const buildConvTranspose2d = (operationName, builder, resources) => {
// MLOperand convTranspose2d(MLOperand input, MLOperand filter, optional MLConvTranspose2dOptions options = {});
const namedOutputOperand = {};
@@ -793,25 +828,7 @@ const buildGraph = (operationName, builder, resources, buildFunc) => {
};
/**
- * Build a graph, synchronously compile graph and execute, then check computed results.
- * @param {String} operationName - An operation name
- * @param {MLContext} context - A ML context
- * @param {MLGraphBuilder} builder - A ML graph builder
- * @param {Object} resources - Resources used for building a graph
- * @param {Function} buildFunc - A build function for an operation
- */
-const runSync = (operationName, context, builder, resources, buildFunc) => {
- // build a graph
- const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
- // synchronously compile the graph up to the output operand
- const graph = builder.buildSync(namedOutputOperands);
- // synchronously execute the compiled graph.
- context.computeSync(graph, inputs, outputs);
- checkResults(operationName, namedOutputOperands, outputs, resources);
-};
-
-/**
- * Build a graph, asynchronously compile graph and execute, then check computed results.
+ * Build a graph, compile graph and execute, then check computed results.
* @param {String} operationName - An operation name
* @param {MLContext} context - A ML context
* @param {MLGraphBuilder} builder - A ML graph builder
@@ -821,9 +838,9 @@ const runSync = (operationName, context, builder, resources, buildFunc) => {
const run = async (operationName, context, builder, resources, buildFunc) => {
// build a graph
const [namedOutputOperands, inputs, outputs] = buildGraph(operationName, builder, resources, buildFunc);
- // asynchronously compile the graph up to the output operand
+ // compile the graph up to the output operand
const graph = await builder.build(namedOutputOperands);
- // asynchronously execute the compiled graph
+ // execute the compiled graph
const result = await context.compute(graph, inputs, outputs);
checkResults(operationName, namedOutputOperands, result.outputs, resources);
};
@@ -835,6 +852,10 @@ const run = async (operationName, context, builder, resources, buildFunc) => {
* @param {String} deviceType - The execution device type for this test
*/
const testWebNNOperation = (operationName, buildFunc, deviceType = 'cpu') => {
+ test(() => assert_not_equals(navigator.ml, undefined, "ml property is defined on navigator"));
+ if (navigator.ml === undefined) {
+ return;
+ }
let operationNameArray;
if (typeof operationName === 'string') {
operationNameArray = [operationName];
@@ -842,41 +863,18 @@ const testWebNNOperation = (operationName, buildFunc, deviceType = 'cpu') => {
operationNameArray = operationName;
}
- ExecutionArray.forEach(executionType => {
- const isSync = executionType === 'sync';
- if (self.GLOBAL.isWindow() && isSync) {
- return;
- }
- let context;
- let builder;
- if (isSync) {
- // test sync
- operationNameArray.forEach((subOperationName) => {
- const tests = loadTests(subOperationName);
- setup(() => {
- context = navigator.ml.createContextSync({deviceType});
- builder = new MLGraphBuilder(context);
- });
- for (const subTest of tests) {
- test(() => {
- runSync(subOperationName, context, builder, subTest, buildFunc);
- }, `${subTest.name} / ${executionType}`);
- }
- });
- } else {
- // test async
- operationNameArray.forEach((subOperationName) => {
- const tests = loadTests(subOperationName);
- promise_setup(async () => {
- context = await navigator.ml.createContext({deviceType});
- builder = new MLGraphBuilder(context);
- });
- for (const subTest of tests) {
- promise_test(async () => {
- await run(subOperationName, context, builder, subTest, buildFunc);
- }, `${subTest.name} / ${executionType}`);
- }
- });
+ let context;
+ let builder;
+ operationNameArray.forEach((subOperationName) => {
+ const tests = loadTests(subOperationName);
+ promise_setup(async () => {
+ context = await navigator.ml.createContext({deviceType});
+ builder = new MLGraphBuilder(context);
+ });
+ for (const subTest of tests) {
+ promise_test(async () => {
+ await run(subOperationName, context, builder, subTest, buildFunc);
+ }, `${subTest.name}`);
}
});
};
@@ -926,4 +924,60 @@ const toHalf = (value) => {
* the exponent, which is OK. */
bits += m & 1;
return bits;
+};
+
+
+/**
+ * WebNN buffer creation.
+ * @param {MLContext} context - the context used to create the buffer.
+ * @param {Number} bufferSize - Size of the buffer to create, in bytes.
+ */
+const createBuffer = (context, bufferSize) => {
+ let buffer;
+ try {
+ buffer = context.createBuffer({size: bufferSize});
+ assert_equals(buffer.size, bufferSize);
+ } catch (e) {
+ assert_true(e instanceof DOMException);
+ assert_equals(e.name, "NotSupportedError");
+ }
+ return buffer;
+};
+
+/**
+ * WebNN destroy buffer twice test.
+ * @param {String} testName - The name of the test operation.
+ * @param {String} deviceType - The execution device type for this test.
+ */
+const testDestroyWebNNBuffer = (testName, deviceType = 'cpu') => {
+ let context;
+ let buffer;
+ promise_setup(async () => {
+ context = await navigator.ml.createContext({deviceType});
+ buffer = createBuffer(context, 4);
+ });
+ promise_test(async () => {
+ // MLBuffer is not supported for this deviceType.
+ if (buffer === undefined) {
+ return;
+ }
+ buffer.destroy();
+ buffer.destroy();
+ }, `${testName}`);
+};
+
+/**
+ * WebNN create buffer test.
+ * @param {String} testName - The name of the test operation.
+ * @param {Number} bufferSize - Size of the buffer to create, in bytes.
+ * @param {String} deviceType - The execution device type for this test.
+ */
+const testCreateWebNNBuffer = (testName, bufferSize, deviceType = 'cpu') => {
+ let context;
+ promise_setup(async () => {
+ context = await navigator.ml.createContext({deviceType});
+ });
+ promise_test(async () => {
+ createBuffer(context, bufferSize);
+ }, `${testName} / ${bufferSize}`);
}; \ No newline at end of file