diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-06-12 05:35:37 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-06-12 05:35:37 +0000 |
commit | a90a5cba08fdf6c0ceb95101c275108a152a3aed (patch) | |
tree | 532507288f3defd7f4dcf1af49698bcb76034855 /third_party/aom/aom_dsp | |
parent | Adding debian version 126.0.1-1. (diff) | |
download | firefox-a90a5cba08fdf6c0ceb95101c275108a152a3aed.tar.xz firefox-a90a5cba08fdf6c0ceb95101c275108a152a3aed.zip |
Merging upstream version 127.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/aom_dsp')
-rw-r--r-- | third_party/aom/aom_dsp/aom_dsp.cmake | 3 | ||||
-rwxr-xr-x | third_party/aom/aom_dsp/aom_dsp_rtcd_defs.pl | 2 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/arm/aom_convolve8_neon.c | 401 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/arm/aom_convolve8_neon_dotprod.c | 428 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/arm/aom_convolve8_neon_i8mm.c | 334 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.c | 104 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.h | 127 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/flow_estimation/arm/disflow_sve.c | 268 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/pyramid.c | 31 | ||||
-rw-r--r-- | third_party/aom/aom_dsp/x86/synonyms.h | 1 |
10 files changed, 1046 insertions, 653 deletions
diff --git a/third_party/aom/aom_dsp/aom_dsp.cmake b/third_party/aom/aom_dsp/aom_dsp.cmake index de987cbd23..27099d36b2 100644 --- a/third_party/aom/aom_dsp/aom_dsp.cmake +++ b/third_party/aom/aom_dsp/aom_dsp.cmake @@ -205,6 +205,9 @@ if(CONFIG_AV1_ENCODER) list(APPEND AOM_DSP_ENCODER_INTRIN_NEON "${AOM_ROOT}/aom_dsp/flow_estimation/arm/disflow_neon.c") + + list(APPEND AOM_DSP_ENCODER_INTRIN_SVE + "${AOM_ROOT}/aom_dsp/flow_estimation/arm/disflow_sve.c") endif() list(APPEND AOM_DSP_ENCODER_ASM_SSE2 "${AOM_ROOT}/aom_dsp/x86/sad4d_sse2.asm" diff --git a/third_party/aom/aom_dsp/aom_dsp_rtcd_defs.pl b/third_party/aom/aom_dsp/aom_dsp_rtcd_defs.pl index 7e746e9cb9..b75bdc5a19 100755 --- a/third_party/aom/aom_dsp/aom_dsp_rtcd_defs.pl +++ b/third_party/aom/aom_dsp/aom_dsp_rtcd_defs.pl @@ -1799,7 +1799,7 @@ if (aom_config("CONFIG_AV1_ENCODER") eq "yes") { specialize qw/aom_compute_correlation sse4_1 avx2/; add_proto qw/void aom_compute_flow_at_point/, "const uint8_t *src, const uint8_t *ref, int x, int y, int width, int height, int stride, double *u, double *v"; - specialize qw/aom_compute_flow_at_point sse4_1 avx2 neon/; + specialize qw/aom_compute_flow_at_point sse4_1 avx2 neon sve/; } } # CONFIG_AV1_ENCODER diff --git a/third_party/aom/aom_dsp/arm/aom_convolve8_neon.c b/third_party/aom/aom_dsp/arm/aom_convolve8_neon.c index 7441108b01..6a177b2e6b 100644 --- a/third_party/aom/aom_dsp/arm/aom_convolve8_neon.c +++ b/third_party/aom/aom_dsp/arm/aom_convolve8_neon.c @@ -20,6 +20,7 @@ #include "aom/aom_integer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" +#include "aom_dsp/arm/aom_filter.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" @@ -31,14 +32,14 @@ static INLINE int16x4_t convolve8_4(const int16x4_t s0, const int16x4_t s1, const int16x8_t filter) { const int16x4_t filter_lo = vget_low_s16(filter); const int16x4_t filter_hi = vget_high_s16(filter); - int16x4_t sum; - sum = vmul_lane_s16(s0, filter_lo, 0); + int16x4_t sum = vmul_lane_s16(s0, filter_lo, 0); sum = vmla_lane_s16(sum, s1, filter_lo, 1); sum = vmla_lane_s16(sum, s2, filter_lo, 2); sum = vmla_lane_s16(sum, s5, filter_hi, 1); sum = vmla_lane_s16(sum, s6, filter_hi, 2); sum = vmla_lane_s16(sum, s7, filter_hi, 3); + sum = vqadd_s16(sum, vmul_lane_s16(s3, filter_lo, 3)); sum = vqadd_s16(sum, vmul_lane_s16(s4, filter_hi, 0)); return sum; @@ -51,65 +52,56 @@ static INLINE uint8x8_t convolve8_8(const int16x8_t s0, const int16x8_t s1, const int16x8_t filter) { const int16x4_t filter_lo = vget_low_s16(filter); const int16x4_t filter_hi = vget_high_s16(filter); - int16x8_t sum; - sum = vmulq_lane_s16(s0, filter_lo, 0); + int16x8_t sum = vmulq_lane_s16(s0, filter_lo, 0); sum = vmlaq_lane_s16(sum, s1, filter_lo, 1); sum = vmlaq_lane_s16(sum, s2, filter_lo, 2); sum = vmlaq_lane_s16(sum, s5, filter_hi, 1); sum = vmlaq_lane_s16(sum, s6, filter_hi, 2); sum = vmlaq_lane_s16(sum, s7, filter_hi, 3); + sum = vqaddq_s16(sum, vmulq_lane_s16(s3, filter_lo, 3)); sum = vqaddq_s16(sum, vmulq_lane_s16(s4, filter_hi, 0)); return vqrshrun_n_s16(sum, FILTER_BITS); } -void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, - uint8_t *dst, ptrdiff_t dst_stride, - const int16_t *filter_x, int x_step_q4, - const int16_t *filter_y, int y_step_q4, int w, - int h) { +static INLINE void convolve8_horiz_8tap_neon(const uint8_t *src, + ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, + const int16_t *filter_x, int w, + int h) { const int16x8_t filter = vld1q_s16(filter_x); - assert((intptr_t)dst % 4 == 0); - assert(dst_stride % 4 == 0); - - (void)x_step_q4; - (void)filter_y; - (void)y_step_q4; - - src -= ((SUBPEL_TAPS / 2) - 1); - if (h == 4) { - uint8x8_t t0, t1, t2, t3, d01, d23; - int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3; - + uint8x8_t t0, t1, t2, t3; load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); - s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); - s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); - s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); - s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); - s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); - s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); - s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); + + int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); + int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); + int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); + int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); + int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); + int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); + int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); src += 7; do { load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); - s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); - s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); - s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); - s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); - - d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); - d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filter); - d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filter); - d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filter); - d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); - d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); + + int16x4_t s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); + int16x4_t s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); + int16x4_t s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); + int16x4_t s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); + + int16x4_t d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); + int16x4_t d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filter); + int16x4_t d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filter); + int16x4_t d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filter); + uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); + uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); transpose_elems_inplace_u8_4x4(&d01, &d23); @@ -123,39 +115,40 @@ void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, s4 = s8; s5 = s9; s6 = s10; + src += 4; dst += 4; w -= 4; } while (w != 0); } else { - uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7, d0, d1, d2, d3; - int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; - if (w == 4) { do { + uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); - s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); - s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); - s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); - s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); - s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); - s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); - s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); load_u8_8x8(src + 7, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_u8_4x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3); - s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); - s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); - s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); - s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); - d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); - d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter); - d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter); - d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter); + int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + + uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); + uint8x8_t d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter); + uint8x8_t d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter); + uint8x8_t d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter); transpose_elems_inplace_u8_8x4(&d0, &d1, &d2, &d3); @@ -169,48 +162,49 @@ void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, h -= 8; } while (h > 0); } else { - uint8x8_t d4, d5, d6, d7; - int16x8_t s11, s12, s13, s14; - int width; - const uint8_t *s; - uint8_t *d; - do { - load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + int width = w; + const uint8_t *s = src; + uint8_t *d = dst; + + uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; + load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); - s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); - s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); - s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); - s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); - s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); - s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); - s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); - - width = w; - s = src + 7; - d = dst; + + int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + s += 7; do { load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); - s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); - s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); - s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); - s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); - s11 = vreinterpretq_s16_u16(vmovl_u8(t4)); - s12 = vreinterpretq_s16_u16(vmovl_u8(t5)); - s13 = vreinterpretq_s16_u16(vmovl_u8(t6)); - s14 = vreinterpretq_s16_u16(vmovl_u8(t7)); - - d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); - d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter); - d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter); - d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter); - d4 = convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filter); - d5 = convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filter); - d6 = convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filter); - d7 = convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, filter); + + int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t4)); + int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t5)); + int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t6)); + int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t7)); + + uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); + uint8x8_t d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter); + uint8x8_t d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter); + uint8x8_t d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter); + uint8x8_t d4 = convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filter); + uint8x8_t d5 = convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filter); + uint8x8_t d6 = + convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filter); + uint8x8_t d7 = + convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, filter); transpose_elems_inplace_u8_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); @@ -224,6 +218,7 @@ void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, s4 = s12; s5 = s13; s6 = s14; + s += 8; d += 8; width -= 8; @@ -236,6 +231,137 @@ void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, } } +static INLINE int16x4_t convolve4_4(const int16x4_t s0, const int16x4_t s1, + const int16x4_t s2, const int16x4_t s3, + const int16x4_t filter) { + int16x4_t sum = vmul_lane_s16(s0, filter, 0); + sum = vmla_lane_s16(sum, s1, filter, 1); + sum = vmla_lane_s16(sum, s2, filter, 2); + sum = vmla_lane_s16(sum, s3, filter, 3); + + return sum; +} + +static INLINE uint8x8_t convolve4_8(const int16x8_t s0, const int16x8_t s1, + const int16x8_t s2, const int16x8_t s3, + const int16x4_t filter) { + int16x8_t sum = vmulq_lane_s16(s0, filter, 0); + sum = vmlaq_lane_s16(sum, s1, filter, 1); + sum = vmlaq_lane_s16(sum, s2, filter, 2); + sum = vmlaq_lane_s16(sum, s3, filter, 3); + + // We halved the filter values so -1 from right shift. + return vqrshrun_n_s16(sum, FILTER_BITS - 1); +} + +static INLINE void convolve8_horiz_4tap_neon(const uint8_t *src, + ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, + const int16_t *filter_x, int w, + int h) { + // All filter values are even, halve to reduce intermediate precision + // requirements. + const int16x4_t filter = vshr_n_s16(vld1_s16(filter_x + 2), 1); + + if (w == 4) { + do { + int16x8_t t0 = + vreinterpretq_s16_u16(vmovl_u8(vld1_u8(src + 0 * src_stride))); + int16x8_t t1 = + vreinterpretq_s16_u16(vmovl_u8(vld1_u8(src + 1 * src_stride))); + + int16x4_t s0[4], s1[4]; + s0[0] = vget_low_s16(t0); + s0[1] = vget_low_s16(vextq_s16(t0, t0, 1)); + s0[2] = vget_low_s16(vextq_s16(t0, t0, 2)); + s0[3] = vget_low_s16(vextq_s16(t0, t0, 3)); + + s1[0] = vget_low_s16(t1); + s1[1] = vget_low_s16(vextq_s16(t1, t1, 1)); + s1[2] = vget_low_s16(vextq_s16(t1, t1, 2)); + s1[3] = vget_low_s16(vextq_s16(t1, t1, 3)); + + int16x4_t d0 = convolve4_4(s0[0], s0[1], s0[2], s0[3], filter); + int16x4_t d1 = convolve4_4(s1[0], s1[1], s1[2], s1[3], filter); + // We halved the filter values so -1 from right shift. + uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); + + store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); + + src += 2 * src_stride; + dst += 2 * dst_stride; + h -= 2; + } while (h > 0); + } else { + do { + int width = w; + const uint8_t *s = src; + uint8_t *d = dst; + + int16x8_t t0 = + vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s + 0 * src_stride))); + int16x8_t t1 = + vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s + 1 * src_stride))); + + s += 8; + do { + int16x8_t t2 = + vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s + 0 * src_stride))); + int16x8_t t3 = + vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s + 1 * src_stride))); + + int16x8_t s0[4], s1[4]; + s0[0] = t0; + s0[1] = vextq_s16(t0, t2, 1); + s0[2] = vextq_s16(t0, t2, 2); + s0[3] = vextq_s16(t0, t2, 3); + + s1[0] = t1; + s1[1] = vextq_s16(t1, t3, 1); + s1[2] = vextq_s16(t1, t3, 2); + s1[3] = vextq_s16(t1, t3, 3); + + uint8x8_t d0 = convolve4_8(s0[0], s0[1], s0[2], s0[3], filter); + uint8x8_t d1 = convolve4_8(s1[0], s1[1], s1[2], s1[3], filter); + + store_u8_8x2(d, dst_stride, d0, d1); + + t0 = t2; + t1 = t3; + + s += 8; + d += 8; + width -= 8; + } while (width != 0); + src += 2 * src_stride; + dst += 2 * dst_stride; + h -= 2; + } while (h > 0); + } +} + +void aom_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const int16_t *filter_x, int x_step_q4, + const int16_t *filter_y, int y_step_q4, int w, + int h) { + assert((intptr_t)dst % 4 == 0); + assert(dst_stride % 4 == 0); + + (void)x_step_q4; + (void)filter_y; + (void)y_step_q4; + + src -= ((SUBPEL_TAPS / 2) - 1); + + if (get_filter_taps_convolve8(filter_x) <= 4) { + convolve8_horiz_4tap_neon(src + 2, src_stride, dst, dst_stride, filter_x, w, + h); + } else { + convolve8_horiz_8tap_neon(src, src_stride, dst, dst_stride, filter_x, w, h); + } +} + void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, @@ -253,33 +379,33 @@ void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride, src -= ((SUBPEL_TAPS / 2) - 1) * src_stride; if (w == 4) { - uint8x8_t t0, t1, t2, t3, t4, t5, t6, d01, d23; - int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3; - + uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); - s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); - s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); - s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); - s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); - s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4))); - s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5))); - s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6))); + + int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); + int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); + int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); + int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); + int16x4_t s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4))); + int16x4_t s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5))); + int16x4_t s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6))); src += 7 * src_stride; do { load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); - s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); - s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); - s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); - s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); - - d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); - d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filter); - d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filter); - d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filter); - d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); - d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); + + int16x4_t s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); + int16x4_t s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); + int16x4_t s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); + int16x4_t s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); + + int16x4_t d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); + int16x4_t d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filter); + int16x4_t d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filter); + int16x4_t d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filter); + uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); + uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); @@ -291,42 +417,40 @@ void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride, s4 = s8; s5 = s9; s6 = s10; + src += 4 * src_stride; dst += 4 * dst_stride; h -= 4; } while (h != 0); } else { - uint8x8_t t0, t1, t2, t3, t4, t5, t6, d0, d1, d2, d3; - int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; - int height; - const uint8_t *s; - uint8_t *d; - do { + uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); - s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); - s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); - s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); - s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); - s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); - s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); - s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); - - height = h; - s = src + 7 * src_stride; - d = dst; + + int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + int height = h; + const uint8_t *s = src + 7 * src_stride; + uint8_t *d = dst; do { load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); - s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); - s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); - s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); - s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); - d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); - d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter); - d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter); - d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter); + int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + + uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); + uint8x8_t d1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filter); + uint8x8_t d2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filter); + uint8x8_t d3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); @@ -337,6 +461,7 @@ void aom_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride, s4 = s8; s5 = s9; s6 = s10; + s += 4 * src_stride; d += 4 * dst_stride; height -= 4; diff --git a/third_party/aom/aom_dsp/arm/aom_convolve8_neon_dotprod.c b/third_party/aom/aom_dsp/arm/aom_convolve8_neon_dotprod.c index c82125ba17..120c479798 100644 --- a/third_party/aom/aom_dsp/arm/aom_convolve8_neon_dotprod.c +++ b/third_party/aom/aom_dsp/arm/aom_convolve8_neon_dotprod.c @@ -24,81 +24,72 @@ #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" -DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { +// Filter values always sum to 128. +#define FILTER_WEIGHT 128 + +DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }; -DECLARE_ALIGNED(16, static const uint8_t, dot_prod_tran_concat_tbl[32]) = { - 0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27, - 4, 12, 20, 28, 5, 13, 21, 29, 6, 14, 22, 30, 7, 15, 23, 31 -}; - -DECLARE_ALIGNED(16, static const uint8_t, dot_prod_merge_block_tbl[48]) = { - /* Shift left and insert new last column in transposed 4x4 block. */ +DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { + // Shift left and insert new last column in transposed 4x4 block. 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, - /* Shift left and insert two new columns in transposed 4x4 block. */ + // Shift left and insert two new columns in transposed 4x4 block. 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, - /* Shift left and insert three new columns in transposed 4x4 block. */ + // Shift left and insert three new columns in transposed 4x4 block. 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 }; -static INLINE int16x4_t convolve8_4_sdot(uint8x16_t samples, - const int8x8_t filter, - const int32x4_t correction, - const uint8x16_t range_limit, - const uint8x16x2_t permute_tbl) { - int8x16_t clamped_samples, permuted_samples[2]; - int32x4_t sum; - - /* Clamp sample range to [-128, 127] for 8-bit signed dot product. */ - clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); - - /* Permute samples ready for dot product. */ - /* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */ - permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); - /* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */ - permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); - - /* Accumulate dot product into 'correction' to account for range clamp. */ - sum = vdotq_lane_s32(correction, permuted_samples[0], filter, 0); - sum = vdotq_lane_s32(sum, permuted_samples[1], filter, 1); - - /* Further narrowing and packing is performed by the caller. */ +static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples, + const int8x8_t filters, + const uint8x16x2_t permute_tbl) { + // Transform sample range to [-128, 127] for 8-bit signed dot product. + int8x16_t samples_128 = + vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); + + // Permute samples ready for dot product. + // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } + // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } + int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), + vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; + + // Accumulate into 128 * FILTER_WEIGHT to account for range transform. + int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT); + int32x4_t sum = vdotq_lane_s32(acc, perm_samples[0], filters, 0); + sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1); + + // Further narrowing and packing is performed by the caller. return vqmovn_s32(sum); } -static INLINE uint8x8_t convolve8_8_sdot(uint8x16_t samples, - const int8x8_t filter, - const int32x4_t correction, - const uint8x16_t range_limit, - const uint8x16x3_t permute_tbl) { - int8x16_t clamped_samples, permuted_samples[3]; - int32x4_t sum0, sum1; - int16x8_t sum; - - /* Clamp sample range to [-128, 127] for 8-bit signed dot product. */ - clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); - - /* Permute samples ready for dot product. */ - /* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */ - permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); - /* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */ - permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); - /* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */ - permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); - - /* Accumulate dot product into 'correction' to account for range clamp. */ - /* First 4 output values. */ - sum0 = vdotq_lane_s32(correction, permuted_samples[0], filter, 0); - sum0 = vdotq_lane_s32(sum0, permuted_samples[1], filter, 1); - /* Second 4 output values. */ - sum1 = vdotq_lane_s32(correction, permuted_samples[1], filter, 0); - sum1 = vdotq_lane_s32(sum1, permuted_samples[2], filter, 1); - - /* Narrow and re-pack. */ - sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); +static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples, + const int8x8_t filters, + const uint8x16x3_t permute_tbl) { + // Transform sample range to [-128, 127] for 8-bit signed dot product. + int8x16_t samples_128 = + vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); + + // Permute samples ready for dot product. + // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } + // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } + // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } + int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), + vqtbl1q_s8(samples_128, permute_tbl.val[1]), + vqtbl1q_s8(samples_128, permute_tbl.val[2]) }; + + // Accumulate into 128 * FILTER_WEIGHT to account for range transform. + int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT); + // First 4 output values. + int32x4_t sum0 = vdotq_lane_s32(acc, perm_samples[0], filters, 0); + sum0 = vdotq_lane_s32(sum0, perm_samples[1], filters, 1); + // Second 4 output values. + int32x4_t sum1 = vdotq_lane_s32(acc, perm_samples[1], filters, 0); + sum1 = vdotq_lane_s32(sum1, perm_samples[2], filters, 1); + + // Narrow and re-pack. + int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); return vqrshrun_n_s16(sum, FILTER_BITS); } @@ -108,10 +99,6 @@ void aom_convolve8_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, const int16_t *filter_y, int y_step_q4, int w, int h) { const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x)); - const int16x8_t correct_tmp = vmulq_n_s16(vld1q_s16(filter_x), 128); - const int32x4_t correction = vdupq_n_s32((int32_t)vaddvq_s16(correct_tmp)); - const uint8x16_t range_limit = vdupq_n_u8(128); - uint8x16_t s0, s1, s2, s3; assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); @@ -123,19 +110,17 @@ void aom_convolve8_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, src -= ((SUBPEL_TAPS / 2) - 1); if (w == 4) { - const uint8x16x2_t perm_tbl = vld1q_u8_x2(dot_prod_permute_tbl); + const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); do { - int16x4_t t0, t1, t2, t3; - uint8x8_t d01, d23; - + uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); - t0 = convolve8_4_sdot(s0, filter, correction, range_limit, perm_tbl); - t1 = convolve8_4_sdot(s1, filter, correction, range_limit, perm_tbl); - t2 = convolve8_4_sdot(s2, filter, correction, range_limit, perm_tbl); - t3 = convolve8_4_sdot(s3, filter, correction, range_limit, perm_tbl); - d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS); - d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS); + int16x4_t d0 = convolve8_4_h(s0, filter, perm_tbl); + int16x4_t d1 = convolve8_4_h(s1, filter, perm_tbl); + int16x4_t d2 = convolve8_4_h(s2, filter, perm_tbl); + int16x4_t d3 = convolve8_4_h(s3, filter, perm_tbl); + uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); + uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); @@ -145,23 +130,20 @@ void aom_convolve8_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, h -= 4; } while (h > 0); } else { - const uint8x16x3_t perm_tbl = vld1q_u8_x3(dot_prod_permute_tbl); - const uint8_t *s; - uint8_t *d; - int width; - uint8x8_t d0, d1, d2, d3; + const uint8x16x3_t perm_tbl = vld1q_u8_x3(kDotProdPermuteTbl); do { - width = w; - s = src; - d = dst; + int width = w; + const uint8_t *s = src; + uint8_t *d = dst; do { + uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); - d0 = convolve8_8_sdot(s0, filter, correction, range_limit, perm_tbl); - d1 = convolve8_8_sdot(s1, filter, correction, range_limit, perm_tbl); - d2 = convolve8_8_sdot(s2, filter, correction, range_limit, perm_tbl); - d3 = convolve8_8_sdot(s3, filter, correction, range_limit, perm_tbl); + uint8x8_t d0 = convolve8_8_h(s0, filter, perm_tbl); + uint8x8_t d1 = convolve8_8_h(s1, filter, perm_tbl); + uint8x8_t d2 = convolve8_8_h(s2, filter, perm_tbl); + uint8x8_t d3 = convolve8_8_h(s3, filter, perm_tbl); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); @@ -177,83 +159,88 @@ void aom_convolve8_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, } static INLINE void transpose_concat_4x4(int8x8_t a0, int8x8_t a1, int8x8_t a2, - int8x8_t a3, int8x16_t *b, - const uint8x16_t permute_tbl) { - /* Transpose 8-bit elements and concatenate result rows as follows: - * a0: 00, 01, 02, 03, XX, XX, XX, XX - * a1: 10, 11, 12, 13, XX, XX, XX, XX - * a2: 20, 21, 22, 23, XX, XX, XX, XX - * a3: 30, 31, 32, 33, XX, XX, XX, XX - * - * b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 - * - * The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it - * as an argument is preferable to loading it directly from memory as this - * inline helper is called many times from the same parent function. - */ - - int8x16x2_t samples = { { vcombine_s8(a0, a1), vcombine_s8(a2, a3) } }; - *b = vqtbl2q_s8(samples, permute_tbl); + int8x8_t a3, int8x16_t *b) { + // Transpose 8-bit elements and concatenate result rows as follows: + // a0: 00, 01, 02, 03, XX, XX, XX, XX + // a1: 10, 11, 12, 13, XX, XX, XX, XX + // a2: 20, 21, 22, 23, XX, XX, XX, XX + // a3: 30, 31, 32, 33, XX, XX, XX, XX + // + // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 + + int8x16_t a0q = vcombine_s8(a0, vdup_n_s8(0)); + int8x16_t a1q = vcombine_s8(a1, vdup_n_s8(0)); + int8x16_t a2q = vcombine_s8(a2, vdup_n_s8(0)); + int8x16_t a3q = vcombine_s8(a3, vdup_n_s8(0)); + + int8x16_t a01 = vzipq_s8(a0q, a1q).val[0]; + int8x16_t a23 = vzipq_s8(a2q, a3q).val[0]; + + int16x8_t a0123 = + vzipq_s16(vreinterpretq_s16_s8(a01), vreinterpretq_s16_s8(a23)).val[0]; + + *b = vreinterpretq_s8_s16(a0123); } static INLINE void transpose_concat_8x4(int8x8_t a0, int8x8_t a1, int8x8_t a2, int8x8_t a3, int8x16_t *b0, - int8x16_t *b1, - const uint8x16x2_t permute_tbl) { - /* Transpose 8-bit elements and concatenate result rows as follows: - * a0: 00, 01, 02, 03, 04, 05, 06, 07 - * a1: 10, 11, 12, 13, 14, 15, 16, 17 - * a2: 20, 21, 22, 23, 24, 25, 26, 27 - * a3: 30, 31, 32, 33, 34, 35, 36, 37 - * - * b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 - * b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 - * - * The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it - * as an argument is preferable to loading it directly from memory as this - * inline helper is called many times from the same parent function. - */ - - int8x16x2_t samples = { { vcombine_s8(a0, a1), vcombine_s8(a2, a3) } }; - *b0 = vqtbl2q_s8(samples, permute_tbl.val[0]); - *b1 = vqtbl2q_s8(samples, permute_tbl.val[1]); + int8x16_t *b1) { + // Transpose 8-bit elements and concatenate result rows as follows: + // a0: 00, 01, 02, 03, 04, 05, 06, 07 + // a1: 10, 11, 12, 13, 14, 15, 16, 17 + // a2: 20, 21, 22, 23, 24, 25, 26, 27 + // a3: 30, 31, 32, 33, 34, 35, 36, 37 + // + // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 + // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 + + int8x16_t a0q = vcombine_s8(a0, vdup_n_s8(0)); + int8x16_t a1q = vcombine_s8(a1, vdup_n_s8(0)); + int8x16_t a2q = vcombine_s8(a2, vdup_n_s8(0)); + int8x16_t a3q = vcombine_s8(a3, vdup_n_s8(0)); + + int8x16_t a01 = vzipq_s8(a0q, a1q).val[0]; + int8x16_t a23 = vzipq_s8(a2q, a3q).val[0]; + + int16x8x2_t a0123 = + vzipq_s16(vreinterpretq_s16_s8(a01), vreinterpretq_s16_s8(a23)); + + *b0 = vreinterpretq_s8_s16(a0123.val[0]); + *b1 = vreinterpretq_s8_s16(a0123.val[1]); } -static INLINE int16x4_t convolve8_4_sdot_partial(const int8x16_t samples_lo, - const int8x16_t samples_hi, - const int32x4_t correction, - const int8x8_t filter) { - /* Sample range-clamping and permutation are performed by the caller. */ - int32x4_t sum; +static INLINE int16x4_t convolve8_4_v(const int8x16_t samples_lo, + const int8x16_t samples_hi, + const int8x8_t filters) { + // The sample range transform and permutation are performed by the caller. - /* Accumulate dot product into 'correction' to account for range clamp. */ - sum = vdotq_lane_s32(correction, samples_lo, filter, 0); - sum = vdotq_lane_s32(sum, samples_hi, filter, 1); + // Accumulate into 128 * FILTER_WEIGHT to account for range transform. + int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT); + int32x4_t sum = vdotq_lane_s32(acc, samples_lo, filters, 0); + sum = vdotq_lane_s32(sum, samples_hi, filters, 1); - /* Further narrowing and packing is performed by the caller. */ + // Further narrowing and packing is performed by the caller. return vqmovn_s32(sum); } -static INLINE uint8x8_t convolve8_8_sdot_partial(const int8x16_t samples0_lo, - const int8x16_t samples0_hi, - const int8x16_t samples1_lo, - const int8x16_t samples1_hi, - const int32x4_t correction, - const int8x8_t filter) { - /* Sample range-clamping and permutation are performed by the caller. */ - int32x4_t sum0, sum1; - int16x8_t sum; - - /* Accumulate dot product into 'correction' to account for range clamp. */ - /* First 4 output values. */ - sum0 = vdotq_lane_s32(correction, samples0_lo, filter, 0); - sum0 = vdotq_lane_s32(sum0, samples0_hi, filter, 1); - /* Second 4 output values. */ - sum1 = vdotq_lane_s32(correction, samples1_lo, filter, 0); - sum1 = vdotq_lane_s32(sum1, samples1_hi, filter, 1); - - /* Narrow and re-pack. */ - sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); +static INLINE uint8x8_t convolve8_8_v(const int8x16_t samples0_lo, + const int8x16_t samples0_hi, + const int8x16_t samples1_lo, + const int8x16_t samples1_hi, + const int8x8_t filters) { + // The sample range transform and permutation are performed by the caller. + + // Accumulate into 128 * FILTER_WEIGHT to account for range transform. + int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT); + // First 4 output values. + int32x4_t sum0 = vdotq_lane_s32(acc, samples0_lo, filters, 0); + sum0 = vdotq_lane_s32(sum0, samples0_hi, filters, 1); + // Second 4 output values. + int32x4_t sum1 = vdotq_lane_s32(acc, samples1_lo, filters, 0); + sum1 = vdotq_lane_s32(sum1, samples1_hi, filters, 1); + + // Narrow and re-pack. + int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); return vqrshrun_n_s16(sum, FILTER_BITS); } @@ -263,10 +250,7 @@ void aom_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, const int16_t *filter_y, int y_step_q4, int w, int h) { const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y)); - const int16x8_t correct_tmp = vmulq_n_s16(vld1q_s16(filter_y), 128); - const int32x4_t correction = vdupq_n_s32((int32_t)vaddvq_s16(correct_tmp)); - const uint8x8_t range_limit = vdup_n_u8(128); - const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl); + const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); int8x16x2_t samples_LUT; assert((intptr_t)dst % 4 == 0); @@ -279,62 +263,58 @@ void aom_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, src -= ((SUBPEL_TAPS / 2) - 1) * src_stride; if (w == 4) { - const uint8x16_t tran_concat_tbl = vld1q_u8(dot_prod_tran_concat_tbl); - uint8x8_t t0, t1, t2, t3, t4, t5, t6; load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); src += 7 * src_stride; - /* Clamp sample range to [-128, 127] for 8-bit signed dot product. */ - int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, range_limit)); - int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, range_limit)); - int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, range_limit)); - int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, range_limit)); - int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, range_limit)); - int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, range_limit)); - int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, range_limit)); - - /* This operation combines a conventional transpose and the sample permute - * (see horizontal case) required before computing the dot product. - */ + // Clamp sample range to [-128, 127] for 8-bit signed dot product. + int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); + int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); + int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); + int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); + int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); + int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); + int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); + + // This operation combines a conventional transpose and the sample permute + // (see horizontal case) required before computing the dot product. int8x16_t s0123, s1234, s2345, s3456; - transpose_concat_4x4(s0, s1, s2, s3, &s0123, tran_concat_tbl); - transpose_concat_4x4(s1, s2, s3, s4, &s1234, tran_concat_tbl); - transpose_concat_4x4(s2, s3, s4, s5, &s2345, tran_concat_tbl); - transpose_concat_4x4(s3, s4, s5, s6, &s3456, tran_concat_tbl); + transpose_concat_4x4(s0, s1, s2, s3, &s0123); + transpose_concat_4x4(s1, s2, s3, s4, &s1234); + transpose_concat_4x4(s2, s3, s4, s5, &s2345); + transpose_concat_4x4(s3, s4, s5, s6, &s3456); do { uint8x8_t t7, t8, t9, t10; load_u8_8x4(src, src_stride, &t7, &t8, &t9, &t10); - int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, range_limit)); - int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, range_limit)); - int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, range_limit)); - int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, range_limit)); + int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); + int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); + int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); + int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); int8x16_t s4567, s5678, s6789, s78910; - transpose_concat_4x4(s7, s8, s9, s10, &s78910, tran_concat_tbl); + transpose_concat_4x4(s7, s8, s9, s10, &s78910); - /* Merge new data into block from previous iteration. */ + // Merge new data into block from previous iteration. samples_LUT.val[0] = s3456; samples_LUT.val[1] = s78910; s4567 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); s5678 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); s6789 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); - int16x4_t d0 = convolve8_4_sdot_partial(s0123, s4567, correction, filter); - int16x4_t d1 = convolve8_4_sdot_partial(s1234, s5678, correction, filter); - int16x4_t d2 = convolve8_4_sdot_partial(s2345, s6789, correction, filter); - int16x4_t d3 = - convolve8_4_sdot_partial(s3456, s78910, correction, filter); + int16x4_t d0 = convolve8_4_v(s0123, s4567, filter); + int16x4_t d1 = convolve8_4_v(s1234, s5678, filter); + int16x4_t d2 = convolve8_4_v(s2345, s6789, filter); + int16x4_t d3 = convolve8_4_v(s3456, s78910, filter); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); - /* Prepare block for next iteration - re-using as much as possible. */ - /* Shuffle everything up four rows. */ + // Prepare block for next iteration - re-using as much as possible. + // Shuffle everything up four rows. s0123 = s4567; s1234 = s5678; s2345 = s6789; @@ -345,8 +325,6 @@ void aom_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, h -= 4; } while (h != 0); } else { - const uint8x16x2_t tran_concat_tbl = vld1q_u8_x2(dot_prod_tran_concat_tbl); - do { int height = h; const uint8_t *s = src; @@ -356,44 +334,38 @@ void aom_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, load_u8_8x7(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); s += 7 * src_stride; - /* Clamp sample range to [-128, 127] for 8-bit signed dot product. */ - int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, range_limit)); - int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, range_limit)); - int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, range_limit)); - int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, range_limit)); - int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, range_limit)); - int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, range_limit)); - int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, range_limit)); - - /* This operation combines a conventional transpose and the sample permute - * (see horizontal case) required before computing the dot product. - */ + // Clamp sample range to [-128, 127] for 8-bit signed dot product. + int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); + int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); + int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); + int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); + int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); + int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); + int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); + + // This operation combines a conventional transpose and the sample permute + // (see horizontal case) required before computing the dot product. int8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi; - transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi, - tran_concat_tbl); - transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi, - tran_concat_tbl); - transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi, - tran_concat_tbl); - transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi, - tran_concat_tbl); + transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); + transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); + transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); + transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); do { uint8x8_t t7, t8, t9, t10; load_u8_8x4(s, src_stride, &t7, &t8, &t9, &t10); - int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, range_limit)); - int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, range_limit)); - int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, range_limit)); - int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, range_limit)); + int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); + int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); + int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); + int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); int8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, s78910_lo, s78910_hi; - transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi, - tran_concat_tbl); + transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); - /* Merge new data into block from previous iteration. */ + // Merge new data into block from previous iteration. samples_LUT.val[0] = s3456_lo; samples_LUT.val[1] = s78910_lo; s4567_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); @@ -406,19 +378,19 @@ void aom_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, s5678_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); s6789_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); - uint8x8_t d0 = convolve8_8_sdot_partial(s0123_lo, s4567_lo, s0123_hi, - s4567_hi, correction, filter); - uint8x8_t d1 = convolve8_8_sdot_partial(s1234_lo, s5678_lo, s1234_hi, - s5678_hi, correction, filter); - uint8x8_t d2 = convolve8_8_sdot_partial(s2345_lo, s6789_lo, s2345_hi, - s6789_hi, correction, filter); - uint8x8_t d3 = convolve8_8_sdot_partial(s3456_lo, s78910_lo, s3456_hi, - s78910_hi, correction, filter); + uint8x8_t d0 = + convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter); + uint8x8_t d1 = + convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter); + uint8x8_t d2 = + convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter); + uint8x8_t d3 = + convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); - /* Prepare block for next iteration - re-using as much as possible. */ - /* Shuffle everything up four rows. */ + // Prepare block for next iteration - re-using as much as possible. + // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; diff --git a/third_party/aom/aom_dsp/arm/aom_convolve8_neon_i8mm.c b/third_party/aom/aom_dsp/arm/aom_convolve8_neon_i8mm.c index df6e4d2ab5..68e031461d 100644 --- a/third_party/aom/aom_dsp/arm/aom_convolve8_neon_i8mm.c +++ b/third_party/aom/aom_dsp/arm/aom_convolve8_neon_i8mm.c @@ -23,69 +23,60 @@ #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" -DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { +DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }; -DECLARE_ALIGNED(16, static const uint8_t, dot_prod_tran_concat_tbl[32]) = { - 0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27, - 4, 12, 20, 28, 5, 13, 21, 29, 6, 14, 22, 30, 7, 15, 23, 31 -}; - -DECLARE_ALIGNED(16, static const uint8_t, dot_prod_merge_block_tbl[48]) = { - /* Shift left and insert new last column in transposed 4x4 block. */ +DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { + // Shift left and insert new last column in transposed 4x4 block. 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, - /* Shift left and insert two new columns in transposed 4x4 block. */ + // Shift left and insert two new columns in transposed 4x4 block. 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, - /* Shift left and insert three new columns in transposed 4x4 block. */ + // Shift left and insert three new columns in transposed 4x4 block. 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 }; -static INLINE int16x4_t convolve8_4_usdot(const uint8x16_t samples, - const int8x8_t filter, - const uint8x16x2_t permute_tbl) { - uint8x16_t permuted_samples[2]; - int32x4_t sum; - - /* Permute samples ready for dot product. */ - /* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */ - permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); - /* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */ - permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); +static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples, + const int8x8_t filters, + const uint8x16x2_t permute_tbl) { + // Permute samples ready for dot product. + // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } + // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } + uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), + vqtbl1q_u8(samples, permute_tbl.val[1]) }; - sum = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filter, 0); - sum = vusdotq_lane_s32(sum, permuted_samples[1], filter, 1); + int32x4_t sum = + vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); + sum = vusdotq_lane_s32(sum, permuted_samples[1], filters, 1); - /* Further narrowing and packing is performed by the caller. */ + // Further narrowing and packing is performed by the caller. return vqmovn_s32(sum); } -static INLINE uint8x8_t convolve8_8_usdot(const uint8x16_t samples, - const int8x8_t filter, - const uint8x16x3_t permute_tbl) { - uint8x16_t permuted_samples[3]; - int32x4_t sum0, sum1; - int16x8_t sum; - - /* Permute samples ready for dot product. */ - /* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */ - permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); - /* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */ - permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); - /* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */ - permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]); - - /* First 4 output values. */ - sum0 = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filter, 0); - sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filter, 1); - /* Second 4 output values. */ - sum1 = vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filter, 0); - sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filter, 1); - - /* Narrow and re-pack. */ - sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); +static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples, + const int8x8_t filters, + const uint8x16x3_t permute_tbl) { + // Permute samples ready for dot product. + // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } + // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } + // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } + uint8x16_t permuted_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), + vqtbl1q_u8(samples, permute_tbl.val[1]), + vqtbl1q_u8(samples, permute_tbl.val[2]) }; + + // First 4 output values. + int32x4_t sum0 = + vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); + sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filters, 1); + // Second 4 output values. + int32x4_t sum1 = + vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0); + sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filters, 1); + + // Narrow and re-pack. + int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); return vqrshrun_n_s16(sum, FILTER_BITS); } @@ -95,7 +86,6 @@ void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, const int16_t *filter_y, int y_step_q4, int w, int h) { const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x)); - uint8x16_t s0, s1, s2, s3; assert((intptr_t)dst % 4 == 0); assert(dst_stride % 4 == 0); @@ -107,19 +97,17 @@ void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, src -= ((SUBPEL_TAPS / 2) - 1); if (w == 4) { - const uint8x16x2_t perm_tbl = vld1q_u8_x2(dot_prod_permute_tbl); + const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); do { - int16x4_t t0, t1, t2, t3; - uint8x8_t d01, d23; - + uint8x16_t s0, s1, s2, s3; load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); - t0 = convolve8_4_usdot(s0, filter, perm_tbl); - t1 = convolve8_4_usdot(s1, filter, perm_tbl); - t2 = convolve8_4_usdot(s2, filter, perm_tbl); - t3 = convolve8_4_usdot(s3, filter, perm_tbl); - d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS); - d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS); + int16x4_t d0 = convolve8_4_h(s0, filter, perm_tbl); + int16x4_t d1 = convolve8_4_h(s1, filter, perm_tbl); + int16x4_t d2 = convolve8_4_h(s2, filter, perm_tbl); + int16x4_t d3 = convolve8_4_h(s3, filter, perm_tbl); + uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); + uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); @@ -129,23 +117,20 @@ void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, h -= 4; } while (h > 0); } else { - const uint8x16x3_t perm_tbl = vld1q_u8_x3(dot_prod_permute_tbl); - const uint8_t *s; - uint8_t *d; - int width; - uint8x8_t d0, d1, d2, d3; + const uint8x16x3_t perm_tbl = vld1q_u8_x3(kDotProdPermuteTbl); do { - width = w; - s = src; - d = dst; + int width = w; + const uint8_t *s = src; + uint8_t *d = dst; do { + uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); - d0 = convolve8_8_usdot(s0, filter, perm_tbl); - d1 = convolve8_8_usdot(s1, filter, perm_tbl); - d2 = convolve8_8_usdot(s2, filter, perm_tbl); - d3 = convolve8_8_usdot(s3, filter, perm_tbl); + uint8x8_t d0 = convolve8_8_h(s0, filter, perm_tbl); + uint8x8_t d1 = convolve8_8_h(s1, filter, perm_tbl); + uint8x8_t d2 = convolve8_8_h(s2, filter, perm_tbl); + uint8x8_t d3 = convolve8_8_h(s3, filter, perm_tbl); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); @@ -162,79 +147,83 @@ void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, static INLINE void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1, uint8x8_t a2, uint8x8_t a3, - uint8x16_t *b, - const uint8x16_t permute_tbl) { - /* Transpose 8-bit elements and concatenate result rows as follows: - * a0: 00, 01, 02, 03, XX, XX, XX, XX - * a1: 10, 11, 12, 13, XX, XX, XX, XX - * a2: 20, 21, 22, 23, XX, XX, XX, XX - * a3: 30, 31, 32, 33, XX, XX, XX, XX - * - * b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 - * - * The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it - * as an argument is preferable to loading it directly from memory as this - * inline helper is called many times from the same parent function. - */ - - uint8x16x2_t samples = { { vcombine_u8(a0, a1), vcombine_u8(a2, a3) } }; - *b = vqtbl2q_u8(samples, permute_tbl); + uint8x16_t *b) { + // Transpose 8-bit elements and concatenate result rows as follows: + // a0: 00, 01, 02, 03, XX, XX, XX, XX + // a1: 10, 11, 12, 13, XX, XX, XX, XX + // a2: 20, 21, 22, 23, XX, XX, XX, XX + // a3: 30, 31, 32, 33, XX, XX, XX, XX + // + // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 + + uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); + uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); + uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); + uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); + + uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; + uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; + + uint16x8_t a0123 = + vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0]; + + *b = vreinterpretq_u8_u16(a0123); } static INLINE void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1, uint8x8_t a2, uint8x8_t a3, - uint8x16_t *b0, uint8x16_t *b1, - const uint8x16x2_t permute_tbl) { - /* Transpose 8-bit elements and concatenate result rows as follows: - * a0: 00, 01, 02, 03, 04, 05, 06, 07 - * a1: 10, 11, 12, 13, 14, 15, 16, 17 - * a2: 20, 21, 22, 23, 24, 25, 26, 27 - * a3: 30, 31, 32, 33, 34, 35, 36, 37 - * - * b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 - * b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 - * - * The 'permute_tbl' is always 'dot_prod_tran_concat_tbl' above. Passing it - * as an argument is preferable to loading it directly from memory as this - * inline helper is called many times from the same parent function. - */ - - uint8x16x2_t samples = { { vcombine_u8(a0, a1), vcombine_u8(a2, a3) } }; - *b0 = vqtbl2q_u8(samples, permute_tbl.val[0]); - *b1 = vqtbl2q_u8(samples, permute_tbl.val[1]); + uint8x16_t *b0, uint8x16_t *b1) { + // Transpose 8-bit elements and concatenate result rows as follows: + // a0: 00, 01, 02, 03, 04, 05, 06, 07 + // a1: 10, 11, 12, 13, 14, 15, 16, 17 + // a2: 20, 21, 22, 23, 24, 25, 26, 27 + // a3: 30, 31, 32, 33, 34, 35, 36, 37 + // + // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 + // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 + + uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); + uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); + uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); + uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); + + uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; + uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; + + uint16x8x2_t a0123 = + vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)); + + *b0 = vreinterpretq_u8_u16(a0123.val[0]); + *b1 = vreinterpretq_u8_u16(a0123.val[1]); } -static INLINE int16x4_t convolve8_4_usdot_partial(const uint8x16_t samples_lo, - const uint8x16_t samples_hi, - const int8x8_t filter) { - /* Sample permutation is performed by the caller. */ - int32x4_t sum; - - sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filter, 0); - sum = vusdotq_lane_s32(sum, samples_hi, filter, 1); +static INLINE int16x4_t convolve8_4_v(const uint8x16_t samples_lo, + const uint8x16_t samples_hi, + const int8x8_t filters) { + // Sample permutation is performed by the caller. + int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filters, 0); + sum = vusdotq_lane_s32(sum, samples_hi, filters, 1); - /* Further narrowing and packing is performed by the caller. */ + // Further narrowing and packing is performed by the caller. return vqmovn_s32(sum); } -static INLINE uint8x8_t convolve8_8_usdot_partial(const uint8x16_t samples0_lo, - const uint8x16_t samples0_hi, - const uint8x16_t samples1_lo, - const uint8x16_t samples1_hi, - const int8x8_t filter) { - /* Sample permutation is performed by the caller. */ - int32x4_t sum0, sum1; - int16x8_t sum; - - /* First 4 output values. */ - sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filter, 0); - sum0 = vusdotq_lane_s32(sum0, samples0_hi, filter, 1); - /* Second 4 output values. */ - sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filter, 0); - sum1 = vusdotq_lane_s32(sum1, samples1_hi, filter, 1); - - /* Narrow and re-pack. */ - sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); +static INLINE uint8x8_t convolve8_8_v(const uint8x16_t samples0_lo, + const uint8x16_t samples0_hi, + const uint8x16_t samples1_lo, + const uint8x16_t samples1_hi, + const int8x8_t filters) { + // Sample permutation is performed by the caller. + + // First 4 output values. + int32x4_t sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filters, 0); + sum0 = vusdotq_lane_s32(sum0, samples0_hi, filters, 1); + // Second 4 output values. + int32x4_t sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filters, 0); + sum1 = vusdotq_lane_s32(sum1, samples1_hi, filters, 1); + + // Narrow and re-pack. + int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); return vqrshrun_n_s16(sum, FILTER_BITS); } @@ -244,7 +233,7 @@ void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, const int16_t *filter_y, int y_step_q4, int w, int h) { const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y)); - const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl); + const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); uint8x16x2_t samples_LUT; assert((intptr_t)dst % 4 == 0); @@ -257,47 +246,44 @@ void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, src -= ((SUBPEL_TAPS / 2) - 1) * src_stride; if (w == 4) { - const uint8x16_t tran_concat_tbl = vld1q_u8(dot_prod_tran_concat_tbl); - uint8x8_t s0, s1, s2, s3, s4, s5, s6; load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); src += 7 * src_stride; - /* This operation combines a conventional transpose and the sample permute - * (see horizontal case) required before computing the dot product. - */ + // This operation combines a conventional transpose and the sample permute + // (see horizontal case) required before computing the dot product. uint8x16_t s0123, s1234, s2345, s3456; - transpose_concat_4x4(s0, s1, s2, s3, &s0123, tran_concat_tbl); - transpose_concat_4x4(s1, s2, s3, s4, &s1234, tran_concat_tbl); - transpose_concat_4x4(s2, s3, s4, s5, &s2345, tran_concat_tbl); - transpose_concat_4x4(s3, s4, s5, s6, &s3456, tran_concat_tbl); + transpose_concat_4x4(s0, s1, s2, s3, &s0123); + transpose_concat_4x4(s1, s2, s3, s4, &s1234); + transpose_concat_4x4(s2, s3, s4, s5, &s2345); + transpose_concat_4x4(s3, s4, s5, s6, &s3456); do { uint8x8_t s7, s8, s9, s10; load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10); uint8x16_t s4567, s5678, s6789, s78910; - transpose_concat_4x4(s7, s8, s9, s10, &s78910, tran_concat_tbl); + transpose_concat_4x4(s7, s8, s9, s10, &s78910); - /* Merge new data into block from previous iteration. */ + // Merge new data into block from previous iteration. samples_LUT.val[0] = s3456; samples_LUT.val[1] = s78910; s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); - int16x4_t d0 = convolve8_4_usdot_partial(s0123, s4567, filter); - int16x4_t d1 = convolve8_4_usdot_partial(s1234, s5678, filter); - int16x4_t d2 = convolve8_4_usdot_partial(s2345, s6789, filter); - int16x4_t d3 = convolve8_4_usdot_partial(s3456, s78910, filter); + int16x4_t d0 = convolve8_4_v(s0123, s4567, filter); + int16x4_t d1 = convolve8_4_v(s1234, s5678, filter); + int16x4_t d2 = convolve8_4_v(s2345, s6789, filter); + int16x4_t d3 = convolve8_4_v(s3456, s78910, filter); uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); - /* Prepare block for next iteration - re-using as much as possible. */ - /* Shuffle everything up four rows. */ + // Prepare block for next iteration - re-using as much as possible. + // Shuffle everything up four rows. s0123 = s4567; s1234 = s5678; s2345 = s6789; @@ -308,8 +294,6 @@ void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, h -= 4; } while (h != 0); } else { - const uint8x16x2_t tran_concat_tbl = vld1q_u8_x2(dot_prod_tran_concat_tbl); - do { int height = h; const uint8_t *s = src; @@ -319,19 +303,14 @@ void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); s += 7 * src_stride; - /* This operation combines a conventional transpose and the sample permute - * (see horizontal case) required before computing the dot product. - */ + // This operation combines a conventional transpose and the sample permute + // (see horizontal case) required before computing the dot product. uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, s3456_lo, s3456_hi; - transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi, - tran_concat_tbl); - transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi, - tran_concat_tbl); - transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi, - tran_concat_tbl); - transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi, - tran_concat_tbl); + transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); + transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); + transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); + transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); do { uint8x8_t s7, s8, s9, s10; @@ -339,10 +318,9 @@ void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, s78910_lo, s78910_hi; - transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi, - tran_concat_tbl); + transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); - /* Merge new data into block from previous iteration. */ + // Merge new data into block from previous iteration. samples_LUT.val[0] = s3456_lo; samples_LUT.val[1] = s78910_lo; s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); @@ -355,19 +333,19 @@ void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); - uint8x8_t d0 = convolve8_8_usdot_partial(s0123_lo, s4567_lo, s0123_hi, - s4567_hi, filter); - uint8x8_t d1 = convolve8_8_usdot_partial(s1234_lo, s5678_lo, s1234_hi, - s5678_hi, filter); - uint8x8_t d2 = convolve8_8_usdot_partial(s2345_lo, s6789_lo, s2345_hi, - s6789_hi, filter); - uint8x8_t d3 = convolve8_8_usdot_partial(s3456_lo, s78910_lo, s3456_hi, - s78910_hi, filter); + uint8x8_t d0 = + convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter); + uint8x8_t d1 = + convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter); + uint8x8_t d2 = + convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter); + uint8x8_t d3 = + convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter); store_u8_8x4(d, dst_stride, d0, d1, d2, d3); - /* Prepare block for next iteration - re-using as much as possible. */ - /* Shuffle everything up four rows. */ + // Prepare block for next iteration - re-using as much as possible. + // Shuffle everything up four rows. s0123_lo = s4567_lo; s0123_hi = s4567_hi; s1234_lo = s5678_lo; diff --git a/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.c b/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.c index 62729133e3..5758d2887f 100644 --- a/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.c +++ b/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.c @@ -16,36 +16,10 @@ #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" +#include "aom_dsp/flow_estimation/arm/disflow_neon.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" -static INLINE void get_cubic_kernel_dbl(double x, double kernel[4]) { - // Check that the fractional position is in range. - // - // Note: x is calculated from, e.g., `u_frac = u - floor(u)`. - // Mathematically, this implies that 0 <= x < 1. However, in practice it is - // possible to have x == 1 due to floating point rounding. This is fine, - // and we still interpolate correctly if we allow x = 1. - assert(0 <= x && x <= 1); - - double x2 = x * x; - double x3 = x2 * x; - kernel[0] = -0.5 * x + x2 - 0.5 * x3; - kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3; - kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3; - kernel[3] = -0.5 * x2 + 0.5 * x3; -} - -static INLINE void get_cubic_kernel_int(double x, int kernel[4]) { - double kernel_dbl[4]; - get_cubic_kernel_dbl(x, kernel_dbl); - - kernel[0] = (int)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS)); - kernel[1] = (int)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS)); - kernel[2] = (int)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS)); - kernel[3] = (int)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS)); -} - // Compare two regions of width x height pixels, one rooted at position // (x, y) in src and the other at (x + u, y + v) in ref. // This function returns the sum of squared pixel differences between @@ -157,82 +131,6 @@ static INLINE void compute_flow_error(const uint8_t *src, const uint8_t *ref, } } -static INLINE void sobel_filter_x(const uint8_t *src, int src_stride, - int16_t *dst, int dst_stride) { - int16_t tmp[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; - - // Horizontal filter, using kernel {1, 0, -1}. - const uint8_t *src_start = src - 1 * src_stride - 1; - - for (int i = 0; i < DISFLOW_PATCH_SIZE + 2; i++) { - uint8x16_t s = vld1q_u8(src_start + i * src_stride); - uint8x8_t s0 = vget_low_u8(s); - uint8x8_t s2 = vget_low_u8(vextq_u8(s, s, 2)); - - // Given that the kernel is {1, 0, -1} the convolution is a simple - // subtraction. - int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s0, s2)); - - vst1q_s16(tmp + i * DISFLOW_PATCH_SIZE, diff); - } - - // Vertical filter, using kernel {1, 2, 1}. - // This kernel can be split into two 2-taps kernels of value {1, 1}. - // That way we need only 3 add operations to perform the convolution, one of - // which can be reused for the next line. - int16x8_t s0 = vld1q_s16(tmp); - int16x8_t s1 = vld1q_s16(tmp + DISFLOW_PATCH_SIZE); - int16x8_t sum01 = vaddq_s16(s0, s1); - for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { - int16x8_t s2 = vld1q_s16(tmp + (i + 2) * DISFLOW_PATCH_SIZE); - - int16x8_t sum12 = vaddq_s16(s1, s2); - int16x8_t sum = vaddq_s16(sum01, sum12); - - vst1q_s16(dst + i * dst_stride, sum); - - sum01 = sum12; - s1 = s2; - } -} - -static INLINE void sobel_filter_y(const uint8_t *src, int src_stride, - int16_t *dst, int dst_stride) { - int16_t tmp[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; - - // Horizontal filter, using kernel {1, 2, 1}. - // This kernel can be split into two 2-taps kernels of value {1, 1}. - // That way we need only 3 add operations to perform the convolution. - const uint8_t *src_start = src - 1 * src_stride - 1; - - for (int i = 0; i < DISFLOW_PATCH_SIZE + 2; i++) { - uint8x16_t s = vld1q_u8(src_start + i * src_stride); - uint8x8_t s0 = vget_low_u8(s); - uint8x8_t s1 = vget_low_u8(vextq_u8(s, s, 1)); - uint8x8_t s2 = vget_low_u8(vextq_u8(s, s, 2)); - - uint16x8_t sum01 = vaddl_u8(s0, s1); - uint16x8_t sum12 = vaddl_u8(s1, s2); - uint16x8_t sum = vaddq_u16(sum01, sum12); - - vst1q_s16(tmp + i * DISFLOW_PATCH_SIZE, vreinterpretq_s16_u16(sum)); - } - - // Vertical filter, using kernel {1, 0, -1}. - // Load the whole block at once to avoid redundant loads during convolution. - int16x8_t t[10]; - load_s16_8x10(tmp, DISFLOW_PATCH_SIZE, &t[0], &t[1], &t[2], &t[3], &t[4], - &t[5], &t[6], &t[7], &t[8], &t[9]); - - for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { - // Given that the kernel is {1, 0, -1} the convolution is a simple - // subtraction. - int16x8_t diff = vsubq_s16(t[i], t[i + 2]); - - vst1q_s16(dst + i * dst_stride, diff); - } -} - // Computes the components of the system of equations used to solve for // a flow vector. // diff --git a/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.h b/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.h new file mode 100644 index 0000000000..d991a13460 --- /dev/null +++ b/third_party/aom/aom_dsp/flow_estimation/arm/disflow_neon.h @@ -0,0 +1,127 @@ +/* + * Copyright (c) 2024, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AOM_DSP_FLOW_ESTIMATION_ARM_DISFLOW_NEON_H_ +#define AOM_AOM_DSP_FLOW_ESTIMATION_ARM_DISFLOW_NEON_H_ + +#include "aom_dsp/flow_estimation/disflow.h" + +#include <arm_neon.h> +#include <math.h> + +#include "aom_dsp/arm/mem_neon.h" +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" + +static INLINE void get_cubic_kernel_dbl(double x, double kernel[4]) { + // Check that the fractional position is in range. + // + // Note: x is calculated from, e.g., `u_frac = u - floor(u)`. + // Mathematically, this implies that 0 <= x < 1. However, in practice it is + // possible to have x == 1 due to floating point rounding. This is fine, + // and we still interpolate correctly if we allow x = 1. + assert(0 <= x && x <= 1); + + double x2 = x * x; + double x3 = x2 * x; + kernel[0] = -0.5 * x + x2 - 0.5 * x3; + kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3; + kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3; + kernel[3] = -0.5 * x2 + 0.5 * x3; +} + +static INLINE void get_cubic_kernel_int(double x, int kernel[4]) { + double kernel_dbl[4]; + get_cubic_kernel_dbl(x, kernel_dbl); + + kernel[0] = (int)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS)); + kernel[1] = (int)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS)); + kernel[2] = (int)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS)); + kernel[3] = (int)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS)); +} + +static INLINE void sobel_filter_x(const uint8_t *src, int src_stride, + int16_t *dst, int dst_stride) { + int16_t tmp[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; + + // Horizontal filter, using kernel {1, 0, -1}. + const uint8_t *src_start = src - 1 * src_stride - 1; + + for (int i = 0; i < DISFLOW_PATCH_SIZE + 2; i++) { + uint8x16_t s = vld1q_u8(src_start + i * src_stride); + uint8x8_t s0 = vget_low_u8(s); + uint8x8_t s2 = vget_low_u8(vextq_u8(s, s, 2)); + + // Given that the kernel is {1, 0, -1} the convolution is a simple + // subtraction. + int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s0, s2)); + + vst1q_s16(tmp + i * DISFLOW_PATCH_SIZE, diff); + } + + // Vertical filter, using kernel {1, 2, 1}. + // This kernel can be split into two 2-taps kernels of value {1, 1}. + // That way we need only 3 add operations to perform the convolution, one of + // which can be reused for the next line. + int16x8_t s0 = vld1q_s16(tmp); + int16x8_t s1 = vld1q_s16(tmp + DISFLOW_PATCH_SIZE); + int16x8_t sum01 = vaddq_s16(s0, s1); + for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { + int16x8_t s2 = vld1q_s16(tmp + (i + 2) * DISFLOW_PATCH_SIZE); + + int16x8_t sum12 = vaddq_s16(s1, s2); + int16x8_t sum = vaddq_s16(sum01, sum12); + + vst1q_s16(dst + i * dst_stride, sum); + + sum01 = sum12; + s1 = s2; + } +} + +static INLINE void sobel_filter_y(const uint8_t *src, int src_stride, + int16_t *dst, int dst_stride) { + int16_t tmp[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)]; + + // Horizontal filter, using kernel {1, 2, 1}. + // This kernel can be split into two 2-taps kernels of value {1, 1}. + // That way we need only 3 add operations to perform the convolution. + const uint8_t *src_start = src - 1 * src_stride - 1; + + for (int i = 0; i < DISFLOW_PATCH_SIZE + 2; i++) { + uint8x16_t s = vld1q_u8(src_start + i * src_stride); + uint8x8_t s0 = vget_low_u8(s); + uint8x8_t s1 = vget_low_u8(vextq_u8(s, s, 1)); + uint8x8_t s2 = vget_low_u8(vextq_u8(s, s, 2)); + + uint16x8_t sum01 = vaddl_u8(s0, s1); + uint16x8_t sum12 = vaddl_u8(s1, s2); + uint16x8_t sum = vaddq_u16(sum01, sum12); + + vst1q_s16(tmp + i * DISFLOW_PATCH_SIZE, vreinterpretq_s16_u16(sum)); + } + + // Vertical filter, using kernel {1, 0, -1}. + // Load the whole block at once to avoid redundant loads during convolution. + int16x8_t t[10]; + load_s16_8x10(tmp, DISFLOW_PATCH_SIZE, &t[0], &t[1], &t[2], &t[3], &t[4], + &t[5], &t[6], &t[7], &t[8], &t[9]); + + for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { + // Given that the kernel is {1, 0, -1} the convolution is a simple + // subtraction. + int16x8_t diff = vsubq_s16(t[i], t[i + 2]); + + vst1q_s16(dst + i * dst_stride, diff); + } +} + +#endif // AOM_AOM_DSP_FLOW_ESTIMATION_ARM_DISFLOW_NEON_H_ diff --git a/third_party/aom/aom_dsp/flow_estimation/arm/disflow_sve.c b/third_party/aom/aom_dsp/flow_estimation/arm/disflow_sve.c new file mode 100644 index 0000000000..7b01e90d12 --- /dev/null +++ b/third_party/aom/aom_dsp/flow_estimation/arm/disflow_sve.c @@ -0,0 +1,268 @@ +/* + * Copyright (c) 2024, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "aom_dsp/flow_estimation/disflow.h" + +#include <arm_neon.h> +#include <arm_sve.h> +#include <math.h> + +#include "aom_dsp/arm/aom_neon_sve_bridge.h" +#include "aom_dsp/arm/mem_neon.h" +#include "aom_dsp/arm/sum_neon.h" +#include "aom_dsp/flow_estimation/arm/disflow_neon.h" +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" + +DECLARE_ALIGNED(16, static const uint16_t, kDeinterleaveTbl[8]) = { + 0, 2, 4, 6, 1, 3, 5, 7, +}; + +// Compare two regions of width x height pixels, one rooted at position +// (x, y) in src and the other at (x + u, y + v) in ref. +// This function returns the sum of squared pixel differences between +// the two regions. +static INLINE void compute_flow_error(const uint8_t *src, const uint8_t *ref, + int width, int height, int stride, int x, + int y, double u, double v, int16_t *dt) { + // Split offset into integer and fractional parts, and compute cubic + // interpolation kernels + const int u_int = (int)floor(u); + const int v_int = (int)floor(v); + const double u_frac = u - floor(u); + const double v_frac = v - floor(v); + + int h_kernel[4]; + int v_kernel[4]; + get_cubic_kernel_int(u_frac, h_kernel); + get_cubic_kernel_int(v_frac, v_kernel); + + int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]; + + // Clamp coordinates so that all pixels we fetch will remain within the + // allocated border region, but allow them to go far enough out that + // the border pixels' values do not change. + // Since we are calculating an 8x8 block, the bottom-right pixel + // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic + // interpolation has 4 taps, meaning that the output of pixel + // (x_w, y_w) depends on the pixels in the range + // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]). + // + // Thus the most extreme coordinates which will be fetched are + // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9). + const int x0 = clamp(x + u_int, -9, width); + const int y0 = clamp(y + v_int, -9, height); + + // Horizontal convolution. + const uint8_t *ref_start = ref + (y0 - 1) * stride + (x0 - 1); + const int16x4_t h_kernel_s16 = vmovn_s32(vld1q_s32(h_kernel)); + const int16x8_t h_filter = vcombine_s16(h_kernel_s16, vdup_n_s16(0)); + const uint16x8_t idx = vld1q_u16(kDeinterleaveTbl); + + for (int i = 0; i < DISFLOW_PATCH_SIZE + 3; ++i) { + svuint16_t r0 = svld1ub_u16(svptrue_b16(), ref_start + i * stride + 0); + svuint16_t r1 = svld1ub_u16(svptrue_b16(), ref_start + i * stride + 1); + svuint16_t r2 = svld1ub_u16(svptrue_b16(), ref_start + i * stride + 2); + svuint16_t r3 = svld1ub_u16(svptrue_b16(), ref_start + i * stride + 3); + + int16x8_t s0 = vreinterpretq_s16_u16(svget_neonq_u16(r0)); + int16x8_t s1 = vreinterpretq_s16_u16(svget_neonq_u16(r1)); + int16x8_t s2 = vreinterpretq_s16_u16(svget_neonq_u16(r2)); + int16x8_t s3 = vreinterpretq_s16_u16(svget_neonq_u16(r3)); + + int64x2_t sum04 = aom_svdot_lane_s16(vdupq_n_s64(0), s0, h_filter, 0); + int64x2_t sum15 = aom_svdot_lane_s16(vdupq_n_s64(0), s1, h_filter, 0); + int64x2_t sum26 = aom_svdot_lane_s16(vdupq_n_s64(0), s2, h_filter, 0); + int64x2_t sum37 = aom_svdot_lane_s16(vdupq_n_s64(0), s3, h_filter, 0); + + int32x4_t res0 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15)); + int32x4_t res1 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37)); + + // 6 is the maximum allowable number of extra bits which will avoid + // the intermediate values overflowing an int16_t. The most extreme + // intermediate value occurs when: + // * The input pixels are [0, 255, 255, 0] + // * u_frac = 0.5 + // In this case, the un-scaled output is 255 * 1.125 = 286.875. + // As an integer with 6 fractional bits, that is 18360, which fits + // in an int16_t. But with 7 fractional bits it would be 36720, + // which is too large. + int16x8_t res = vcombine_s16(vrshrn_n_s32(res0, DISFLOW_INTERP_BITS - 6), + vrshrn_n_s32(res1, DISFLOW_INTERP_BITS - 6)); + + res = aom_tbl_s16(res, idx); + + vst1q_s16(tmp_ + i * DISFLOW_PATCH_SIZE, res); + } + + // Vertical convolution. + int16x4_t v_filter = vmovn_s32(vld1q_s32(v_kernel)); + int16_t *tmp_start = tmp_ + DISFLOW_PATCH_SIZE; + + for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) { + int16x8_t t0 = vld1q_s16(tmp_start + (i - 1) * DISFLOW_PATCH_SIZE); + int16x8_t t1 = vld1q_s16(tmp_start + i * DISFLOW_PATCH_SIZE); + int16x8_t t2 = vld1q_s16(tmp_start + (i + 1) * DISFLOW_PATCH_SIZE); + int16x8_t t3 = vld1q_s16(tmp_start + (i + 2) * DISFLOW_PATCH_SIZE); + + int32x4_t sum_lo = vmull_lane_s16(vget_low_s16(t0), v_filter, 0); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(t1), v_filter, 1); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(t2), v_filter, 2); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(t3), v_filter, 3); + + int32x4_t sum_hi = vmull_lane_s16(vget_high_s16(t0), v_filter, 0); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(t1), v_filter, 1); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(t2), v_filter, 2); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(t3), v_filter, 3); + + uint8x8_t s = vld1_u8(src + (i + y) * stride + x); + int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, 3)); + + // This time, we have to round off the 6 extra bits which were kept + // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits + // of precision to match the scale of the dx and dy arrays. + sum_lo = vrshrq_n_s32(sum_lo, + DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2); + sum_hi = vrshrq_n_s32(sum_hi, + DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2); + int32x4_t err_lo = vsubw_s16(sum_lo, vget_low_s16(s_s16)); + int32x4_t err_hi = vsubw_s16(sum_hi, vget_high_s16(s_s16)); + vst1q_s16(dt + i * DISFLOW_PATCH_SIZE, + vcombine_s16(vmovn_s32(err_lo), vmovn_s32(err_hi))); + } +} + +// Computes the components of the system of equations used to solve for +// a flow vector. +// +// The flow equations are a least-squares system, derived as follows: +// +// For each pixel in the patch, we calculate the current error `dt`, +// and the x and y gradients `dx` and `dy` of the source patch. +// This means that, to first order, the squared error for this pixel is +// +// (dt + u * dx + v * dy)^2 +// +// where (u, v) are the incremental changes to the flow vector. +// +// We then want to find the values of u and v which minimize the sum +// of the squared error across all pixels. Conveniently, this fits exactly +// into the form of a least squares problem, with one equation +// +// u * dx + v * dy = -dt +// +// for each pixel. +// +// Summing across all pixels in a square window of size DISFLOW_PATCH_SIZE, +// and absorbing the - sign elsewhere, this results in the least squares system +// +// M = |sum(dx * dx) sum(dx * dy)| +// |sum(dx * dy) sum(dy * dy)| +// +// b = |sum(dx * dt)| +// |sum(dy * dt)| +static INLINE void compute_flow_matrix(const int16_t *dx, int dx_stride, + const int16_t *dy, int dy_stride, + double *M_inv) { + int64x2_t sum[3] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0) }; + + for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { + int16x8_t x = vld1q_s16(dx + i * dx_stride); + int16x8_t y = vld1q_s16(dy + i * dy_stride); + + sum[0] = aom_sdotq_s16(sum[0], x, x); + sum[1] = aom_sdotq_s16(sum[1], x, y); + sum[2] = aom_sdotq_s16(sum[2], y, y); + } + + sum[0] = vpaddq_s64(sum[0], sum[1]); + sum[2] = vpaddq_s64(sum[1], sum[2]); + int32x4_t res = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2])); + + // Apply regularization + // We follow the standard regularization method of adding `k * I` before + // inverting. This ensures that the matrix will be invertible. + // + // Setting the regularization strength k to 1 seems to work well here, as + // typical values coming from the other equations are very large (1e5 to + // 1e6, with an upper limit of around 6e7, at the time of writing). + // It also preserves the property that all matrix values are whole numbers, + // which is convenient for integerized SIMD implementation. + + double M0 = (double)vgetq_lane_s32(res, 0) + 1; + double M1 = (double)vgetq_lane_s32(res, 1); + double M2 = (double)vgetq_lane_s32(res, 2); + double M3 = (double)vgetq_lane_s32(res, 3) + 1; + + // Invert matrix M. + double det = (M0 * M3) - (M1 * M2); + assert(det >= 1); + const double det_inv = 1 / det; + + M_inv[0] = M3 * det_inv; + M_inv[1] = -M1 * det_inv; + M_inv[2] = -M2 * det_inv; + M_inv[3] = M0 * det_inv; +} + +static INLINE void compute_flow_vector(const int16_t *dx, int dx_stride, + const int16_t *dy, int dy_stride, + const int16_t *dt, int dt_stride, + int *b) { + int64x2_t b_s64[2] = { vdupq_n_s64(0), vdupq_n_s64(0) }; + + for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) { + int16x8_t dx16 = vld1q_s16(dx + i * dx_stride); + int16x8_t dy16 = vld1q_s16(dy + i * dy_stride); + int16x8_t dt16 = vld1q_s16(dt + i * dt_stride); + + b_s64[0] = aom_sdotq_s16(b_s64[0], dx16, dt16); + b_s64[1] = aom_sdotq_s16(b_s64[1], dy16, dt16); + } + + b_s64[0] = vpaddq_s64(b_s64[0], b_s64[1]); + vst1_s32(b, vmovn_s64(b_s64[0])); +} + +void aom_compute_flow_at_point_sve(const uint8_t *src, const uint8_t *ref, + int x, int y, int width, int height, + int stride, double *u, double *v) { + double M_inv[4]; + int b[2]; + int16_t dt[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; + int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; + int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]; + + // Compute gradients within this patch + const uint8_t *src_patch = &src[y * stride + x]; + sobel_filter_x(src_patch, stride, dx, DISFLOW_PATCH_SIZE); + sobel_filter_y(src_patch, stride, dy, DISFLOW_PATCH_SIZE); + + compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M_inv); + + for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) { + compute_flow_error(src, ref, width, height, stride, x, y, *u, *v, dt); + compute_flow_vector(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, dt, + DISFLOW_PATCH_SIZE, b); + + // Solve flow equations to find a better estimate for the flow vector + // at this point + const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1]; + const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1]; + *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2); + *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2); + + if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) { + // Stop iteration when we're close to convergence + break; + } + } +} diff --git a/third_party/aom/aom_dsp/pyramid.c b/third_party/aom/aom_dsp/pyramid.c index 5de001dbd5..05ddbb2f5f 100644 --- a/third_party/aom/aom_dsp/pyramid.c +++ b/third_party/aom/aom_dsp/pyramid.c @@ -305,6 +305,7 @@ static INLINE int fill_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth, // Fill in the remaining levels through progressive downsampling for (int level = already_filled_levels; level < n_levels; ++level) { + bool mem_status = false; PyramidLayer *prev_layer = &frame_pyr->layers[level - 1]; uint8_t *prev_buffer = prev_layer->buffer; int prev_stride = prev_layer->stride; @@ -315,6 +316,11 @@ static INLINE int fill_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth, int this_height = this_layer->height; int this_stride = this_layer->stride; + // The width and height of the previous layer that needs to be considered to + // derive the current layer frame. + const int input_layer_width = this_width << 1; + const int input_layer_height = this_height << 1; + // Compute the this pyramid level by downsampling the current level. // // We downsample by a factor of exactly 2, clipping the rightmost and @@ -329,13 +335,30 @@ static INLINE int fill_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth, // 2) Up/downsampling by a factor of 2 can be implemented much more // efficiently than up/downsampling by a generic ratio. // TODO(rachelbarker): Use optimized downsample-by-2 function - if (!av1_resize_plane(prev_buffer, this_height << 1, this_width << 1, - prev_stride, this_buffer, this_height, this_width, - this_stride)) { - // If we can't allocate memory, we'll have to terminate early + + // SIMD support has been added specifically for cases where the downsample + // factor is exactly 2. In such instances, horizontal and vertical resizing + // is performed utilizing the down2_symeven() function, which considers the + // even dimensions of the input layer. + if (should_resize_by_half(input_layer_height, input_layer_width, + this_height, this_width)) { + assert(input_layer_height % 2 == 0 && input_layer_width % 2 == 0 && + "Input width or height cannot be odd."); + mem_status = av1_resize_plane_to_half( + prev_buffer, input_layer_height, input_layer_width, prev_stride, + this_buffer, this_height, this_width, this_stride); + } else { + mem_status = av1_resize_plane(prev_buffer, input_layer_height, + input_layer_width, prev_stride, this_buffer, + this_height, this_width, this_stride); + } + + // Terminate early in cases of memory allocation failure. + if (!mem_status) { frame_pyr->filled_levels = n_levels; return -1; } + fill_border(this_buffer, this_width, this_height, this_stride); } diff --git a/third_party/aom/aom_dsp/x86/synonyms.h b/third_party/aom/aom_dsp/x86/synonyms.h index 74318de2e5..f9bc9ac733 100644 --- a/third_party/aom/aom_dsp/x86/synonyms.h +++ b/third_party/aom/aom_dsp/x86/synonyms.h @@ -46,7 +46,6 @@ static INLINE __m128i xx_loadu_128(const void *a) { return _mm_loadu_si128((const __m128i *)a); } - // _mm_loadu_si64 has been introduced in GCC 9, reimplement the function // manually on older compilers. #if !defined(__clang__) && __GNUC_MAJOR__ < 9 |