summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/blockd.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/aom/av1/common/blockd.h
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/blockd.h')
-rw-r--r--third_party/aom/av1/common/blockd.h1612
1 files changed, 1612 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/blockd.h b/third_party/aom/av1/common/blockd.h
new file mode 100644
index 0000000000..0cfd1f3954
--- /dev/null
+++ b/third_party/aom/av1/common/blockd.h
@@ -0,0 +1,1612 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AV1_COMMON_BLOCKD_H_
+#define AOM_AV1_COMMON_BLOCKD_H_
+
+#include "config/aom_config.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_ports/mem.h"
+#include "aom_scale/yv12config.h"
+
+#include "av1/common/common_data.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/mv.h"
+#include "av1/common/scale.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/tile_common.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define USE_B_QUANT_NO_TRELLIS 1
+
+#define MAX_MB_PLANE 3
+
+#define MAX_DIFFWTD_MASK_BITS 1
+
+#define INTERINTRA_WEDGE_SIGN 0
+
+#define DEFAULT_INTER_TX_TYPE DCT_DCT
+
+#define MAX_PALETTE_BLOCK_WIDTH 64
+
+#define MAX_PALETTE_BLOCK_HEIGHT 64
+
+/*!\cond */
+
+// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
+enum {
+ DIFFWTD_38 = 0,
+ DIFFWTD_38_INV,
+ DIFFWTD_MASK_TYPES,
+} UENUM1BYTE(DIFFWTD_MASK_TYPE);
+
+enum {
+ KEY_FRAME = 0,
+ INTER_FRAME = 1,
+ INTRA_ONLY_FRAME = 2, // replaces intra-only
+ S_FRAME = 3,
+ FRAME_TYPES,
+} UENUM1BYTE(FRAME_TYPE);
+
+static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
+ return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
+}
+
+static INLINE int is_inter_mode(PREDICTION_MODE mode) {
+ return mode >= INTER_MODE_START && mode < INTER_MODE_END;
+}
+
+typedef struct {
+ uint8_t *plane[MAX_MB_PLANE];
+ int stride[MAX_MB_PLANE];
+} BUFFER_SET;
+
+static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
+ return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
+}
+static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
+ return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
+}
+
+static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
+ static const PREDICTION_MODE lut[] = {
+ DC_PRED, // DC_PRED
+ V_PRED, // V_PRED
+ H_PRED, // H_PRED
+ D45_PRED, // D45_PRED
+ D135_PRED, // D135_PRED
+ D113_PRED, // D113_PRED
+ D157_PRED, // D157_PRED
+ D203_PRED, // D203_PRED
+ D67_PRED, // D67_PRED
+ SMOOTH_PRED, // SMOOTH_PRED
+ SMOOTH_V_PRED, // SMOOTH_V_PRED
+ SMOOTH_H_PRED, // SMOOTH_H_PRED
+ PAETH_PRED, // PAETH_PRED
+ NEARESTMV, // NEARESTMV
+ NEARMV, // NEARMV
+ GLOBALMV, // GLOBALMV
+ NEWMV, // NEWMV
+ NEARESTMV, // NEAREST_NEARESTMV
+ NEARMV, // NEAR_NEARMV
+ NEARESTMV, // NEAREST_NEWMV
+ NEWMV, // NEW_NEARESTMV
+ NEARMV, // NEAR_NEWMV
+ NEWMV, // NEW_NEARMV
+ GLOBALMV, // GLOBAL_GLOBALMV
+ NEWMV, // NEW_NEWMV
+ };
+ assert(NELEMENTS(lut) == MB_MODE_COUNT);
+ assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
+ return lut[mode];
+}
+
+static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
+ static const PREDICTION_MODE lut[] = {
+ MB_MODE_COUNT, // DC_PRED
+ MB_MODE_COUNT, // V_PRED
+ MB_MODE_COUNT, // H_PRED
+ MB_MODE_COUNT, // D45_PRED
+ MB_MODE_COUNT, // D135_PRED
+ MB_MODE_COUNT, // D113_PRED
+ MB_MODE_COUNT, // D157_PRED
+ MB_MODE_COUNT, // D203_PRED
+ MB_MODE_COUNT, // D67_PRED
+ MB_MODE_COUNT, // SMOOTH_PRED
+ MB_MODE_COUNT, // SMOOTH_V_PRED
+ MB_MODE_COUNT, // SMOOTH_H_PRED
+ MB_MODE_COUNT, // PAETH_PRED
+ MB_MODE_COUNT, // NEARESTMV
+ MB_MODE_COUNT, // NEARMV
+ MB_MODE_COUNT, // GLOBALMV
+ MB_MODE_COUNT, // NEWMV
+ NEARESTMV, // NEAREST_NEARESTMV
+ NEARMV, // NEAR_NEARMV
+ NEWMV, // NEAREST_NEWMV
+ NEARESTMV, // NEW_NEARESTMV
+ NEWMV, // NEAR_NEWMV
+ NEARMV, // NEW_NEARMV
+ GLOBALMV, // GLOBAL_GLOBALMV
+ NEWMV, // NEW_NEWMV
+ };
+ assert(NELEMENTS(lut) == MB_MODE_COUNT);
+ assert(is_inter_compound_mode(mode));
+ return lut[mode];
+}
+
+static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
+ return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
+ mode == NEW_NEARMV);
+}
+
+static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
+ return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
+ mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
+}
+
+static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
+ return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
+}
+
+/* For keyframes, intra block modes are predicted by the (already decoded)
+ modes for the Y blocks to the left and above us; for interframes, there
+ is a single probability table. */
+
+typedef struct {
+ // Value of base colors for Y, U, and V
+ uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
+ // Number of base colors for Y (0) and UV (1)
+ uint8_t palette_size[2];
+} PALETTE_MODE_INFO;
+
+typedef struct {
+ FILTER_INTRA_MODE filter_intra_mode;
+ uint8_t use_filter_intra;
+} FILTER_INTRA_MODE_INFO;
+
+static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
+ DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
+};
+
+#if CONFIG_RD_DEBUG
+#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
+#endif
+
+typedef struct RD_STATS {
+ int rate;
+ int zero_rate;
+ int64_t dist;
+ // Please be careful of using rdcost, it's not guaranteed to be set all the
+ // time.
+ // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
+ // these functions, make sure rdcost is always up-to-date according to
+ // rate/dist.
+ int64_t rdcost;
+ int64_t sse;
+ uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1
+#if CONFIG_RD_DEBUG
+ int txb_coeff_cost[MAX_MB_PLANE];
+#endif // CONFIG_RD_DEBUG
+} RD_STATS;
+
+// This struct is used to group function args that are commonly
+// sent together in functions related to interinter compound modes
+typedef struct {
+ uint8_t *seg_mask;
+ int8_t wedge_index;
+ int8_t wedge_sign;
+ DIFFWTD_MASK_TYPE mask_type;
+ COMPOUND_TYPE type;
+} INTERINTER_COMPOUND_DATA;
+
+#define INTER_TX_SIZE_BUF_LEN 16
+#define TXK_TYPE_BUF_LEN 64
+/*!\endcond */
+
+/*! \brief Stores the prediction/txfm mode of the current coding block
+ */
+typedef struct MB_MODE_INFO {
+ /*****************************************************************************
+ * \name General Info of the Coding Block
+ ****************************************************************************/
+ /**@{*/
+ /*! \brief The block size of the current coding block */
+ BLOCK_SIZE bsize;
+ /*! \brief The partition type of the current coding block. */
+ PARTITION_TYPE partition;
+ /*! \brief The prediction mode used */
+ PREDICTION_MODE mode;
+ /*! \brief The UV mode when intra is used */
+ UV_PREDICTION_MODE uv_mode;
+ /*! \brief The q index for the current coding block. */
+ int current_qindex;
+ /**@}*/
+
+ /*****************************************************************************
+ * \name Inter Mode Info
+ ****************************************************************************/
+ /**@{*/
+ /*! \brief The motion vectors used by the current inter mode */
+ int_mv mv[2];
+ /*! \brief The reference frames for the MV */
+ MV_REFERENCE_FRAME ref_frame[2];
+ /*! \brief Filter used in subpel interpolation. */
+ int_interpfilters interp_filters;
+ /*! \brief The motion mode used by the inter prediction. */
+ MOTION_MODE motion_mode;
+ /*! \brief Number of samples used by warp causal */
+ uint8_t num_proj_ref;
+ /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
+ * mode. */
+ uint8_t overlappable_neighbors;
+ /*! \brief The parameters used in warp motion mode. */
+ WarpedMotionParams wm_params;
+ /*! \brief The type of intra mode used by inter-intra */
+ INTERINTRA_MODE interintra_mode;
+ /*! \brief The type of wedge used in interintra mode. */
+ int8_t interintra_wedge_index;
+ /*! \brief Struct that stores the data used in interinter compound mode. */
+ INTERINTER_COMPOUND_DATA interinter_comp;
+ /**@}*/
+
+ /*****************************************************************************
+ * \name Intra Mode Info
+ ****************************************************************************/
+ /**@{*/
+ /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
+ * step). */
+ int8_t angle_delta[PLANE_TYPES];
+ /*! \brief The type of filter intra mode used (if applicable). */
+ FILTER_INTRA_MODE_INFO filter_intra_mode_info;
+ /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
+ int8_t cfl_alpha_signs;
+ /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
+ uint8_t cfl_alpha_idx;
+ /*! \brief Stores the size and colors of palette mode */
+ PALETTE_MODE_INFO palette_mode_info;
+ /**@}*/
+
+ /*****************************************************************************
+ * \name Transform Info
+ ****************************************************************************/
+ /**@{*/
+ /*! \brief Whether to skip transforming and sending. */
+ uint8_t skip_txfm;
+ /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
+ TX_SIZE tx_size;
+ /*! \brief Transform size when recursive txfm tree is on. */
+ TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
+ /**@}*/
+
+ /*****************************************************************************
+ * \name Loop Filter Info
+ ****************************************************************************/
+ /**@{*/
+ /*! \copydoc MACROBLOCKD::delta_lf_from_base */
+ int8_t delta_lf_from_base;
+ /*! \copydoc MACROBLOCKD::delta_lf */
+ int8_t delta_lf[FRAME_LF_COUNT];
+ /**@}*/
+
+ /*****************************************************************************
+ * \name Bitfield for Memory Reduction
+ ****************************************************************************/
+ /**@{*/
+ /*! \brief The segment id */
+ uint8_t segment_id : 3;
+ /*! \brief Only valid when temporal update if off. */
+ uint8_t seg_id_predicted : 1;
+ /*! \brief Which ref_mv to use */
+ uint8_t ref_mv_idx : 2;
+ /*! \brief Inter skip mode */
+ uint8_t skip_mode : 1;
+ /*! \brief Whether intrabc is used. */
+ uint8_t use_intrabc : 1;
+ /*! \brief Indicates if masked compound is used(1) or not (0). */
+ uint8_t comp_group_idx : 1;
+ /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
+ uint8_t compound_idx : 1;
+ /*! \brief Whether to use interintra wedge */
+ uint8_t use_wedge_interintra : 1;
+ /*! \brief CDEF strength per BLOCK_64X64 */
+ int8_t cdef_strength : 4;
+ /**@}*/
+
+#if CONFIG_RD_DEBUG
+ /*! \brief RD info used for debugging */
+ RD_STATS rd_stats;
+ /*! \brief The current row in unit of 4x4 blocks for debugging */
+ int mi_row;
+ /*! \brief The current col in unit of 4x4 blocks for debugging */
+ int mi_col;
+#endif
+#if CONFIG_INSPECTION
+ /*! \brief Whether we are skipping the current rows or columns. */
+ int16_t tx_skip[TXK_TYPE_BUF_LEN];
+#endif
+} MB_MODE_INFO;
+
+/*!\cond */
+
+static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
+ return mbmi->use_intrabc;
+}
+
+static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
+ assert(mode < UV_INTRA_MODES);
+ static const PREDICTION_MODE uv2y[] = {
+ DC_PRED, // UV_DC_PRED
+ V_PRED, // UV_V_PRED
+ H_PRED, // UV_H_PRED
+ D45_PRED, // UV_D45_PRED
+ D135_PRED, // UV_D135_PRED
+ D113_PRED, // UV_D113_PRED
+ D157_PRED, // UV_D157_PRED
+ D203_PRED, // UV_D203_PRED
+ D67_PRED, // UV_D67_PRED
+ SMOOTH_PRED, // UV_SMOOTH_PRED
+ SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
+ SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
+ PAETH_PRED, // UV_PAETH_PRED
+ DC_PRED, // UV_CFL_PRED
+ INTRA_INVALID, // UV_INTRA_MODES
+ INTRA_INVALID, // UV_MODE_INVALID
+ };
+ return uv2y[mode];
+}
+
+static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
+ return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
+}
+
+static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
+ return mbmi->ref_frame[1] > INTRA_FRAME;
+}
+
+static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
+ return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
+ (mbmi->ref_frame[1] >= BWDREF_FRAME)));
+}
+
+static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
+ static const MV_REFERENCE_FRAME lut[] = {
+ LAST_FRAME, // LAST_LAST2_FRAMES,
+ LAST_FRAME, // LAST_LAST3_FRAMES,
+ LAST_FRAME, // LAST_GOLDEN_FRAMES,
+ BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
+ LAST2_FRAME, // LAST2_LAST3_FRAMES
+ LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
+ LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
+ BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
+ ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
+ };
+ assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
+ return lut[ref_idx];
+}
+
+static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
+ static const MV_REFERENCE_FRAME lut[] = {
+ LAST2_FRAME, // LAST_LAST2_FRAMES,
+ LAST3_FRAME, // LAST_LAST3_FRAMES,
+ GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
+ ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
+ LAST3_FRAME, // LAST2_LAST3_FRAMES
+ GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
+ GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
+ ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
+ ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
+ };
+ assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
+ return lut[ref_idx];
+}
+
+PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
+
+PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
+
+static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
+ TransformationType type) {
+ const PREDICTION_MODE mode = mbmi->mode;
+ const BLOCK_SIZE bsize = mbmi->bsize;
+ const int block_size_allowed =
+ AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
+ return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
+ block_size_allowed;
+}
+
+#if CONFIG_MISMATCH_DEBUG
+static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
+ int mi_row, int tx_blk_col, int tx_blk_row,
+ int subsampling_x, int subsampling_y) {
+ *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
+ (tx_blk_col << MI_SIZE_LOG2);
+ *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
+ (tx_blk_row << MI_SIZE_LOG2);
+}
+#endif
+
+enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
+
+struct buf_2d {
+ uint8_t *buf;
+ uint8_t *buf0;
+ int width;
+ int height;
+ int stride;
+};
+
+typedef struct eob_info {
+ uint16_t eob;
+ uint16_t max_scan_line;
+} eob_info;
+
+typedef struct {
+ DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
+ eob_info eob_data[MAX_MB_PLANE]
+ [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
+ DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
+} CB_BUFFER;
+
+typedef struct macroblockd_plane {
+ PLANE_TYPE plane_type;
+ int subsampling_x;
+ int subsampling_y;
+ struct buf_2d dst;
+ struct buf_2d pre[2];
+ ENTROPY_CONTEXT *above_entropy_context;
+ ENTROPY_CONTEXT *left_entropy_context;
+
+ // The dequantizers below are true dequantizers used only in the
+ // dequantization process. They have the same coefficient
+ // shift/scale as TX.
+ int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
+ // Pointer to color index map of:
+ // - Current coding block, on encoder side.
+ // - Current superblock, on decoder side.
+ uint8_t *color_index_map;
+
+ // block size in pixels
+ uint8_t width, height;
+
+ qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+} MACROBLOCKD_PLANE;
+
+#define BLOCK_OFFSET(i) ((i) << 4)
+
+/*!\endcond */
+
+/*!\brief Parameters related to Wiener Filter */
+typedef struct {
+ /*!
+ * Vertical filter kernel.
+ */
+ DECLARE_ALIGNED(16, InterpKernel, vfilter);
+
+ /*!
+ * Horizontal filter kernel.
+ */
+ DECLARE_ALIGNED(16, InterpKernel, hfilter);
+} WienerInfo;
+
+/*!\brief Parameters related to Sgrproj Filter */
+typedef struct {
+ /*!
+ * Parameter index.
+ */
+ int ep;
+
+ /*!
+ * Weights for linear combination of filtered versions
+ */
+ int xqd[2];
+} SgrprojInfo;
+
+/*!\cond */
+
+#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
+#define CFL_BUF_LINE (32)
+#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
+#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
+#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
+typedef struct cfl_ctx {
+ // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
+ // shifts)
+ uint16_t recon_buf_q3[CFL_BUF_SQUARE];
+ // Q3 AC contributions (reconstructed luma pixels - tx block avg)
+ int16_t ac_buf_q3[CFL_BUF_SQUARE];
+
+ // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
+ // for every scaling parameter
+ bool dc_pred_is_cached[CFL_PRED_PLANES];
+ // Whether the DC_PRED cache is enabled. The DC_PRED cache is disabled when
+ // decoding.
+ bool use_dc_pred_cache;
+ // Only cache the first row of the DC_PRED
+ int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
+
+ // Height and width currently used in the CfL prediction buffer.
+ int buf_height, buf_width;
+
+ int are_parameters_computed;
+
+ // Chroma subsampling
+ int subsampling_x, subsampling_y;
+
+ // Whether the reconstructed luma pixels need to be stored
+ int store_y;
+} CFL_CTX;
+
+typedef struct dist_wtd_comp_params {
+ int use_dist_wtd_comp_avg;
+ int fwd_offset;
+ int bck_offset;
+} DIST_WTD_COMP_PARAMS;
+
+struct scale_factors;
+
+/*!\endcond */
+
+/*! \brief Variables related to current coding block.
+ *
+ * This is a common set of variables used by both encoder and decoder.
+ * Most/all of the pointers are mere pointers to actual arrays are allocated
+ * elsewhere. This is mostly for coding convenience.
+ */
+typedef struct macroblockd {
+ /**
+ * \name Position of current macroblock in mi units
+ */
+ /**@{*/
+ int mi_row; /*!< Row position in mi units. */
+ int mi_col; /*!< Column position in mi units. */
+ /**@}*/
+
+ /*!
+ * Same as cm->mi_params.mi_stride, copied here for convenience.
+ */
+ int mi_stride;
+
+ /*!
+ * True if current block transmits chroma information.
+ * More detail:
+ * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
+ * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
+ * blocks smaller than 8x8 maybe combined into one chroma block.
+ * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
+ * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
+ * these four luma blocks. This is implemented in bitstream as follows:
+ * - There are four MB_MODE_INFO structs for the four luma blocks.
+ * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
+ * any information for chroma planes.
+ * - Last block will have is_chroma_ref = true and transmits chroma
+ * information for the 4x4 chroma block that covers whole 8x8 area covered by
+ * four luma blocks.
+ * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
+ */
+ bool is_chroma_ref;
+
+ /*!
+ * Info specific to each plane.
+ */
+ struct macroblockd_plane plane[MAX_MB_PLANE];
+
+ /*!
+ * Tile related info.
+ */
+ TileInfo tile;
+
+ /*!
+ * Appropriate offset inside cm->mi_params.mi_grid_base based on current
+ * mi_row and mi_col.
+ */
+ MB_MODE_INFO **mi;
+
+ /*!
+ * True if 4x4 block above the current block is available.
+ */
+ bool up_available;
+ /*!
+ * True if 4x4 block to the left of the current block is available.
+ */
+ bool left_available;
+ /*!
+ * True if the above chrome reference block is available.
+ */
+ bool chroma_up_available;
+ /*!
+ * True if the left chrome reference block is available.
+ */
+ bool chroma_left_available;
+
+ /*!
+ * MB_MODE_INFO for 4x4 block to the left of the current block, if
+ * left_available == true; otherwise NULL.
+ */
+ MB_MODE_INFO *left_mbmi;
+ /*!
+ * MB_MODE_INFO for 4x4 block above the current block, if
+ * up_available == true; otherwise NULL.
+ */
+ MB_MODE_INFO *above_mbmi;
+ /*!
+ * Above chroma reference block if is_chroma_ref == true for the current block
+ * and chroma_up_available == true; otherwise NULL.
+ * See also: the special case logic when current chroma block covers more than
+ * one luma blocks in set_mi_row_col().
+ */
+ MB_MODE_INFO *chroma_left_mbmi;
+ /*!
+ * Left chroma reference block if is_chroma_ref == true for the current block
+ * and chroma_left_available == true; otherwise NULL.
+ * See also: the special case logic when current chroma block covers more than
+ * one luma blocks in set_mi_row_col().
+ */
+ MB_MODE_INFO *chroma_above_mbmi;
+
+ /*!
+ * Appropriate offset based on current 'mi_row' and 'mi_col', inside
+ * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
+ * 'MACROBLOCK' structs.
+ */
+ uint8_t *tx_type_map;
+ /*!
+ * Stride for 'tx_type_map'. Note that this may / may not be same as
+ * 'mi_stride', depending on which actual array 'tx_type_map' points to.
+ */
+ int tx_type_map_stride;
+
+ /**
+ * \name Distance of this macroblock from frame edges in 1/8th pixel units.
+ */
+ /**@{*/
+ int mb_to_left_edge; /*!< Distance from left edge */
+ int mb_to_right_edge; /*!< Distance from right edge */
+ int mb_to_top_edge; /*!< Distance from top edge */
+ int mb_to_bottom_edge; /*!< Distance from bottom edge */
+ /**@}*/
+
+ /*!
+ * Scale factors for reference frames of the current block.
+ * These are pointers into 'cm->ref_scale_factors'.
+ */
+ const struct scale_factors *block_ref_scale_factors[2];
+
+ /*!
+ * - On encoder side: points to cpi->source, which is the buffer containing
+ * the current *source* frame (maybe filtered).
+ * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
+ * which current frame is being *decoded*.
+ */
+ const YV12_BUFFER_CONFIG *cur_buf;
+
+ /*!
+ * Entropy contexts for the above blocks.
+ * above_entropy_context[i][j] corresponds to above entropy context for ith
+ * plane and jth mi column of this *frame*, wrt current 'mi_row'.
+ * These are pointers into 'cm->above_contexts.entropy'.
+ */
+ ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
+ /*!
+ * Entropy contexts for the left blocks.
+ * left_entropy_context[i][j] corresponds to left entropy context for ith
+ * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
+ * Note: These contain actual data, NOT pointers.
+ */
+ ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
+
+ /*!
+ * Partition contexts for the above blocks.
+ * above_partition_context[i] corresponds to above partition context for ith
+ * mi column of this *frame*, wrt current 'mi_row'.
+ * This is a pointer into 'cm->above_contexts.partition'.
+ */
+ PARTITION_CONTEXT *above_partition_context;
+ /*!
+ * Partition contexts for the left blocks.
+ * left_partition_context[i] corresponds to left partition context for ith
+ * mi row of this *superblock*, wrt current 'mi_col'.
+ * Note: These contain actual data, NOT pointers.
+ */
+ PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
+
+ /*!
+ * Transform contexts for the above blocks.
+ * above_txfm_context[i] corresponds to above transform context for ith mi col
+ * from the current position (mi row and mi column) for this *frame*.
+ * This is a pointer into 'cm->above_contexts.txfm'.
+ */
+ TXFM_CONTEXT *above_txfm_context;
+ /*!
+ * Transform contexts for the left blocks.
+ * left_txfm_context[i] corresponds to left transform context for ith mi row
+ * from the current position (mi_row and mi_col) for this *superblock*.
+ * This is a pointer into 'left_txfm_context_buffer'.
+ */
+ TXFM_CONTEXT *left_txfm_context;
+ /*!
+ * left_txfm_context_buffer[i] is the left transform context for ith mi_row
+ * in this *superblock*.
+ * Behaves like an internal actual buffer which 'left_txt_context' points to,
+ * and never accessed directly except to fill in initial default values.
+ */
+ TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
+
+ /**
+ * \name Default values for the two restoration filters for each plane.
+ * Default values for the two restoration filters for each plane.
+ * These values are used as reference values when writing the bitstream. That
+ * is, we transmit the delta between the actual values in
+ * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
+ */
+ /**@{*/
+ WienerInfo wiener_info[MAX_MB_PLANE]; /*!< Defaults for Wiener filter*/
+ SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
+ /**@}*/
+
+ /**
+ * \name Block dimensions in MB_MODE_INFO units.
+ */
+ /**@{*/
+ uint8_t width; /*!< Block width in MB_MODE_INFO units */
+ uint8_t height; /*!< Block height in MB_MODE_INFO units */
+ /**@}*/
+
+ /*!
+ * Contains the motion vector candidates found during motion vector prediction
+ * process. ref_mv_stack[i] contains the candidates for ith type of
+ * reference frame (single/compound). The actual number of candidates found in
+ * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
+ * or mbmi_ext->ref_mv_count[i] (encoder side).
+ */
+ CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
+ /*!
+ * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
+ * DRL (dynamic reference list) mode contexts.
+ */
+ uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
+
+ /*!
+ * True if this is the last vertical rectangular block in a VERTICAL or
+ * VERTICAL_4 partition.
+ */
+ bool is_last_vertical_rect;
+ /*!
+ * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
+ * HORIZONTAL_4 partition.
+ */
+ bool is_first_horizontal_rect;
+
+ /*!
+ * Counts of each reference frame in the above and left neighboring blocks.
+ * NOTE: Take into account both single and comp references.
+ */
+ uint8_t neighbors_ref_counts[REF_FRAMES];
+
+ /*!
+ * Current CDFs of all the symbols for the current tile.
+ */
+ FRAME_CONTEXT *tile_ctx;
+
+ /*!
+ * Bit depth: copied from cm->seq_params->bit_depth for convenience.
+ */
+ int bd;
+
+ /*!
+ * Quantizer index for each segment (base qindex + delta for each segment).
+ */
+ int qindex[MAX_SEGMENTS];
+ /*!
+ * lossless[s] is true if segment 's' is coded losslessly.
+ */
+ int lossless[MAX_SEGMENTS];
+ /*!
+ * Q index for the coding blocks in this superblock will be stored in
+ * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
+ * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
+ * the base, and adding any transmitted delta qindex on top of it.
+ * Precisely, this is the latest qindex used by the first coding block of a
+ * non-skip superblock in the current tile; OR
+ * same as cm->quant_params.base_qindex (if not explicitly set yet).
+ * Note: This is 'CurrentQIndex' in the AV1 spec.
+ */
+ int current_base_qindex;
+
+ /*!
+ * Same as cm->features.cur_frame_force_integer_mv.
+ */
+ int cur_frame_force_integer_mv;
+
+ /*!
+ * Pointer to cm->error.
+ */
+ struct aom_internal_error_info *error_info;
+
+ /*!
+ * Same as cm->global_motion.
+ */
+ const WarpedMotionParams *global_motion;
+
+ /*!
+ * Since actual frame level loop filtering level value is not available
+ * at the beginning of the tile (only available during actual filtering)
+ * at encoder side.we record the delta_lf (against the frame level loop
+ * filtering level) and code the delta between previous superblock's delta
+ * lf and current delta lf. It is equivalent to the delta between previous
+ * superblock's actual lf and current lf.
+ */
+ int8_t delta_lf_from_base;
+ /*!
+ * We have four frame filter levels for different plane and direction. So, to
+ * support the per superblock update, we need to add a few more params:
+ * 0. delta loop filter level for y plane vertical
+ * 1. delta loop filter level for y plane horizontal
+ * 2. delta loop filter level for u plane
+ * 3. delta loop filter level for v plane
+ * To make it consistent with the reference to each filter level in segment,
+ * we need to -1, since
+ * - SEG_LVL_ALT_LF_Y_V = 1;
+ * - SEG_LVL_ALT_LF_Y_H = 2;
+ * - SEG_LVL_ALT_LF_U = 3;
+ * - SEG_LVL_ALT_LF_V = 4;
+ */
+ int8_t delta_lf[FRAME_LF_COUNT];
+ /*!
+ * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
+ * current superblock has already been read from (decoder) / written to
+ * (encoder) the bitstream; and false otherwise.
+ * More detail:
+ * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
+ * non-skip coding block. So, we need this array to keep track of whether CDEF
+ * strengths for the given CDEF units have been transmitted yet or not.
+ * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
+ * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
+ * superblock size is 128x128). Hence the array size is 4.
+ * 3. In the current implementation, CDEF strength for this CDEF unit is
+ * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
+ * cm->mi_params.mi_grid_base).
+ */
+ bool cdef_transmitted[4];
+
+ /*!
+ * Mask for this block used for compound prediction.
+ */
+ uint8_t *seg_mask;
+
+ /*!
+ * CFL (chroma from luma) related parameters.
+ */
+ CFL_CTX cfl;
+
+ /*!
+ * Offset to plane[p].color_index_map.
+ * Currently:
+ * - On encoder side, this is always 0 as 'color_index_map' is allocated per
+ * *coding block* there.
+ * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
+ * memory pointing to the base of a *superblock* there, and we need an offset
+ * to it to get the color index map for current coding block.
+ */
+ uint16_t color_index_map_offset[2];
+
+ /*!
+ * Temporary buffer used for convolution in case of compound reference only
+ * for (weighted or uniform) averaging operation.
+ * There are pointers to actual buffers allocated elsewhere: e.g.
+ * - In decoder, 'pbi->td.tmp_conv_dst' or
+ * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
+ * - In encoder, 'x->tmp_conv_dst' or
+ * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
+ */
+ CONV_BUF_TYPE *tmp_conv_dst;
+ /*!
+ * Temporary buffers used to build OBMC prediction by above (index 0) and left
+ * (index 1) predictors respectively.
+ * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
+ * There are pointers to actual buffers allocated elsewhere: e.g.
+ * - In decoder, 'pbi->td.tmp_obmc_bufs' or
+ * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
+ * -In encoder, 'x->tmp_pred_bufs' or
+ * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
+ */
+ uint8_t *tmp_obmc_bufs[2];
+} MACROBLOCKD;
+
+/*!\cond */
+
+static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
+#else
+ (void)xd;
+ return 0;
+#endif
+}
+
+static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
+#if CONFIG_AV1_HIGHBITDEPTH
+ return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ ? CONVERT_TO_BYTEPTR(buf16)
+ : buf16;
+#else
+ (void)xd;
+ return buf16;
+#endif
+}
+
+typedef struct BitDepthInfo {
+ int bit_depth;
+ /*! Is the image buffer high bit depth?
+ * Low bit depth buffer uses uint8_t.
+ * High bit depth buffer uses uint16_t.
+ * Equivalent to cm->seq_params->use_highbitdepth
+ */
+ int use_highbitdepth_buf;
+} BitDepthInfo;
+
+static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
+ BitDepthInfo bit_depth_info;
+ bit_depth_info.bit_depth = xd->bd;
+ bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
+ assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
+ bit_depth_info.bit_depth == 8));
+ return bit_depth_info;
+}
+
+static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
+ switch (bsize) {
+ case BLOCK_4X4: return 0;
+ case BLOCK_8X8: return 1;
+ case BLOCK_16X16: return 2;
+ case BLOCK_32X32: return 3;
+ case BLOCK_64X64: return 4;
+ case BLOCK_128X128: return 5;
+ default: return SQR_BLOCK_SIZES;
+ }
+}
+
+// For a square block size 'bsize', returns the size of the sub-blocks used by
+// the given partition type. If the partition produces sub-blocks of different
+// sizes, then the function returns the largest sub-block size.
+// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
+// Conversion tables).
+// Note: the input block size should be square.
+// Otherwise it's considered invalid.
+static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
+ PARTITION_TYPE partition) {
+ if (partition == PARTITION_INVALID) {
+ return BLOCK_INVALID;
+ } else {
+ const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
+ return sqr_bsize_idx >= SQR_BLOCK_SIZES
+ ? BLOCK_INVALID
+ : subsize_lookup[partition][sqr_bsize_idx];
+ }
+}
+
+static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
+ PLANE_TYPE plane_type) {
+ static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
+ DCT_DCT, // DC_PRED
+ ADST_DCT, // V_PRED
+ DCT_ADST, // H_PRED
+ DCT_DCT, // D45_PRED
+ ADST_ADST, // D135_PRED
+ ADST_DCT, // D113_PRED
+ DCT_ADST, // D157_PRED
+ DCT_ADST, // D203_PRED
+ ADST_DCT, // D67_PRED
+ ADST_ADST, // SMOOTH_PRED
+ ADST_DCT, // SMOOTH_V_PRED
+ DCT_ADST, // SMOOTH_H_PRED
+ ADST_ADST, // PAETH_PRED
+ };
+ const PREDICTION_MODE mode =
+ (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
+ assert(mode < INTRA_MODES);
+ return _intra_mode_to_tx_type[mode];
+}
+
+static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
+
+static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
+ return bsize > BLOCK_4X4;
+}
+
+// Number of transform types in each set type
+static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
+ 1, 2, 5, 7, 12, 16,
+};
+
+static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+};
+
+// The bitmask corresponds to the transform types as defined in
+// enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
+// the use of the corresponding transform type in that table.
+// The av1_derived_intra_tx_used_flag table is used when
+// use_reduced_intra_txset is set to 2, where one only searches
+// the transform types derived from residual statistics.
+static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
+ 0x0209, // DC_PRED: 0000 0010 0000 1001
+ 0x0403, // V_PRED: 0000 0100 0000 0011
+ 0x0805, // H_PRED: 0000 1000 0000 0101
+ 0x020F, // D45_PRED: 0000 0010 0000 1111
+ 0x0009, // D135_PRED: 0000 0000 0000 1001
+ 0x0009, // D113_PRED: 0000 0000 0000 1001
+ 0x0009, // D157_PRED: 0000 0000 0000 1001
+ 0x0805, // D203_PRED: 0000 1000 0000 0101
+ 0x0403, // D67_PRED: 0000 0100 0000 0011
+ 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
+ 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
+ 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
+ 0x0209, // PAETH_PRED: 0000 0010 0000 1001
+};
+
+static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
+ 0x080F, // DC_PRED: 0000 1000 0000 1111
+ 0x040F, // V_PRED: 0000 0100 0000 1111
+ 0x080F, // H_PRED: 0000 1000 0000 1111
+ 0x020F, // D45_PRED: 0000 0010 0000 1111
+ 0x080F, // D135_PRED: 0000 1000 0000 1111
+ 0x040F, // D113_PRED: 0000 0100 0000 1111
+ 0x080F, // D157_PRED: 0000 1000 0000 1111
+ 0x080F, // D203_PRED: 0000 1000 0000 1111
+ 0x040F, // D67_PRED: 0000 0100 0000 1111
+ 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
+ 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
+ 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
+ 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
+};
+
+static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
+ 0x0001, // 0000 0000 0000 0001
+ 0x0201, // 0000 0010 0000 0001
+ 0x020F, // 0000 0010 0000 1111
+ 0x0E0F, // 0000 1110 0000 1111
+ 0x0FFF, // 0000 1111 1111 1111
+ 0xFFFF, // 1111 1111 1111 1111
+};
+
+static const TxSetType av1_ext_tx_set_lookup[2][2] = {
+ { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
+ { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
+};
+
+static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
+ int use_reduced_set) {
+ const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
+ if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
+ if (tx_size_sqr_up == TX_32X32)
+ return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
+ if (use_reduced_set)
+ return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
+ const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
+ return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
+}
+
+// Maps tx set types to the indices.
+static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
+ { // Intra
+ 0, -1, 2, 1, -1, -1 },
+ { // Inter
+ 0, 3, -1, -1, 2, 1 },
+};
+
+static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
+ int use_reduced_set) {
+ const TxSetType set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
+ return ext_tx_set_index[is_inter][set_type];
+}
+
+static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
+ int use_reduced_set) {
+ const int set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
+ return av1_num_ext_tx_set[set_type];
+}
+
+#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
+#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
+
+static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
+ const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+ const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
+ if (bsize == BLOCK_4X4)
+ return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
+ if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
+ return max_rect_tx_size;
+ else
+ return largest_tx_size;
+}
+
+static const uint8_t mode_to_angle_map[INTRA_MODES] = {
+ 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
+};
+
+// Converts block_index for given transform size to index of the block in raster
+// order.
+static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
+ int block_idx) {
+ // For transform size 4x8, the possible block_idx values are 0 & 2, because
+ // block_idx values are incremented in steps of size 'tx_width_unit x
+ // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
+ // block number 1 in raster order, inside an 8x8 MI block.
+ // For any other transform size, the two indices are equivalent.
+ return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
+}
+
+// Inverse of above function.
+// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
+static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
+ int raster_order) {
+ assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
+ // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
+ return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
+}
+
+static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
+ const MACROBLOCKD *xd,
+ TX_SIZE tx_size,
+ int use_screen_content_tools) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
+ xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
+ use_screen_content_tools)
+ return DEFAULT_INTER_TX_TYPE;
+
+ return intra_mode_to_tx_type(mbmi, plane_type);
+}
+
+// Implements the get_plane_residual_size() function in the spec (Section
+// 5.11.38. Get plane residual size function).
+static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
+ int subsampling_x,
+ int subsampling_y) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ assert(subsampling_x >= 0 && subsampling_x < 2);
+ assert(subsampling_y >= 0 && subsampling_y < 2);
+ return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
+}
+
+/*
+ * Logic to generate the lookup tables:
+ *
+ * TX_SIZE txs = max_txsize_rect_lookup[bsize];
+ * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
+ * txs = sub_tx_size_map[txs];
+ * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
+ * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
+ * const int bw_uint_log2 = mi_size_wide_log2[bsize];
+ * const int stride_log2 = bw_uint_log2 - tx_w_log2;
+ */
+static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
+ int blk_col) {
+ static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
+ 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
+ };
+ static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
+ 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
+ };
+ static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
+ 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
+ };
+ const int index =
+ ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
+ (blk_col >> tw_w_log2_table[bsize]);
+ assert(index < INTER_TX_SIZE_BUF_LEN);
+ return index;
+}
+
+#if CONFIG_INSPECTION
+/*
+ * Here is the logic to generate the lookup tables:
+ *
+ * TX_SIZE txs = max_txsize_rect_lookup[bsize];
+ * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
+ * txs = sub_tx_size_map[txs];
+ * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
+ * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
+ * const int bw_uint_log2 = mi_size_wide_log2[bsize];
+ * const int stride_log2 = bw_uint_log2 - tx_w_log2;
+ */
+static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
+ int blk_col) {
+ static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
+ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
+ };
+ static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
+ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
+ };
+ static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
+ 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
+ };
+ const int index =
+ ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
+ (blk_col >> tw_w_log2_table[bsize]);
+ assert(index < TXK_TYPE_BUF_LEN);
+ return index;
+}
+#endif // CONFIG_INSPECTION
+
+static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
+ int blk_col, TX_SIZE tx_size,
+ TX_TYPE tx_type) {
+ const int stride = xd->tx_type_map_stride;
+ xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
+
+ const int txw = tx_size_wide_unit[tx_size];
+ const int txh = tx_size_high_unit[tx_size];
+ // The 16x16 unit is due to the constraint from tx_64x64 which sets the
+ // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
+ // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
+ // the intricacy, cover all the 16x16 units inside a 64 level transform.
+ if (txw == tx_size_wide_unit[TX_64X64] ||
+ txh == tx_size_high_unit[TX_64X64]) {
+ const int tx_unit = tx_size_wide_unit[TX_16X16];
+ for (int idy = 0; idy < txh; idy += tx_unit) {
+ for (int idx = 0; idx < txw; idx += tx_unit) {
+ xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
+ }
+ }
+ }
+}
+
+static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
+ PLANE_TYPE plane_type, int blk_row,
+ int blk_col, TX_SIZE tx_size,
+ int reduced_tx_set) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
+ return DCT_DCT;
+ }
+
+ TX_TYPE tx_type;
+ if (plane_type == PLANE_TYPE_Y) {
+ tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
+ } else {
+ if (is_inter_block(mbmi)) {
+ // scale back to y plane's coordinate
+ const struct macroblockd_plane *const pd = &xd->plane[plane_type];
+ blk_row <<= pd->subsampling_y;
+ blk_col <<= pd->subsampling_x;
+ tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
+ } else {
+ // In intra mode, uv planes don't share the same prediction mode as y
+ // plane, so the tx_type should not be shared
+ tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
+ }
+ const TxSetType tx_set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
+ if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
+ }
+ assert(tx_type < TX_TYPES);
+ assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
+ reduced_tx_set)][tx_type]);
+ return tx_type;
+}
+
+void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
+ const int num_planes);
+
+/*
+ * Logic to generate the lookup table:
+ *
+ * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
+ * int depth = 0;
+ * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
+ * depth++;
+ * tx_size = sub_tx_size_map[tx_size];
+ * }
+ */
+static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
+ static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
+ 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ };
+ return bsize_to_max_depth_table[bsize];
+}
+
+/*
+ * Logic to generate the lookup table:
+ *
+ * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
+ * assert(tx_size != TX_4X4);
+ * int depth = 0;
+ * while (tx_size != TX_4X4) {
+ * depth++;
+ * tx_size = sub_tx_size_map[tx_size];
+ * }
+ * assert(depth < 10);
+ */
+static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
+ 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
+ };
+ const int depth = bsize_to_tx_size_depth_table[bsize];
+ assert(depth <= MAX_TX_CATS);
+ return depth - 1;
+}
+
+static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
+ TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
+ TX_SIZE tx_size = max_tx_size;
+ for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
+ return tx_size;
+}
+
+static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
+ switch (tx_size) {
+ case TX_64X64:
+ case TX_64X32:
+ case TX_32X64: return TX_32X32;
+ case TX_64X16: return TX_32X16;
+ case TX_16X64: return TX_16X32;
+ default: return tx_size;
+ }
+}
+
+static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
+ int subsampling_y) {
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, subsampling_x, subsampling_y);
+ assert(plane_bsize < BLOCK_SIZES_ALL);
+ const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
+ return av1_get_adjusted_tx_size(uv_tx);
+}
+
+static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ if (xd->lossless[mbmi->segment_id]) return TX_4X4;
+ if (plane == 0) return mbmi->tx_size;
+ const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
+ return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
+ pd->subsampling_y);
+}
+
+void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ const int num_planes);
+
+void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
+
+void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
+
+typedef void (*foreach_transformed_block_visitor)(int plane, int block,
+ int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg);
+
+void av1_set_entropy_contexts(const MACROBLOCKD *xd,
+ struct macroblockd_plane *pd, int plane,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ int has_eob, int aoff, int loff);
+
+#define MAX_INTERINTRA_SB_SQUARE 32 * 32
+static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
+ return (mbmi->ref_frame[0] > INTRA_FRAME &&
+ mbmi->ref_frame[1] == INTRA_FRAME);
+}
+
+static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
+ return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
+}
+
+static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
+ return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
+}
+
+static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
+ return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
+}
+
+static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
+ return is_interintra_allowed_bsize(mbmi->bsize) &&
+ is_interintra_allowed_mode(mbmi->mode) &&
+ is_interintra_allowed_ref(mbmi->ref_frame);
+}
+
+static INLINE int is_interintra_allowed_bsize_group(int group) {
+ int i;
+ for (i = 0; i < BLOCK_SIZES_ALL; i++) {
+ if (size_group_lookup[i] == group &&
+ is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
+ return mbmi->ref_frame[0] > INTRA_FRAME &&
+ mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
+}
+
+static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
+ const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
+ if (plane == 0) return max_txsize; // luma
+ return av1_get_adjusted_tx_size(max_txsize); // chroma
+}
+
+static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
+ assert(bsize < BLOCK_SIZES_ALL);
+ return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
+}
+
+static INLINE int is_motion_variation_allowed_compound(
+ const MB_MODE_INFO *mbmi) {
+ return !has_second_ref(mbmi);
+}
+
+// input: log2 of length, 0(4), 1(8), ...
+static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
+
+static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
+ return mbmi->overlappable_neighbors != 0;
+}
+
+static INLINE MOTION_MODE
+motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi, int allow_warped_motion) {
+ if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
+ if (xd->cur_frame_force_integer_mv == 0) {
+ const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
+ if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
+ }
+ if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
+ is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
+ is_motion_variation_allowed_compound(mbmi)) {
+ assert(!has_second_ref(mbmi));
+ if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
+ !xd->cur_frame_force_integer_mv &&
+ !av1_is_scaled(xd->block_ref_scale_factors[0])) {
+ return WARPED_CAUSAL;
+ }
+ return OBMC_CAUSAL;
+ }
+ return SIMPLE_TRANSLATION;
+}
+
+static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
+ return (is_inter_block(mbmi));
+}
+
+static INLINE int av1_allow_palette(int allow_screen_content_tools,
+ BLOCK_SIZE sb_type) {
+ assert(sb_type < BLOCK_SIZES_ALL);
+ return allow_screen_content_tools &&
+ block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
+ block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
+ sb_type >= BLOCK_8X8;
+}
+
+// Returns sub-sampled dimensions of the given block.
+// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
+// differ from 'height' and 'width' when part of the block is outside the
+// right
+// and/or bottom image boundary.
+static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
+ const MACROBLOCKD *xd, int *width,
+ int *height,
+ int *rows_within_bounds,
+ int *cols_within_bounds) {
+ const int block_height = block_size_high[bsize];
+ const int block_width = block_size_wide[bsize];
+ const int block_rows = (xd->mb_to_bottom_edge >= 0)
+ ? block_height
+ : (xd->mb_to_bottom_edge >> 3) + block_height;
+ const int block_cols = (xd->mb_to_right_edge >= 0)
+ ? block_width
+ : (xd->mb_to_right_edge >> 3) + block_width;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
+ assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
+ assert(block_width >= block_cols);
+ assert(block_height >= block_rows);
+ const int plane_block_width = block_width >> pd->subsampling_x;
+ const int plane_block_height = block_height >> pd->subsampling_y;
+ // Special handling for chroma sub8x8.
+ const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
+ const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
+ if (width) {
+ *width = plane_block_width + 2 * is_chroma_sub8_x;
+ assert(*width >= 0);
+ }
+ if (height) {
+ *height = plane_block_height + 2 * is_chroma_sub8_y;
+ assert(*height >= 0);
+ }
+ if (rows_within_bounds) {
+ *rows_within_bounds =
+ (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
+ assert(*rows_within_bounds >= 0);
+ }
+ if (cols_within_bounds) {
+ *cols_within_bounds =
+ (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
+ assert(*cols_within_bounds >= 0);
+ }
+}
+
+/* clang-format off */
+// Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
+typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
+ [CDF_SIZE(PALETTE_COLORS)];
+// Pointer to a const three-dimensional array whose first dimension is
+// PALETTE_SIZES.
+typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
+/* clang-format on */
+
+typedef struct {
+ int rows;
+ int cols;
+ int n_colors;
+ int plane_width;
+ int plane_height;
+ uint8_t *color_map;
+ MapCdf map_cdf;
+ ColorCost color_cost;
+} Av1ColorMapParam;
+
+static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi) {
+ int ref;
+
+ // First check if all modes are GLOBALMV
+ if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
+
+ if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
+ return 0;
+
+ // Now check if all global motion is non translational
+ for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
+ }
+ return 1;
+}
+
+static INLINE PLANE_TYPE get_plane_type(int plane) {
+ return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
+}
+
+static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
+ if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
+ return 1024;
+ }
+ if (tx_size == TX_16X64 || tx_size == TX_64X16) {
+ return 512;
+ }
+ return tx_size_2d[tx_size];
+}
+
+/*!\endcond */
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // AOM_AV1_COMMON_BLOCKD_H_