diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /third_party/aom/av1/common/blockd.h | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/blockd.h')
-rw-r--r-- | third_party/aom/av1/common/blockd.h | 1612 |
1 files changed, 1612 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/blockd.h b/third_party/aom/av1/common/blockd.h new file mode 100644 index 0000000000..0cfd1f3954 --- /dev/null +++ b/third_party/aom/av1/common/blockd.h @@ -0,0 +1,1612 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_COMMON_BLOCKD_H_ +#define AOM_AV1_COMMON_BLOCKD_H_ + +#include "config/aom_config.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_ports/mem.h" +#include "aom_scale/yv12config.h" + +#include "av1/common/common_data.h" +#include "av1/common/quant_common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/mv.h" +#include "av1/common/scale.h" +#include "av1/common/seg_common.h" +#include "av1/common/tile_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define USE_B_QUANT_NO_TRELLIS 1 + +#define MAX_MB_PLANE 3 + +#define MAX_DIFFWTD_MASK_BITS 1 + +#define INTERINTRA_WEDGE_SIGN 0 + +#define DEFAULT_INTER_TX_TYPE DCT_DCT + +#define MAX_PALETTE_BLOCK_WIDTH 64 + +#define MAX_PALETTE_BLOCK_HEIGHT 64 + +/*!\cond */ + +// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS +enum { + DIFFWTD_38 = 0, + DIFFWTD_38_INV, + DIFFWTD_MASK_TYPES, +} UENUM1BYTE(DIFFWTD_MASK_TYPE); + +enum { + KEY_FRAME = 0, + INTER_FRAME = 1, + INTRA_ONLY_FRAME = 2, // replaces intra-only + S_FRAME = 3, + FRAME_TYPES, +} UENUM1BYTE(FRAME_TYPE); + +static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) { + return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; +} + +static INLINE int is_inter_mode(PREDICTION_MODE mode) { + return mode >= INTER_MODE_START && mode < INTER_MODE_END; +} + +typedef struct { + uint8_t *plane[MAX_MB_PLANE]; + int stride[MAX_MB_PLANE]; +} BUFFER_SET; + +static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) { + return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END; +} +static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) { + return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END; +} + +static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) { + static const PREDICTION_MODE lut[] = { + DC_PRED, // DC_PRED + V_PRED, // V_PRED + H_PRED, // H_PRED + D45_PRED, // D45_PRED + D135_PRED, // D135_PRED + D113_PRED, // D113_PRED + D157_PRED, // D157_PRED + D203_PRED, // D203_PRED + D67_PRED, // D67_PRED + SMOOTH_PRED, // SMOOTH_PRED + SMOOTH_V_PRED, // SMOOTH_V_PRED + SMOOTH_H_PRED, // SMOOTH_H_PRED + PAETH_PRED, // PAETH_PRED + NEARESTMV, // NEARESTMV + NEARMV, // NEARMV + GLOBALMV, // GLOBALMV + NEWMV, // NEWMV + NEARESTMV, // NEAREST_NEARESTMV + NEARMV, // NEAR_NEARMV + NEARESTMV, // NEAREST_NEWMV + NEWMV, // NEW_NEARESTMV + NEARMV, // NEAR_NEWMV + NEWMV, // NEW_NEARMV + GLOBALMV, // GLOBAL_GLOBALMV + NEWMV, // NEW_NEWMV + }; + assert(NELEMENTS(lut) == MB_MODE_COUNT); + assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode)); + return lut[mode]; +} + +static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) { + static const PREDICTION_MODE lut[] = { + MB_MODE_COUNT, // DC_PRED + MB_MODE_COUNT, // V_PRED + MB_MODE_COUNT, // H_PRED + MB_MODE_COUNT, // D45_PRED + MB_MODE_COUNT, // D135_PRED + MB_MODE_COUNT, // D113_PRED + MB_MODE_COUNT, // D157_PRED + MB_MODE_COUNT, // D203_PRED + MB_MODE_COUNT, // D67_PRED + MB_MODE_COUNT, // SMOOTH_PRED + MB_MODE_COUNT, // SMOOTH_V_PRED + MB_MODE_COUNT, // SMOOTH_H_PRED + MB_MODE_COUNT, // PAETH_PRED + MB_MODE_COUNT, // NEARESTMV + MB_MODE_COUNT, // NEARMV + MB_MODE_COUNT, // GLOBALMV + MB_MODE_COUNT, // NEWMV + NEARESTMV, // NEAREST_NEARESTMV + NEARMV, // NEAR_NEARMV + NEWMV, // NEAREST_NEWMV + NEARESTMV, // NEW_NEARESTMV + NEWMV, // NEAR_NEWMV + NEARMV, // NEW_NEARMV + GLOBALMV, // GLOBAL_GLOBALMV + NEWMV, // NEW_NEWMV + }; + assert(NELEMENTS(lut) == MB_MODE_COUNT); + assert(is_inter_compound_mode(mode)); + return lut[mode]; +} + +static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) { + return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV || + mode == NEW_NEARMV); +} + +static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { + return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV || + mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); +} + +static INLINE int is_masked_compound_type(COMPOUND_TYPE type) { + return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD); +} + +/* For keyframes, intra block modes are predicted by the (already decoded) + modes for the Y blocks to the left and above us; for interframes, there + is a single probability table. */ + +typedef struct { + // Value of base colors for Y, U, and V + uint16_t palette_colors[3 * PALETTE_MAX_SIZE]; + // Number of base colors for Y (0) and UV (1) + uint8_t palette_size[2]; +} PALETTE_MODE_INFO; + +typedef struct { + FILTER_INTRA_MODE filter_intra_mode; + uint8_t use_filter_intra; +} FILTER_INTRA_MODE_INFO; + +static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = { + DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED +}; + +#if CONFIG_RD_DEBUG +#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE) +#endif + +typedef struct RD_STATS { + int rate; + int zero_rate; + int64_t dist; + // Please be careful of using rdcost, it's not guaranteed to be set all the + // time. + // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In + // these functions, make sure rdcost is always up-to-date according to + // rate/dist. + int64_t rdcost; + int64_t sse; + uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1 +#if CONFIG_RD_DEBUG + int txb_coeff_cost[MAX_MB_PLANE]; +#endif // CONFIG_RD_DEBUG +} RD_STATS; + +// This struct is used to group function args that are commonly +// sent together in functions related to interinter compound modes +typedef struct { + uint8_t *seg_mask; + int8_t wedge_index; + int8_t wedge_sign; + DIFFWTD_MASK_TYPE mask_type; + COMPOUND_TYPE type; +} INTERINTER_COMPOUND_DATA; + +#define INTER_TX_SIZE_BUF_LEN 16 +#define TXK_TYPE_BUF_LEN 64 +/*!\endcond */ + +/*! \brief Stores the prediction/txfm mode of the current coding block + */ +typedef struct MB_MODE_INFO { + /***************************************************************************** + * \name General Info of the Coding Block + ****************************************************************************/ + /**@{*/ + /*! \brief The block size of the current coding block */ + BLOCK_SIZE bsize; + /*! \brief The partition type of the current coding block. */ + PARTITION_TYPE partition; + /*! \brief The prediction mode used */ + PREDICTION_MODE mode; + /*! \brief The UV mode when intra is used */ + UV_PREDICTION_MODE uv_mode; + /*! \brief The q index for the current coding block. */ + int current_qindex; + /**@}*/ + + /***************************************************************************** + * \name Inter Mode Info + ****************************************************************************/ + /**@{*/ + /*! \brief The motion vectors used by the current inter mode */ + int_mv mv[2]; + /*! \brief The reference frames for the MV */ + MV_REFERENCE_FRAME ref_frame[2]; + /*! \brief Filter used in subpel interpolation. */ + int_interpfilters interp_filters; + /*! \brief The motion mode used by the inter prediction. */ + MOTION_MODE motion_mode; + /*! \brief Number of samples used by warp causal */ + uint8_t num_proj_ref; + /*! \brief The number of overlapped neighbors above/left for obmc/warp motion + * mode. */ + uint8_t overlappable_neighbors; + /*! \brief The parameters used in warp motion mode. */ + WarpedMotionParams wm_params; + /*! \brief The type of intra mode used by inter-intra */ + INTERINTRA_MODE interintra_mode; + /*! \brief The type of wedge used in interintra mode. */ + int8_t interintra_wedge_index; + /*! \brief Struct that stores the data used in interinter compound mode. */ + INTERINTER_COMPOUND_DATA interinter_comp; + /**@}*/ + + /***************************************************************************** + * \name Intra Mode Info + ****************************************************************************/ + /**@{*/ + /*! \brief Directional mode delta: the angle is base angle + (angle_delta * + * step). */ + int8_t angle_delta[PLANE_TYPES]; + /*! \brief The type of filter intra mode used (if applicable). */ + FILTER_INTRA_MODE_INFO filter_intra_mode_info; + /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */ + int8_t cfl_alpha_signs; + /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */ + uint8_t cfl_alpha_idx; + /*! \brief Stores the size and colors of palette mode */ + PALETTE_MODE_INFO palette_mode_info; + /**@}*/ + + /***************************************************************************** + * \name Transform Info + ****************************************************************************/ + /**@{*/ + /*! \brief Whether to skip transforming and sending. */ + uint8_t skip_txfm; + /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */ + TX_SIZE tx_size; + /*! \brief Transform size when recursive txfm tree is on. */ + TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]; + /**@}*/ + + /***************************************************************************** + * \name Loop Filter Info + ****************************************************************************/ + /**@{*/ + /*! \copydoc MACROBLOCKD::delta_lf_from_base */ + int8_t delta_lf_from_base; + /*! \copydoc MACROBLOCKD::delta_lf */ + int8_t delta_lf[FRAME_LF_COUNT]; + /**@}*/ + + /***************************************************************************** + * \name Bitfield for Memory Reduction + ****************************************************************************/ + /**@{*/ + /*! \brief The segment id */ + uint8_t segment_id : 3; + /*! \brief Only valid when temporal update if off. */ + uint8_t seg_id_predicted : 1; + /*! \brief Which ref_mv to use */ + uint8_t ref_mv_idx : 2; + /*! \brief Inter skip mode */ + uint8_t skip_mode : 1; + /*! \brief Whether intrabc is used. */ + uint8_t use_intrabc : 1; + /*! \brief Indicates if masked compound is used(1) or not (0). */ + uint8_t comp_group_idx : 1; + /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */ + uint8_t compound_idx : 1; + /*! \brief Whether to use interintra wedge */ + uint8_t use_wedge_interintra : 1; + /*! \brief CDEF strength per BLOCK_64X64 */ + int8_t cdef_strength : 4; + /**@}*/ + +#if CONFIG_RD_DEBUG + /*! \brief RD info used for debugging */ + RD_STATS rd_stats; + /*! \brief The current row in unit of 4x4 blocks for debugging */ + int mi_row; + /*! \brief The current col in unit of 4x4 blocks for debugging */ + int mi_col; +#endif +#if CONFIG_INSPECTION + /*! \brief Whether we are skipping the current rows or columns. */ + int16_t tx_skip[TXK_TYPE_BUF_LEN]; +#endif +} MB_MODE_INFO; + +/*!\cond */ + +static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) { + return mbmi->use_intrabc; +} + +static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) { + assert(mode < UV_INTRA_MODES); + static const PREDICTION_MODE uv2y[] = { + DC_PRED, // UV_DC_PRED + V_PRED, // UV_V_PRED + H_PRED, // UV_H_PRED + D45_PRED, // UV_D45_PRED + D135_PRED, // UV_D135_PRED + D113_PRED, // UV_D113_PRED + D157_PRED, // UV_D157_PRED + D203_PRED, // UV_D203_PRED + D67_PRED, // UV_D67_PRED + SMOOTH_PRED, // UV_SMOOTH_PRED + SMOOTH_V_PRED, // UV_SMOOTH_V_PRED + SMOOTH_H_PRED, // UV_SMOOTH_H_PRED + PAETH_PRED, // UV_PAETH_PRED + DC_PRED, // UV_CFL_PRED + INTRA_INVALID, // UV_INTRA_MODES + INTRA_INVALID, // UV_MODE_INVALID + }; + return uv2y[mode]; +} + +static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) { + return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME; +} + +static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { + return mbmi->ref_frame[1] > INTRA_FRAME; +} + +static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) { + return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^ + (mbmi->ref_frame[1] >= BWDREF_FRAME))); +} + +static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { + static const MV_REFERENCE_FRAME lut[] = { + LAST_FRAME, // LAST_LAST2_FRAMES, + LAST_FRAME, // LAST_LAST3_FRAMES, + LAST_FRAME, // LAST_GOLDEN_FRAMES, + BWDREF_FRAME, // BWDREF_ALTREF_FRAMES, + LAST2_FRAME, // LAST2_LAST3_FRAMES + LAST2_FRAME, // LAST2_GOLDEN_FRAMES, + LAST3_FRAME, // LAST3_GOLDEN_FRAMES, + BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES, + ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES, + }; + assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); + return lut[ref_idx]; +} + +static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { + static const MV_REFERENCE_FRAME lut[] = { + LAST2_FRAME, // LAST_LAST2_FRAMES, + LAST3_FRAME, // LAST_LAST3_FRAMES, + GOLDEN_FRAME, // LAST_GOLDEN_FRAMES, + ALTREF_FRAME, // BWDREF_ALTREF_FRAMES, + LAST3_FRAME, // LAST2_LAST3_FRAMES + GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES, + GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES, + ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES, + ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES, + }; + assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); + return lut[ref_idx]; +} + +PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi); + +PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi); + +static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, + TransformationType type) { + const PREDICTION_MODE mode = mbmi->mode; + const BLOCK_SIZE bsize = mbmi->bsize; + const int block_size_allowed = + AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; + return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && + block_size_allowed; +} + +#if CONFIG_MISMATCH_DEBUG +static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col, + int mi_row, int tx_blk_col, int tx_blk_row, + int subsampling_x, int subsampling_y) { + *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) + + (tx_blk_col << MI_SIZE_LOG2); + *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) + + (tx_blk_row << MI_SIZE_LOG2); +} +#endif + +enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision); + +struct buf_2d { + uint8_t *buf; + uint8_t *buf0; + int width; + int height; + int stride; +}; + +typedef struct eob_info { + uint16_t eob; + uint16_t max_scan_line; +} eob_info; + +typedef struct { + DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]); + eob_info eob_data[MAX_MB_PLANE] + [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; + DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]); +} CB_BUFFER; + +typedef struct macroblockd_plane { + PLANE_TYPE plane_type; + int subsampling_x; + int subsampling_y; + struct buf_2d dst; + struct buf_2d pre[2]; + ENTROPY_CONTEXT *above_entropy_context; + ENTROPY_CONTEXT *left_entropy_context; + + // The dequantizers below are true dequantizers used only in the + // dequantization process. They have the same coefficient + // shift/scale as TX. + int16_t seg_dequant_QTX[MAX_SEGMENTS][2]; + // Pointer to color index map of: + // - Current coding block, on encoder side. + // - Current superblock, on decoder side. + uint8_t *color_index_map; + + // block size in pixels + uint8_t width, height; + + qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; + qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; +} MACROBLOCKD_PLANE; + +#define BLOCK_OFFSET(i) ((i) << 4) + +/*!\endcond */ + +/*!\brief Parameters related to Wiener Filter */ +typedef struct { + /*! + * Vertical filter kernel. + */ + DECLARE_ALIGNED(16, InterpKernel, vfilter); + + /*! + * Horizontal filter kernel. + */ + DECLARE_ALIGNED(16, InterpKernel, hfilter); +} WienerInfo; + +/*!\brief Parameters related to Sgrproj Filter */ +typedef struct { + /*! + * Parameter index. + */ + int ep; + + /*! + * Weights for linear combination of filtered versions + */ + int xqd[2]; +} SgrprojInfo; + +/*!\cond */ + +#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32) +#define CFL_BUF_LINE (32) +#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3) +#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4) +#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE) +typedef struct cfl_ctx { + // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid + // shifts) + uint16_t recon_buf_q3[CFL_BUF_SQUARE]; + // Q3 AC contributions (reconstructed luma pixels - tx block avg) + int16_t ac_buf_q3[CFL_BUF_SQUARE]; + + // Cache the DC_PRED when performing RDO, so it does not have to be recomputed + // for every scaling parameter + bool dc_pred_is_cached[CFL_PRED_PLANES]; + // Whether the DC_PRED cache is enabled. The DC_PRED cache is disabled when + // decoding. + bool use_dc_pred_cache; + // Only cache the first row of the DC_PRED + int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE]; + + // Height and width currently used in the CfL prediction buffer. + int buf_height, buf_width; + + int are_parameters_computed; + + // Chroma subsampling + int subsampling_x, subsampling_y; + + // Whether the reconstructed luma pixels need to be stored + int store_y; +} CFL_CTX; + +typedef struct dist_wtd_comp_params { + int use_dist_wtd_comp_avg; + int fwd_offset; + int bck_offset; +} DIST_WTD_COMP_PARAMS; + +struct scale_factors; + +/*!\endcond */ + +/*! \brief Variables related to current coding block. + * + * This is a common set of variables used by both encoder and decoder. + * Most/all of the pointers are mere pointers to actual arrays are allocated + * elsewhere. This is mostly for coding convenience. + */ +typedef struct macroblockd { + /** + * \name Position of current macroblock in mi units + */ + /**@{*/ + int mi_row; /*!< Row position in mi units. */ + int mi_col; /*!< Column position in mi units. */ + /**@}*/ + + /*! + * Same as cm->mi_params.mi_stride, copied here for convenience. + */ + int mi_stride; + + /*! + * True if current block transmits chroma information. + * More detail: + * Smallest supported block size for both luma and chroma plane is 4x4. Hence, + * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma + * blocks smaller than 8x8 maybe combined into one chroma block. + * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4 + * luma blocks. Then, a single chroma block of size 4x4 will cover the area of + * these four luma blocks. This is implemented in bitstream as follows: + * - There are four MB_MODE_INFO structs for the four luma blocks. + * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit + * any information for chroma planes. + * - Last block will have is_chroma_ref = true and transmits chroma + * information for the 4x4 chroma block that covers whole 8x8 area covered by + * four luma blocks. + * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks. + */ + bool is_chroma_ref; + + /*! + * Info specific to each plane. + */ + struct macroblockd_plane plane[MAX_MB_PLANE]; + + /*! + * Tile related info. + */ + TileInfo tile; + + /*! + * Appropriate offset inside cm->mi_params.mi_grid_base based on current + * mi_row and mi_col. + */ + MB_MODE_INFO **mi; + + /*! + * True if 4x4 block above the current block is available. + */ + bool up_available; + /*! + * True if 4x4 block to the left of the current block is available. + */ + bool left_available; + /*! + * True if the above chrome reference block is available. + */ + bool chroma_up_available; + /*! + * True if the left chrome reference block is available. + */ + bool chroma_left_available; + + /*! + * MB_MODE_INFO for 4x4 block to the left of the current block, if + * left_available == true; otherwise NULL. + */ + MB_MODE_INFO *left_mbmi; + /*! + * MB_MODE_INFO for 4x4 block above the current block, if + * up_available == true; otherwise NULL. + */ + MB_MODE_INFO *above_mbmi; + /*! + * Above chroma reference block if is_chroma_ref == true for the current block + * and chroma_up_available == true; otherwise NULL. + * See also: the special case logic when current chroma block covers more than + * one luma blocks in set_mi_row_col(). + */ + MB_MODE_INFO *chroma_left_mbmi; + /*! + * Left chroma reference block if is_chroma_ref == true for the current block + * and chroma_left_available == true; otherwise NULL. + * See also: the special case logic when current chroma block covers more than + * one luma blocks in set_mi_row_col(). + */ + MB_MODE_INFO *chroma_above_mbmi; + + /*! + * Appropriate offset based on current 'mi_row' and 'mi_col', inside + * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or + * 'MACROBLOCK' structs. + */ + uint8_t *tx_type_map; + /*! + * Stride for 'tx_type_map'. Note that this may / may not be same as + * 'mi_stride', depending on which actual array 'tx_type_map' points to. + */ + int tx_type_map_stride; + + /** + * \name Distance of this macroblock from frame edges in 1/8th pixel units. + */ + /**@{*/ + int mb_to_left_edge; /*!< Distance from left edge */ + int mb_to_right_edge; /*!< Distance from right edge */ + int mb_to_top_edge; /*!< Distance from top edge */ + int mb_to_bottom_edge; /*!< Distance from bottom edge */ + /**@}*/ + + /*! + * Scale factors for reference frames of the current block. + * These are pointers into 'cm->ref_scale_factors'. + */ + const struct scale_factors *block_ref_scale_factors[2]; + + /*! + * - On encoder side: points to cpi->source, which is the buffer containing + * the current *source* frame (maybe filtered). + * - On decoder side: points to cm->cur_frame->buf, which is the buffer into + * which current frame is being *decoded*. + */ + const YV12_BUFFER_CONFIG *cur_buf; + + /*! + * Entropy contexts for the above blocks. + * above_entropy_context[i][j] corresponds to above entropy context for ith + * plane and jth mi column of this *frame*, wrt current 'mi_row'. + * These are pointers into 'cm->above_contexts.entropy'. + */ + ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE]; + /*! + * Entropy contexts for the left blocks. + * left_entropy_context[i][j] corresponds to left entropy context for ith + * plane and jth mi row of this *superblock*, wrt current 'mi_col'. + * Note: These contain actual data, NOT pointers. + */ + ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE]; + + /*! + * Partition contexts for the above blocks. + * above_partition_context[i] corresponds to above partition context for ith + * mi column of this *frame*, wrt current 'mi_row'. + * This is a pointer into 'cm->above_contexts.partition'. + */ + PARTITION_CONTEXT *above_partition_context; + /*! + * Partition contexts for the left blocks. + * left_partition_context[i] corresponds to left partition context for ith + * mi row of this *superblock*, wrt current 'mi_col'. + * Note: These contain actual data, NOT pointers. + */ + PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]; + + /*! + * Transform contexts for the above blocks. + * above_txfm_context[i] corresponds to above transform context for ith mi col + * from the current position (mi row and mi column) for this *frame*. + * This is a pointer into 'cm->above_contexts.txfm'. + */ + TXFM_CONTEXT *above_txfm_context; + /*! + * Transform contexts for the left blocks. + * left_txfm_context[i] corresponds to left transform context for ith mi row + * from the current position (mi_row and mi_col) for this *superblock*. + * This is a pointer into 'left_txfm_context_buffer'. + */ + TXFM_CONTEXT *left_txfm_context; + /*! + * left_txfm_context_buffer[i] is the left transform context for ith mi_row + * in this *superblock*. + * Behaves like an internal actual buffer which 'left_txt_context' points to, + * and never accessed directly except to fill in initial default values. + */ + TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]; + + /** + * \name Default values for the two restoration filters for each plane. + * Default values for the two restoration filters for each plane. + * These values are used as reference values when writing the bitstream. That + * is, we transmit the delta between the actual values in + * cm->rst_info[plane].unit_info[unit_idx] and these reference values. + */ + /**@{*/ + WienerInfo wiener_info[MAX_MB_PLANE]; /*!< Defaults for Wiener filter*/ + SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */ + /**@}*/ + + /** + * \name Block dimensions in MB_MODE_INFO units. + */ + /**@{*/ + uint8_t width; /*!< Block width in MB_MODE_INFO units */ + uint8_t height; /*!< Block height in MB_MODE_INFO units */ + /**@}*/ + + /*! + * Contains the motion vector candidates found during motion vector prediction + * process. ref_mv_stack[i] contains the candidates for ith type of + * reference frame (single/compound). The actual number of candidates found in + * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side) + * or mbmi_ext->ref_mv_count[i] (encoder side). + */ + CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; + /*! + * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the + * DRL (dynamic reference list) mode contexts. + */ + uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; + + /*! + * True if this is the last vertical rectangular block in a VERTICAL or + * VERTICAL_4 partition. + */ + bool is_last_vertical_rect; + /*! + * True if this is the 1st horizontal rectangular block in a HORIZONTAL or + * HORIZONTAL_4 partition. + */ + bool is_first_horizontal_rect; + + /*! + * Counts of each reference frame in the above and left neighboring blocks. + * NOTE: Take into account both single and comp references. + */ + uint8_t neighbors_ref_counts[REF_FRAMES]; + + /*! + * Current CDFs of all the symbols for the current tile. + */ + FRAME_CONTEXT *tile_ctx; + + /*! + * Bit depth: copied from cm->seq_params->bit_depth for convenience. + */ + int bd; + + /*! + * Quantizer index for each segment (base qindex + delta for each segment). + */ + int qindex[MAX_SEGMENTS]; + /*! + * lossless[s] is true if segment 's' is coded losslessly. + */ + int lossless[MAX_SEGMENTS]; + /*! + * Q index for the coding blocks in this superblock will be stored in + * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is + * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as + * the base, and adding any transmitted delta qindex on top of it. + * Precisely, this is the latest qindex used by the first coding block of a + * non-skip superblock in the current tile; OR + * same as cm->quant_params.base_qindex (if not explicitly set yet). + * Note: This is 'CurrentQIndex' in the AV1 spec. + */ + int current_base_qindex; + + /*! + * Same as cm->features.cur_frame_force_integer_mv. + */ + int cur_frame_force_integer_mv; + + /*! + * Pointer to cm->error. + */ + struct aom_internal_error_info *error_info; + + /*! + * Same as cm->global_motion. + */ + const WarpedMotionParams *global_motion; + + /*! + * Since actual frame level loop filtering level value is not available + * at the beginning of the tile (only available during actual filtering) + * at encoder side.we record the delta_lf (against the frame level loop + * filtering level) and code the delta between previous superblock's delta + * lf and current delta lf. It is equivalent to the delta between previous + * superblock's actual lf and current lf. + */ + int8_t delta_lf_from_base; + /*! + * We have four frame filter levels for different plane and direction. So, to + * support the per superblock update, we need to add a few more params: + * 0. delta loop filter level for y plane vertical + * 1. delta loop filter level for y plane horizontal + * 2. delta loop filter level for u plane + * 3. delta loop filter level for v plane + * To make it consistent with the reference to each filter level in segment, + * we need to -1, since + * - SEG_LVL_ALT_LF_Y_V = 1; + * - SEG_LVL_ALT_LF_Y_H = 2; + * - SEG_LVL_ALT_LF_U = 3; + * - SEG_LVL_ALT_LF_V = 4; + */ + int8_t delta_lf[FRAME_LF_COUNT]; + /*! + * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the + * current superblock has already been read from (decoder) / written to + * (encoder) the bitstream; and false otherwise. + * More detail: + * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st + * non-skip coding block. So, we need this array to keep track of whether CDEF + * strengths for the given CDEF units have been transmitted yet or not. + * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is + * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if + * superblock size is 128x128). Hence the array size is 4. + * 3. In the current implementation, CDEF strength for this CDEF unit is + * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside + * cm->mi_params.mi_grid_base). + */ + bool cdef_transmitted[4]; + + /*! + * Mask for this block used for compound prediction. + */ + uint8_t *seg_mask; + + /*! + * CFL (chroma from luma) related parameters. + */ + CFL_CTX cfl; + + /*! + * Offset to plane[p].color_index_map. + * Currently: + * - On encoder side, this is always 0 as 'color_index_map' is allocated per + * *coding block* there. + * - On decoder side, this may be non-zero, as 'color_index_map' is a (static) + * memory pointing to the base of a *superblock* there, and we need an offset + * to it to get the color index map for current coding block. + */ + uint16_t color_index_map_offset[2]; + + /*! + * Temporary buffer used for convolution in case of compound reference only + * for (weighted or uniform) averaging operation. + * There are pointers to actual buffers allocated elsewhere: e.g. + * - In decoder, 'pbi->td.tmp_conv_dst' or + * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and + * - In encoder, 'x->tmp_conv_dst' or + * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'. + */ + CONV_BUF_TYPE *tmp_conv_dst; + /*! + * Temporary buffers used to build OBMC prediction by above (index 0) and left + * (index 1) predictors respectively. + * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'. + * There are pointers to actual buffers allocated elsewhere: e.g. + * - In decoder, 'pbi->td.tmp_obmc_bufs' or + * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and + * -In encoder, 'x->tmp_pred_bufs' or + * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'. + */ + uint8_t *tmp_obmc_bufs[2]; +} MACROBLOCKD; + +/*!\cond */ + +static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) { +#if CONFIG_AV1_HIGHBITDEPTH + return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0; +#else + (void)xd; + return 0; +#endif +} + +static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) { +#if CONFIG_AV1_HIGHBITDEPTH + return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + ? CONVERT_TO_BYTEPTR(buf16) + : buf16; +#else + (void)xd; + return buf16; +#endif +} + +typedef struct BitDepthInfo { + int bit_depth; + /*! Is the image buffer high bit depth? + * Low bit depth buffer uses uint8_t. + * High bit depth buffer uses uint16_t. + * Equivalent to cm->seq_params->use_highbitdepth + */ + int use_highbitdepth_buf; +} BitDepthInfo; + +static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) { + BitDepthInfo bit_depth_info; + bit_depth_info.bit_depth = xd->bd; + bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd); + assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf, + bit_depth_info.bit_depth == 8)); + return bit_depth_info; +} + +static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) { + switch (bsize) { + case BLOCK_4X4: return 0; + case BLOCK_8X8: return 1; + case BLOCK_16X16: return 2; + case BLOCK_32X32: return 3; + case BLOCK_64X64: return 4; + case BLOCK_128X128: return 5; + default: return SQR_BLOCK_SIZES; + } +} + +// For a square block size 'bsize', returns the size of the sub-blocks used by +// the given partition type. If the partition produces sub-blocks of different +// sizes, then the function returns the largest sub-block size. +// Implements the Partition_Subsize lookup table in the spec (Section 9.3. +// Conversion tables). +// Note: the input block size should be square. +// Otherwise it's considered invalid. +static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize, + PARTITION_TYPE partition) { + if (partition == PARTITION_INVALID) { + return BLOCK_INVALID; + } else { + const int sqr_bsize_idx = get_sqr_bsize_idx(bsize); + return sqr_bsize_idx >= SQR_BLOCK_SIZES + ? BLOCK_INVALID + : subsize_lookup[partition][sqr_bsize_idx]; + } +} + +static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi, + PLANE_TYPE plane_type) { + static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = { + DCT_DCT, // DC_PRED + ADST_DCT, // V_PRED + DCT_ADST, // H_PRED + DCT_DCT, // D45_PRED + ADST_ADST, // D135_PRED + ADST_DCT, // D113_PRED + DCT_ADST, // D157_PRED + DCT_ADST, // D203_PRED + ADST_DCT, // D67_PRED + ADST_ADST, // SMOOTH_PRED + ADST_DCT, // SMOOTH_V_PRED + DCT_ADST, // SMOOTH_H_PRED + ADST_ADST, // PAETH_PRED + }; + const PREDICTION_MODE mode = + (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); + assert(mode < INTRA_MODES); + return _intra_mode_to_tx_type[mode]; +} + +static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; } + +static INLINE int block_signals_txsize(BLOCK_SIZE bsize) { + return bsize > BLOCK_4X4; +} + +// Number of transform types in each set type +static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = { + 1, 2, 5, 7, 12, 16, +}; + +static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = { + { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, + { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, + { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, +}; + +// The bitmask corresponds to the transform types as defined in +// enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable +// the use of the corresponding transform type in that table. +// The av1_derived_intra_tx_used_flag table is used when +// use_reduced_intra_txset is set to 2, where one only searches +// the transform types derived from residual statistics. +static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = { + 0x0209, // DC_PRED: 0000 0010 0000 1001 + 0x0403, // V_PRED: 0000 0100 0000 0011 + 0x0805, // H_PRED: 0000 1000 0000 0101 + 0x020F, // D45_PRED: 0000 0010 0000 1111 + 0x0009, // D135_PRED: 0000 0000 0000 1001 + 0x0009, // D113_PRED: 0000 0000 0000 1001 + 0x0009, // D157_PRED: 0000 0000 0000 1001 + 0x0805, // D203_PRED: 0000 1000 0000 0101 + 0x0403, // D67_PRED: 0000 0100 0000 0011 + 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001 + 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011 + 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101 + 0x0209, // PAETH_PRED: 0000 0010 0000 1001 +}; + +static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = { + 0x080F, // DC_PRED: 0000 1000 0000 1111 + 0x040F, // V_PRED: 0000 0100 0000 1111 + 0x080F, // H_PRED: 0000 1000 0000 1111 + 0x020F, // D45_PRED: 0000 0010 0000 1111 + 0x080F, // D135_PRED: 0000 1000 0000 1111 + 0x040F, // D113_PRED: 0000 0100 0000 1111 + 0x080F, // D157_PRED: 0000 1000 0000 1111 + 0x080F, // D203_PRED: 0000 1000 0000 1111 + 0x040F, // D67_PRED: 0000 0100 0000 1111 + 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111 + 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111 + 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111 + 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110 +}; + +static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = { + 0x0001, // 0000 0000 0000 0001 + 0x0201, // 0000 0010 0000 0001 + 0x020F, // 0000 0010 0000 1111 + 0x0E0F, // 0000 1110 0000 1111 + 0x0FFF, // 0000 1111 1111 1111 + 0xFFFF, // 1111 1111 1111 1111 +}; + +static const TxSetType av1_ext_tx_set_lookup[2][2] = { + { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX }, + { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT }, +}; + +static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter, + int use_reduced_set) { + const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; + if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY; + if (tx_size_sqr_up == TX_32X32) + return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY; + if (use_reduced_set) + return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX; + const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; + return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16]; +} + +// Maps tx set types to the indices. +static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = { + { // Intra + 0, -1, 2, 1, -1, -1 }, + { // Inter + 0, 3, -1, -1, 2, 1 }, +}; + +static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter, + int use_reduced_set) { + const TxSetType set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); + return ext_tx_set_index[is_inter][set_type]; +} + +static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter, + int use_reduced_set) { + const int set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); + return av1_num_ext_tx_set[set_type]; +} + +#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2)) +#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2)) + +static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) { + const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; + const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize]; + if (bsize == BLOCK_4X4) + return AOMMIN(max_txsize_lookup[bsize], largest_tx_size); + if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size) + return max_rect_tx_size; + else + return largest_tx_size; +} + +static const uint8_t mode_to_angle_map[INTRA_MODES] = { + 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0, +}; + +// Converts block_index for given transform size to index of the block in raster +// order. +static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size, + int block_idx) { + // For transform size 4x8, the possible block_idx values are 0 & 2, because + // block_idx values are incremented in steps of size 'tx_width_unit x + // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to + // block number 1 in raster order, inside an 8x8 MI block. + // For any other transform size, the two indices are equivalent. + return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx; +} + +// Inverse of above function. +// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now. +static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size, + int raster_order) { + assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); + // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4. + return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0; +} + +static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type, + const MACROBLOCKD *xd, + TX_SIZE tx_size, + int use_screen_content_tools) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + + if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y || + xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 || + use_screen_content_tools) + return DEFAULT_INTER_TX_TYPE; + + return intra_mode_to_tx_type(mbmi, plane_type); +} + +// Implements the get_plane_residual_size() function in the spec (Section +// 5.11.38. Get plane residual size function). +static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize, + int subsampling_x, + int subsampling_y) { + assert(bsize < BLOCK_SIZES_ALL); + assert(subsampling_x >= 0 && subsampling_x < 2); + assert(subsampling_y >= 0 && subsampling_y < 2); + return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y]; +} + +/* + * Logic to generate the lookup tables: + * + * TX_SIZE txs = max_txsize_rect_lookup[bsize]; + * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) + * txs = sub_tx_size_map[txs]; + * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; + * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; + * const int bw_uint_log2 = mi_size_wide_log2[bsize]; + * const int stride_log2 = bw_uint_log2 - tx_w_log2; + */ +static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row, + int blk_col) { + static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { + 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3, + }; + static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { + 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2, + }; + static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { + 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1, + }; + const int index = + ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + + (blk_col >> tw_w_log2_table[bsize]); + assert(index < INTER_TX_SIZE_BUF_LEN); + return index; +} + +#if CONFIG_INSPECTION +/* + * Here is the logic to generate the lookup tables: + * + * TX_SIZE txs = max_txsize_rect_lookup[bsize]; + * for (int level = 0; level < MAX_VARTX_DEPTH; ++level) + * txs = sub_tx_size_map[txs]; + * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; + * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; + * const int bw_uint_log2 = mi_size_wide_log2[bsize]; + * const int stride_log2 = bw_uint_log2 - tx_w_log2; + */ +static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row, + int blk_col) { + static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { + 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, + }; + static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { + 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, + }; + static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { + 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2, + }; + const int index = + ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + + (blk_col >> tw_w_log2_table[bsize]); + assert(index < TXK_TYPE_BUF_LEN); + return index; +} +#endif // CONFIG_INSPECTION + +static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row, + int blk_col, TX_SIZE tx_size, + TX_TYPE tx_type) { + const int stride = xd->tx_type_map_stride; + xd->tx_type_map[blk_row * stride + blk_col] = tx_type; + + const int txw = tx_size_wide_unit[tx_size]; + const int txh = tx_size_high_unit[tx_size]; + // The 16x16 unit is due to the constraint from tx_64x64 which sets the + // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block + // size, the constraint takes effect in 32x16 / 16x32 size too. To solve + // the intricacy, cover all the 16x16 units inside a 64 level transform. + if (txw == tx_size_wide_unit[TX_64X64] || + txh == tx_size_high_unit[TX_64X64]) { + const int tx_unit = tx_size_wide_unit[TX_16X16]; + for (int idy = 0; idy < txh; idy += tx_unit) { + for (int idx = 0; idx < txw; idx += tx_unit) { + xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type; + } + } + } +} + +static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd, + PLANE_TYPE plane_type, int blk_row, + int blk_col, TX_SIZE tx_size, + int reduced_tx_set) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) { + return DCT_DCT; + } + + TX_TYPE tx_type; + if (plane_type == PLANE_TYPE_Y) { + tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; + } else { + if (is_inter_block(mbmi)) { + // scale back to y plane's coordinate + const struct macroblockd_plane *const pd = &xd->plane[plane_type]; + blk_row <<= pd->subsampling_y; + blk_col <<= pd->subsampling_x; + tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; + } else { + // In intra mode, uv planes don't share the same prediction mode as y + // plane, so the tx_type should not be shared + tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV); + } + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set); + if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT; + } + assert(tx_type < TX_TYPES); + assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), + reduced_tx_set)][tx_type]); + return tx_type; +} + +void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y, + const int num_planes); + +/* + * Logic to generate the lookup table: + * + * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; + * int depth = 0; + * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) { + * depth++; + * tx_size = sub_tx_size_map[tx_size]; + * } + */ +static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) { + static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = { + 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + }; + return bsize_to_max_depth_table[bsize]; +} + +/* + * Logic to generate the lookup table: + * + * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; + * assert(tx_size != TX_4X4); + * int depth = 0; + * while (tx_size != TX_4X4) { + * depth++; + * tx_size = sub_tx_size_map[tx_size]; + * } + * assert(depth < 10); + */ +static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) { + assert(bsize < BLOCK_SIZES_ALL); + static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = { + 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, + }; + const int depth = bsize_to_tx_size_depth_table[bsize]; + assert(depth <= MAX_TX_CATS); + return depth - 1; +} + +static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) { + TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; + TX_SIZE tx_size = max_tx_size; + for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size]; + return tx_size; +} + +static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) { + switch (tx_size) { + case TX_64X64: + case TX_64X32: + case TX_32X64: return TX_32X32; + case TX_64X16: return TX_32X16; + case TX_16X64: return TX_16X32; + default: return tx_size; + } +} + +static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x, + int subsampling_y) { + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, subsampling_x, subsampling_y); + assert(plane_bsize < BLOCK_SIZES_ALL); + const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize]; + return av1_get_adjusted_tx_size(uv_tx); +} + +static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) { + const MB_MODE_INFO *mbmi = xd->mi[0]; + if (xd->lossless[mbmi->segment_id]) return TX_4X4; + if (plane == 0) return mbmi->tx_size; + const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; + return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, + pd->subsampling_y); +} + +void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize, + const int num_planes); + +void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes); + +void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes); + +typedef void (*foreach_transformed_block_visitor)(int plane, int block, + int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, void *arg); + +void av1_set_entropy_contexts(const MACROBLOCKD *xd, + struct macroblockd_plane *pd, int plane, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + int has_eob, int aoff, int loff); + +#define MAX_INTERINTRA_SB_SQUARE 32 * 32 +static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) { + return (mbmi->ref_frame[0] > INTRA_FRAME && + mbmi->ref_frame[1] == INTRA_FRAME); +} + +static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) { + return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32); +} + +static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) { + return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END); +} + +static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) { + return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME); +} + +static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) { + return is_interintra_allowed_bsize(mbmi->bsize) && + is_interintra_allowed_mode(mbmi->mode) && + is_interintra_allowed_ref(mbmi->ref_frame); +} + +static INLINE int is_interintra_allowed_bsize_group(int group) { + int i; + for (i = 0; i < BLOCK_SIZES_ALL; i++) { + if (size_group_lookup[i] == group && + is_interintra_allowed_bsize((BLOCK_SIZE)i)) { + return 1; + } + } + return 0; +} + +static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) { + return mbmi->ref_frame[0] > INTRA_FRAME && + mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi); +} + +static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize, + int plane) { + if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; + const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize]; + if (plane == 0) return max_txsize; // luma + return av1_get_adjusted_tx_size(max_txsize); // chroma +} + +static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) { + assert(bsize < BLOCK_SIZES_ALL); + return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; +} + +static INLINE int is_motion_variation_allowed_compound( + const MB_MODE_INFO *mbmi) { + return !has_second_ref(mbmi); +} + +// input: log2 of length, 0(4), 1(8), ... +static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 }; + +static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) { + return mbmi->overlappable_neighbors != 0; +} + +static INLINE MOTION_MODE +motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd, + const MB_MODE_INFO *mbmi, int allow_warped_motion) { + if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION; + if (xd->cur_frame_force_integer_mv == 0) { + const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype; + if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION; + } + if (is_motion_variation_allowed_bsize(mbmi->bsize) && + is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME && + is_motion_variation_allowed_compound(mbmi)) { + assert(!has_second_ref(mbmi)); + if (mbmi->num_proj_ref >= 1 && allow_warped_motion && + !xd->cur_frame_force_integer_mv && + !av1_is_scaled(xd->block_ref_scale_factors[0])) { + return WARPED_CAUSAL; + } + return OBMC_CAUSAL; + } + return SIMPLE_TRANSLATION; +} + +static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) { + return (is_inter_block(mbmi)); +} + +static INLINE int av1_allow_palette(int allow_screen_content_tools, + BLOCK_SIZE sb_type) { + assert(sb_type < BLOCK_SIZES_ALL); + return allow_screen_content_tools && + block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH && + block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT && + sb_type >= BLOCK_8X8; +} + +// Returns sub-sampled dimensions of the given block. +// The output values for 'rows_within_bounds' and 'cols_within_bounds' will +// differ from 'height' and 'width' when part of the block is outside the +// right +// and/or bottom image boundary. +static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane, + const MACROBLOCKD *xd, int *width, + int *height, + int *rows_within_bounds, + int *cols_within_bounds) { + const int block_height = block_size_high[bsize]; + const int block_width = block_size_wide[bsize]; + const int block_rows = (xd->mb_to_bottom_edge >= 0) + ? block_height + : (xd->mb_to_bottom_edge >> 3) + block_height; + const int block_cols = (xd->mb_to_right_edge >= 0) + ? block_width + : (xd->mb_to_right_edge >> 3) + block_width; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); + assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); + assert(block_width >= block_cols); + assert(block_height >= block_rows); + const int plane_block_width = block_width >> pd->subsampling_x; + const int plane_block_height = block_height >> pd->subsampling_y; + // Special handling for chroma sub8x8. + const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4; + const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4; + if (width) { + *width = plane_block_width + 2 * is_chroma_sub8_x; + assert(*width >= 0); + } + if (height) { + *height = plane_block_height + 2 * is_chroma_sub8_y; + assert(*height >= 0); + } + if (rows_within_bounds) { + *rows_within_bounds = + (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y; + assert(*rows_within_bounds >= 0); + } + if (cols_within_bounds) { + *cols_within_bounds = + (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x; + assert(*cols_within_bounds >= 0); + } +} + +/* clang-format off */ +// Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES. +typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS] + [CDF_SIZE(PALETTE_COLORS)]; +// Pointer to a const three-dimensional array whose first dimension is +// PALETTE_SIZES. +typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS]; +/* clang-format on */ + +typedef struct { + int rows; + int cols; + int n_colors; + int plane_width; + int plane_height; + uint8_t *color_map; + MapCdf map_cdf; + ColorCost color_cost; +} Av1ColorMapParam; + +static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd, + const MB_MODE_INFO *mbmi) { + int ref; + + // First check if all modes are GLOBALMV + if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0; + + if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2) + return 0; + + // Now check if all global motion is non translational + for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { + if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0; + } + return 1; +} + +static INLINE PLANE_TYPE get_plane_type(int plane) { + return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; +} + +static INLINE int av1_get_max_eob(TX_SIZE tx_size) { + if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) { + return 1024; + } + if (tx_size == TX_16X64 || tx_size == TX_64X16) { + return 512; + } + return tx_size_2d[tx_size]; +} + +/*!\endcond */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_COMMON_BLOCKD_H_ |