diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /third_party/aom/av1/decoder | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/decoder')
19 files changed, 11769 insertions, 0 deletions
diff --git a/third_party/aom/av1/decoder/accounting.c b/third_party/aom/av1/decoder/accounting.c new file mode 100644 index 0000000000..1ded380ec3 --- /dev/null +++ b/third_party/aom/av1/decoder/accounting.c @@ -0,0 +1,140 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#include "aom/aom_integer.h" +#include "av1/decoder/accounting.h" + +static int accounting_hash(const char *str) { + uint32_t val; + const unsigned char *ustr; + val = 0; + ustr = (const unsigned char *)str; + /* This is about the worst hash one can design, but it should be good enough + here. */ + while (*ustr) val += *ustr++; + return val % AOM_ACCOUNTING_HASH_SIZE; +} + +/* Dictionary lookup based on an open-addressing hash table. */ +int aom_accounting_dictionary_lookup(Accounting *accounting, const char *str) { + int hash; + size_t len; + AccountingDictionary *dictionary; + dictionary = &accounting->syms.dictionary; + hash = accounting_hash(str); + while (accounting->hash_dictionary[hash] != -1) { + if (strcmp(dictionary->strs[accounting->hash_dictionary[hash]], str) == 0) { + return accounting->hash_dictionary[hash]; + } + hash++; + if (hash == AOM_ACCOUNTING_HASH_SIZE) hash = 0; + } + /* No match found. */ + assert(dictionary->num_strs + 1 < MAX_SYMBOL_TYPES); + accounting->hash_dictionary[hash] = dictionary->num_strs; + len = strlen(str); + dictionary->strs[dictionary->num_strs] = malloc(len + 1); + if (!dictionary->strs[dictionary->num_strs]) abort(); + snprintf(dictionary->strs[dictionary->num_strs], len + 1, "%s", str); + dictionary->num_strs++; + return dictionary->num_strs - 1; +} + +void aom_accounting_init(Accounting *accounting) { + int i; + accounting->num_syms_allocated = 1000; + accounting->syms.syms = + malloc(sizeof(AccountingSymbol) * accounting->num_syms_allocated); + if (!accounting->syms.syms) abort(); + accounting->syms.dictionary.num_strs = 0; + assert(AOM_ACCOUNTING_HASH_SIZE > 2 * MAX_SYMBOL_TYPES); + for (i = 0; i < AOM_ACCOUNTING_HASH_SIZE; i++) + accounting->hash_dictionary[i] = -1; + aom_accounting_reset(accounting); +} + +void aom_accounting_reset(Accounting *accounting) { + accounting->syms.num_syms = 0; + accounting->syms.num_binary_syms = 0; + accounting->syms.num_multi_syms = 0; + accounting->context.x = -1; + accounting->context.y = -1; + accounting->last_tell_frac = 0; +} + +void aom_accounting_clear(Accounting *accounting) { + int i; + AccountingDictionary *dictionary; + free(accounting->syms.syms); + dictionary = &accounting->syms.dictionary; + for (i = 0; i < dictionary->num_strs; i++) { + free(dictionary->strs[i]); + } +} + +void aom_accounting_set_context(Accounting *accounting, int16_t x, int16_t y) { + accounting->context.x = x; + accounting->context.y = y; +} + +void aom_accounting_record(Accounting *accounting, const char *str, + uint32_t bits) { + AccountingSymbol sym; + // Reuse previous symbol if it has the same context and symbol id. + if (accounting->syms.num_syms) { + AccountingSymbol *last_sym; + last_sym = &accounting->syms.syms[accounting->syms.num_syms - 1]; + if (memcmp(&last_sym->context, &accounting->context, + sizeof(AccountingSymbolContext)) == 0) { + uint32_t id; + id = aom_accounting_dictionary_lookup(accounting, str); + if (id == last_sym->id) { + last_sym->bits += bits; + last_sym->samples++; + return; + } + } + } + sym.context = accounting->context; + sym.samples = 1; + sym.bits = bits; + sym.id = aom_accounting_dictionary_lookup(accounting, str); + assert(sym.id <= 255); + if (accounting->syms.num_syms == accounting->num_syms_allocated) { + accounting->num_syms_allocated *= 2; + accounting->syms.syms = + realloc(accounting->syms.syms, + sizeof(AccountingSymbol) * accounting->num_syms_allocated); + if (!accounting->syms.syms) abort(); + } + accounting->syms.syms[accounting->syms.num_syms++] = sym; +} + +void aom_accounting_dump(Accounting *accounting) { + int i; + AccountingSymbol *sym; + printf("\n----- Number of recorded syntax elements = %d -----\n", + accounting->syms.num_syms); + printf("----- Total number of symbol calls = %d (%d binary) -----\n", + accounting->syms.num_multi_syms + accounting->syms.num_binary_syms, + accounting->syms.num_binary_syms); + for (i = 0; i < accounting->syms.num_syms; i++) { + sym = &accounting->syms.syms[i]; + printf("%s x: %d, y: %d bits: %f samples: %d\n", + accounting->syms.dictionary.strs[sym->id], sym->context.x, + sym->context.y, (float)sym->bits / 8.0, sym->samples); + } +} diff --git a/third_party/aom/av1/decoder/accounting.h b/third_party/aom/av1/decoder/accounting.h new file mode 100644 index 0000000000..ad2e8b6cfe --- /dev/null +++ b/third_party/aom/av1/decoder/accounting.h @@ -0,0 +1,82 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#ifndef AOM_AV1_DECODER_ACCOUNTING_H_ +#define AOM_AV1_DECODER_ACCOUNTING_H_ +#include <stdlib.h> +#include "aom/aomdx.h" + +#ifdef __cplusplus +extern "C" { +#endif // __cplusplus + +#define AOM_ACCOUNTING_HASH_SIZE (1021) + +/* Max number of entries for symbol types in the dictionary (increase as + necessary). */ +#define MAX_SYMBOL_TYPES (256) + +/*The resolution of fractional-precision bit usage measurements, i.e., + 3 => 1/8th bits.*/ +#define AOM_ACCT_BITRES (3) + +typedef struct { + int16_t x; + int16_t y; +} AccountingSymbolContext; + +typedef struct { + AccountingSymbolContext context; + uint32_t id; + /** Number of bits in units of 1/8 bit. */ + uint32_t bits; + uint32_t samples; +} AccountingSymbol; + +/** Dictionary for translating strings into id. */ +typedef struct { + char *strs[MAX_SYMBOL_TYPES]; + int num_strs; +} AccountingDictionary; + +typedef struct { + /** All recorded symbols decoded. */ + AccountingSymbol *syms; + /** Number of syntax actually recorded. */ + int num_syms; + /** Raw symbol decoding calls for non-binary values. */ + int num_multi_syms; + /** Raw binary symbol decoding calls. */ + int num_binary_syms; + /** Dictionary for translating strings into id. */ + AccountingDictionary dictionary; +} AccountingSymbols; + +struct Accounting { + AccountingSymbols syms; + /** Size allocated for symbols (not all may be used). */ + int num_syms_allocated; + int16_t hash_dictionary[AOM_ACCOUNTING_HASH_SIZE]; + AccountingSymbolContext context; + uint32_t last_tell_frac; +}; + +void aom_accounting_init(Accounting *accounting); +void aom_accounting_reset(Accounting *accounting); +void aom_accounting_clear(Accounting *accounting); +void aom_accounting_set_context(Accounting *accounting, int16_t x, int16_t y); +int aom_accounting_dictionary_lookup(Accounting *accounting, const char *str); +void aom_accounting_record(Accounting *accounting, const char *str, + uint32_t bits); +void aom_accounting_dump(Accounting *accounting); +#ifdef __cplusplus +} // extern "C" +#endif // __cplusplus +#endif // AOM_AV1_DECODER_ACCOUNTING_H_ diff --git a/third_party/aom/av1/decoder/decodeframe.c b/third_party/aom/av1/decoder/decodeframe.c new file mode 100644 index 0000000000..bb09347e1c --- /dev/null +++ b/third_party/aom/av1/decoder/decodeframe.c @@ -0,0 +1,5369 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdbool.h> +#include <stddef.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom/aom_codec.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/binary_codes_reader.h" +#include "aom_dsp/bitreader.h" +#include "aom_dsp/bitreader_buffer.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_ports/mem.h" +#include "aom_ports/mem_ops.h" +#include "aom_scale/aom_scale.h" +#include "aom_util/aom_thread.h" + +#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG + +#include "av1/common/alloccommon.h" +#include "av1/common/cdef.h" +#include "av1/common/cfl.h" +#if CONFIG_INSPECTION +#include "av1/decoder/inspection.h" +#endif +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/entropymv.h" +#include "av1/common/frame_buffers.h" +#include "av1/common/idct.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/resize.h" +#include "av1/common/seg_common.h" +#include "av1/common/thread_common.h" +#include "av1/common/tile_common.h" +#include "av1/common/warped_motion.h" +#include "av1/common/obmc.h" +#include "av1/decoder/decodeframe.h" +#include "av1/decoder/decodemv.h" +#include "av1/decoder/decoder.h" +#include "av1/decoder/decodetxb.h" +#include "av1/decoder/detokenize.h" + +#define ACCT_STR __func__ + +#define AOM_MIN_THREADS_PER_TILE 1 +#define AOM_MAX_THREADS_PER_TILE 2 + +// This is needed by ext_tile related unit tests. +#define EXT_TILE_DEBUG 1 +#define MC_TEMP_BUF_PELS \ + (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \ + ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2)) + +// Checks that the remaining bits start with a 1 and ends with 0s. +// It consumes an additional byte, if already byte aligned before the check. +int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { + // bit_offset is set to 0 (mod 8) when the reader is already byte aligned + int bits_before_alignment = 8 - rb->bit_offset % 8; + int trailing = aom_rb_read_literal(rb, bits_before_alignment); + if (trailing != (1 << (bits_before_alignment - 1))) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + return 0; +} + +// Use only_chroma = 1 to only set the chroma planes +static AOM_INLINE void set_planes_to_neutral_grey( + const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf, + int only_chroma) { + if (seq_params->use_highbitdepth) { + const int val = 1 << (seq_params->bit_depth - 1); + for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { + const int is_uv = plane > 0; + uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]); + // Set the first row to neutral grey. Then copy the first row to all + // subsequent rows. + if (buf->crop_heights[is_uv] > 0) { + aom_memset16(base, val, buf->crop_widths[is_uv]); + for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) { + memcpy(&base[row_idx * buf->strides[is_uv]], base, + sizeof(*base) * buf->crop_widths[is_uv]); + } + } + } + } else { + for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { + const int is_uv = plane > 0; + for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) { + memset(&buf->buffers[plane][row_idx * buf->strides[is_uv]], 1 << 7, + buf->crop_widths[is_uv]); + } + } + } +} + +static AOM_INLINE void loop_restoration_read_sb_coeffs( + const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane, + int runit_idx); + +static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { + return len != 0 && len <= (size_t)(end - start); +} + +static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb, + int coded_lossless) { + if (coded_lossless) return ONLY_4X4; + return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST; +} + +static REFERENCE_MODE read_frame_reference_mode( + const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + if (frame_is_intra_only(cm)) { + return SINGLE_REFERENCE; + } else { + return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; + } +} + +static AOM_INLINE void inverse_transform_block(DecoderCodingBlock *dcb, + int plane, const TX_TYPE tx_type, + const TX_SIZE tx_size, + uint8_t *dst, int stride, + int reduced_tx_set) { + tran_low_t *const dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane]; + eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; + uint16_t scan_line = eob_data->max_scan_line; + uint16_t eob = eob_data->eob; + av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst, + stride, eob, reduced_tx_set); + memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); +} + +static AOM_INLINE void read_coeffs_tx_intra_block( + const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, + const int plane, const int row, const int col, const TX_SIZE tx_size) { + MB_MODE_INFO *mbmi = dcb->xd.mi[0]; + if (!mbmi->skip_txfm) { +#if TXCOEFF_TIMER + struct aom_usec_timer timer; + aom_usec_timer_start(&timer); +#endif + av1_read_coeffs_txb_facade(cm, dcb, r, plane, row, col, tx_size); +#if TXCOEFF_TIMER + aom_usec_timer_mark(&timer); + const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); + cm->txcoeff_timer += elapsed_time; + ++cm->txb_count; +#endif + } +} + +static AOM_INLINE void decode_block_void(const AV1_COMMON *const cm, + DecoderCodingBlock *dcb, + aom_reader *const r, const int plane, + const int row, const int col, + const TX_SIZE tx_size) { + (void)cm; + (void)dcb; + (void)r; + (void)plane; + (void)row; + (void)col; + (void)tx_size; +} + +static AOM_INLINE void predict_inter_block_void(AV1_COMMON *const cm, + DecoderCodingBlock *dcb, + BLOCK_SIZE bsize) { + (void)cm; + (void)dcb; + (void)bsize; +} + +static AOM_INLINE void cfl_store_inter_block_void(AV1_COMMON *const cm, + MACROBLOCKD *const xd) { + (void)cm; + (void)xd; +} + +static AOM_INLINE void predict_and_reconstruct_intra_block( + const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, + const int plane, const int row, const int col, const TX_SIZE tx_size) { + (void)r; + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *mbmi = xd->mi[0]; + PLANE_TYPE plane_type = get_plane_type(plane); + + av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); + + if (!mbmi->skip_txfm) { + eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; + if (eob_data->eob) { + const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; + // tx_type was read out in av1_read_coeffs_txb. + const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size, + reduced_tx_set_used); + struct macroblockd_plane *const pd = &xd->plane[plane]; + uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; + inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride, + reduced_tx_set_used); + } + } + if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) { + cfl_store_tx(xd, row, col, tx_size, mbmi->bsize); + } +} + +static AOM_INLINE void inverse_transform_inter_block( + const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, + const int plane, const int blk_row, const int blk_col, + const TX_SIZE tx_size) { + (void)r; + MACROBLOCKD *const xd = &dcb->xd; + PLANE_TYPE plane_type = get_plane_type(plane); + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; + // tx_type was read out in av1_read_coeffs_txb. + const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, + tx_size, reduced_tx_set_used); + + uint8_t *dst = + &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; + inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride, + reduced_tx_set_used); +#if CONFIG_MISMATCH_DEBUG + int pixel_c, pixel_r; + BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; + int blk_w = block_size_wide[bsize]; + int blk_h = block_size_high[bsize]; + const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); + const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); + mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, + pd->subsampling_x, pd->subsampling_y); + mismatch_check_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint, + plane, pixel_c, pixel_r, blk_w, blk_h, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); +#endif +} + +static AOM_INLINE void set_cb_buffer_offsets(DecoderCodingBlock *dcb, + TX_SIZE tx_size, int plane) { + dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size]; + dcb->txb_offset[plane] = + dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); +} + +static AOM_INLINE void decode_reconstruct_tx( + AV1_COMMON *cm, ThreadData *const td, aom_reader *r, + MB_MODE_INFO *const mbmi, int plane, BLOCK_SIZE plane_bsize, int blk_row, + int blk_col, int block, TX_SIZE tx_size, int *eob_total) { + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE plane_tx_size = + plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, + pd->subsampling_y) + : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, + blk_col)]; + // Scale to match transform block unit. + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + if (tx_size == plane_tx_size || plane) { + td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, + tx_size); + + td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, + tx_size); + eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; + *eob_total += eob_data->eob; + set_cb_buffer_offsets(dcb, tx_size, plane); + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); + assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int sub_step = bsw * bsh; + const int row_end = + AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); + const int col_end = + AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); + + assert(bsw > 0 && bsh > 0); + + for (int row = 0; row < row_end; row += bsh) { + const int offsetr = blk_row + row; + for (int col = 0; col < col_end; col += bsw) { + const int offsetc = blk_col + col; + + decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr, + offsetc, block, sub_txs, eob_total); + block += sub_step; + } + } + } +} + +static AOM_INLINE void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int bw, int bh, int x_mis, int y_mis) { + const int num_planes = av1_num_planes(cm); + const CommonModeInfoParams *const mi_params = &cm->mi_params; + const TileInfo *const tile = &xd->tile; + + set_mi_offsets(mi_params, xd, mi_row, mi_col); + xd->mi[0]->bsize = bsize; +#if CONFIG_RD_DEBUG + xd->mi[0]->mi_row = mi_row; + xd->mi[0]->mi_col = mi_col; +#endif + + assert(x_mis && y_mis); + for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0]; + int idx = mi_params->mi_stride; + for (int y = 1; y < y_mis; ++y) { + memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0])); + idx += mi_params->mi_stride; + } + + set_plane_n4(xd, bw, bh, num_planes); + set_entropy_context(xd, mi_row, mi_col, num_planes); + + // Distance of Mb to the various image edges. These are specified to 8th pel + // as they are always compared to values that are in 1/8th pel units + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, + mi_params->mi_cols); + + av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, + num_planes); +} + +static AOM_INLINE void decode_mbmi_block(AV1Decoder *const pbi, + DecoderCodingBlock *dcb, int mi_row, + int mi_col, aom_reader *r, + PARTITION_TYPE partition, + BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &pbi->common; + const SequenceHeader *const seq_params = cm->seq_params; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col); + const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row); + MACROBLOCKD *const xd = &dcb->xd; + +#if CONFIG_ACCOUNTING + aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); +#endif + set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); + xd->mi[0]->partition = partition; + av1_read_mode_info(pbi, dcb, r, x_mis, y_mis); + if (bsize >= BLOCK_8X8 && + (seq_params->subsampling_x || seq_params->subsampling_y)) { + const BLOCK_SIZE uv_subsize = + av1_ss_size_lookup[bsize][seq_params->subsampling_x] + [seq_params->subsampling_y]; + if (uv_subsize == BLOCK_INVALID) + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Invalid block size."); + } +} + +typedef struct PadBlock { + int x0; + int x1; + int y0; + int y1; +} PadBlock; + +#if CONFIG_AV1_HIGHBITDEPTH +static AOM_INLINE void highbd_build_mc_border(const uint8_t *src8, + int src_stride, uint8_t *dst8, + int dst_stride, int x, int y, + int b_w, int b_h, int w, int h) { + // Get a pointer to the start of the real data for this row. + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); + const uint16_t *ref_row = src - x - y * src_stride; + + if (y >= h) + ref_row += (h - 1) * src_stride; + else if (y > 0) + ref_row += y * src_stride; + + do { + int right = 0, copy; + int left = x < 0 ? -x : 0; + + if (left > b_w) left = b_w; + + if (x + b_w > w) right = x + b_w - w; + + if (right > b_w) right = b_w; + + copy = b_w - left - right; + + if (left) aom_memset16(dst, ref_row[0], left); + + if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); + + if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right); + + dst += dst_stride; + ++y; + + if (y > 0 && y < h) ref_row += src_stride; + } while (--b_h); +} +#endif // CONFIG_AV1_HIGHBITDEPTH + +static AOM_INLINE void build_mc_border(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int x, + int y, int b_w, int b_h, int w, int h) { + // Get a pointer to the start of the real data for this row. + const uint8_t *ref_row = src - x - y * src_stride; + + if (y >= h) + ref_row += (h - 1) * src_stride; + else if (y > 0) + ref_row += y * src_stride; + + do { + int right = 0, copy; + int left = x < 0 ? -x : 0; + + if (left > b_w) left = b_w; + + if (x + b_w > w) right = x + b_w - w; + + if (right > b_w) right = b_w; + + copy = b_w - left - right; + + if (left) memset(dst, ref_row[0], left); + + if (copy) memcpy(dst + left, ref_row + x + left, copy); + + if (right) memset(dst + left + copy, ref_row[w - 1], right); + + dst += dst_stride; + ++y; + + if (y > 0 && y < h) ref_row += src_stride; + } while (--b_h); +} + +static INLINE int update_extend_mc_border_params( + const struct scale_factors *const sf, struct buf_2d *const pre_buf, + MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv, + int do_warp, int is_intrabc, int *x_pad, int *y_pad) { + const int is_scaled = av1_is_scaled(sf); + // Get reference width and height. + int frame_width = pre_buf->width; + int frame_height = pre_buf->height; + + // Do border extension if there is motion or + // width/height is not a multiple of 8 pixels. + if ((!is_intrabc) && (!do_warp) && + (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) || + (frame_height & 0x7))) { + if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { + block->x0 -= AOM_INTERP_EXTEND - 1; + block->x1 += AOM_INTERP_EXTEND; + *x_pad = 1; + } + + if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { + block->y0 -= AOM_INTERP_EXTEND - 1; + block->y1 += AOM_INTERP_EXTEND; + *y_pad = 1; + } + + // Skip border extension if block is inside the frame. + if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || + block->y1 > frame_height - 1) { + return 1; + } + } + return 0; +} + +static INLINE void extend_mc_border(const struct scale_factors *const sf, + struct buf_2d *const pre_buf, + MV32 scaled_mv, PadBlock block, + int subpel_x_mv, int subpel_y_mv, + int do_warp, int is_intrabc, int highbd, + uint8_t *mc_buf, uint8_t **pre, + int *src_stride) { + int x_pad = 0, y_pad = 0; + if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, + subpel_x_mv, subpel_y_mv, do_warp, + is_intrabc, &x_pad, &y_pad)) { + // Get reference block pointer. + const uint8_t *const buf_ptr = + pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; + int buf_stride = pre_buf->stride; + const int b_w = block.x1 - block.x0; + const int b_h = block.y1 - block.y0; + +#if CONFIG_AV1_HIGHBITDEPTH + // Extend the border. + if (highbd) { + highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, + block.y0, b_w, b_h, pre_buf->width, + pre_buf->height); + } else { + build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w, + b_h, pre_buf->width, pre_buf->height); + } +#else + (void)highbd; + build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w, + b_h, pre_buf->width, pre_buf->height); +#endif + *src_stride = b_w; + *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w + + x_pad * (AOM_INTERP_EXTEND - 1); + } +} + +static AOM_INLINE void dec_calc_subpel_params( + const MV *const src_mv, InterPredParams *const inter_pred_params, + const MACROBLOCKD *const xd, int mi_x, int mi_y, uint8_t **pre, + SubpelParams *subpel_params, int *src_stride, PadBlock *block, + MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) { + const struct scale_factors *sf = inter_pred_params->scale_factors; + struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; + const int bw = inter_pred_params->block_width; + const int bh = inter_pred_params->block_height; + const int is_scaled = av1_is_scaled(sf); + if (is_scaled) { + int ssx = inter_pred_params->subsampling_x; + int ssy = inter_pred_params->subsampling_y; + int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; + orig_pos_y += src_mv->row * (1 << (1 - ssy)); + int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; + orig_pos_x += src_mv->col * (1 << (1 - ssx)); + int pos_y = av1_scaled_y(orig_pos_y, sf); + int pos_x = av1_scaled_x(orig_pos_x, sf); + pos_x += SCALE_EXTRA_OFF; + pos_y += SCALE_EXTRA_OFF; + + const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); + const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); + const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) + << SCALE_SUBPEL_BITS; + const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; + pos_y = clamp(pos_y, top, bottom); + pos_x = clamp(pos_x, left, right); + + subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; + subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; + subpel_params->xs = sf->x_step_q4; + subpel_params->ys = sf->y_step_q4; + + // Get reference block top left coordinate. + block->x0 = pos_x >> SCALE_SUBPEL_BITS; + block->y0 = pos_y >> SCALE_SUBPEL_BITS; + + // Get reference block bottom right coordinate. + block->x1 = + ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1; + block->y1 = + ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1; + + MV temp_mv; + temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh, + inter_pred_params->subsampling_x, + inter_pred_params->subsampling_y); + *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); + scaled_mv->row += SCALE_EXTRA_OFF; + scaled_mv->col += SCALE_EXTRA_OFF; + + *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; + *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; + } else { + // Get block position in current frame. + int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; + int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; + + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, src_mv, bw, bh, inter_pred_params->subsampling_x, + inter_pred_params->subsampling_y); + subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; + subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; + subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; + + // Get reference block top left coordinate. + pos_x += mv_q4.col; + pos_y += mv_q4.row; + block->x0 = pos_x >> SUBPEL_BITS; + block->y0 = pos_y >> SUBPEL_BITS; + + // Get reference block bottom right coordinate. + block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1; + block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1; + + scaled_mv->row = mv_q4.row; + scaled_mv->col = mv_q4.col; + *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; + *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; + } + *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; + *src_stride = pre_buf->stride; +} + +static AOM_INLINE void dec_calc_subpel_params_and_extend( + const MV *const src_mv, InterPredParams *const inter_pred_params, + MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, uint8_t **mc_buf, + uint8_t **pre, SubpelParams *subpel_params, int *src_stride) { + PadBlock block; + MV32 scaled_mv; + int subpel_x_mv, subpel_y_mv; + dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre, + subpel_params, src_stride, &block, &scaled_mv, + &subpel_x_mv, &subpel_y_mv); + extend_mc_border( + inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf, + scaled_mv, block, subpel_x_mv, subpel_y_mv, + inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc, + inter_pred_params->use_hbd_buf, mc_buf[ref], pre, src_stride); +} + +#define IS_DEC 1 +#include "av1/common/reconinter_template.inc" +#undef IS_DEC + +static void dec_build_inter_predictors(const AV1_COMMON *cm, + DecoderCodingBlock *dcb, int plane, + const MB_MODE_INFO *mi, + int build_for_obmc, int bw, int bh, + int mi_x, int mi_y) { + build_inter_predictors(cm, &dcb->xd, plane, mi, build_for_obmc, bw, bh, mi_x, + mi_y, dcb->mc_buf); +} + +static AOM_INLINE void dec_build_inter_predictor(const AV1_COMMON *cm, + DecoderCodingBlock *dcb, + int mi_row, int mi_col, + BLOCK_SIZE bsize) { + MACROBLOCKD *const xd = &dcb->xd; + const int num_planes = av1_num_planes(cm); + for (int plane = 0; plane < num_planes; ++plane) { + if (plane && !xd->is_chroma_ref) break; + const int mi_x = mi_col * MI_SIZE; + const int mi_y = mi_row * MI_SIZE; + dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0, + xd->plane[plane].width, xd->plane[plane].height, + mi_x, mi_y); + if (is_interintra_pred(xd->mi[0])) { + BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, + xd->plane[2].dst.buf }, + { xd->plane[0].dst.stride, xd->plane[1].dst.stride, + xd->plane[2].dst.stride } }; + av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf, + xd->plane[plane].dst.stride, &ctx, plane, + bsize); + } + } +} + +static INLINE void dec_build_prediction_by_above_pred( + MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, + int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { + struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; + const int above_mi_col = xd->mi_col + rel_mi_col; + int mi_x, mi_y; + MB_MODE_INFO backup_mbmi = *above_mbmi; + + (void)rel_mi_row; + (void)dir; + + av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size, + &backup_mbmi, ctxt, num_planes); + mi_x = above_mi_col << MI_SIZE_LOG2; + mi_y = xd->mi_row << MI_SIZE_LOG2; + + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + + for (int j = 0; j < num_planes; ++j) { + const struct macroblockd_plane *pd = &xd->plane[j]; + int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; + int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, + block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; + dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, + &backup_mbmi, 1, bw, bh, mi_x, mi_y); + } +} + +static AOM_INLINE void dec_build_prediction_by_above_preds( + const AV1_COMMON *cm, DecoderCodingBlock *dcb, + uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { + MACROBLOCKD *const xd = &dcb->xd; + if (!xd->up_available) return; + + // Adjust mb_to_bottom_edge to have the correct value for the OBMC + // prediction block. This is half the height of the original block, + // except for 128-wide blocks, where we only use a height of 32. + const int this_height = xd->height * MI_SIZE; + const int pred_height = AOMMIN(this_height / 2, 32); + xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height); + struct build_prediction_ctxt ctxt = { + cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb + }; + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + foreach_overlappable_nb_above(cm, xd, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + dec_build_prediction_by_above_pred, &ctxt); + + xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE); + xd->mb_to_right_edge = ctxt.mb_to_far_edge; + xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height); +} + +static INLINE void dec_build_prediction_by_left_pred( + MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, + int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { + struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; + const int left_mi_row = xd->mi_row + rel_mi_row; + int mi_x, mi_y; + MB_MODE_INFO backup_mbmi = *left_mbmi; + + (void)rel_mi_col; + (void)dir; + + av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size, + &backup_mbmi, ctxt, num_planes); + mi_x = xd->mi_col << MI_SIZE_LOG2; + mi_y = left_mi_row << MI_SIZE_LOG2; + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + + for (int j = 0; j < num_planes; ++j) { + const struct macroblockd_plane *pd = &xd->plane[j]; + int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, + block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); + int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; + dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, + &backup_mbmi, 1, bw, bh, mi_x, mi_y); + } +} + +static AOM_INLINE void dec_build_prediction_by_left_preds( + const AV1_COMMON *cm, DecoderCodingBlock *dcb, + uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { + MACROBLOCKD *const xd = &dcb->xd; + if (!xd->left_available) return; + + // Adjust mb_to_right_edge to have the correct value for the OBMC + // prediction block. This is half the width of the original block, + // except for 128-wide blocks, where we only use a width of 32. + const int this_width = xd->width * MI_SIZE; + const int pred_width = AOMMIN(this_width / 2, 32); + xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width); + + struct build_prediction_ctxt ctxt = { + cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb + }; + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + foreach_overlappable_nb_left(cm, xd, + max_neighbor_obmc[mi_size_high_log2[bsize]], + dec_build_prediction_by_left_pred, &ctxt); + + xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE); + xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width); + xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; +} + +static AOM_INLINE void dec_build_obmc_inter_predictors_sb( + const AV1_COMMON *cm, DecoderCodingBlock *dcb) { + const int num_planes = av1_num_planes(cm); + uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; + int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + + MACROBLOCKD *const xd = &dcb->xd; + av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2); + + dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1, + dst_height1, dst_stride1); + dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2, + dst_stride2); + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + av1_setup_dst_planes(xd->plane, xd->mi[0]->bsize, &cm->cur_frame->buf, mi_row, + mi_col, 0, num_planes); + av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2, + dst_stride2); +} + +static AOM_INLINE void cfl_store_inter_block(AV1_COMMON *const cm, + MACROBLOCKD *const xd) { + MB_MODE_INFO *mbmi = xd->mi[0]; + if (store_cfl_required(cm, xd)) { + cfl_store_block(xd, mbmi->bsize, mbmi->tx_size); + } +} + +static AOM_INLINE void predict_inter_block(AV1_COMMON *const cm, + DecoderCodingBlock *dcb, + BLOCK_SIZE bsize) { + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int num_planes = av1_num_planes(cm); + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { + const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; + if (frame < LAST_FRAME) { + assert(is_intrabc_block(mbmi)); + assert(frame == INTRA_FRAME); + assert(ref == 0); + } else { + const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame); + const struct scale_factors *ref_scale_factors = + get_ref_scale_factors_const(cm, frame); + + xd->block_ref_scale_factors[ref] = ref_scale_factors; + av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col, + ref_scale_factors, num_planes); + } + } + + dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) { + dec_build_obmc_inter_predictors_sb(cm, dcb); + } +#if CONFIG_MISMATCH_DEBUG + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + int pixel_c, pixel_r; + mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x, + pd->subsampling_y); + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, + cm->current_frame.order_hint, plane, pixel_c, + pixel_r, pd->width, pd->height, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); + } +#endif +} + +static AOM_INLINE void set_color_index_map_offset(MACROBLOCKD *const xd, + int plane, aom_reader *r) { + (void)r; + Av1ColorMapParam params; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + av1_get_block_dimensions(mbmi->bsize, plane, xd, ¶ms.plane_width, + ¶ms.plane_height, NULL, NULL); + xd->color_index_map_offset[plane] += params.plane_width * params.plane_height; +} + +static AOM_INLINE void decode_token_recon_block(AV1Decoder *const pbi, + ThreadData *const td, + aom_reader *r, + BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &pbi->common; + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + const int num_planes = av1_num_planes(cm); + MB_MODE_INFO *mbmi = xd->mi[0]; + + if (!is_inter_block(mbmi)) { + int row, col; + assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + int mu_blocks_wide = mi_size_wide[max_unit_bsize]; + int mu_blocks_high = mi_size_high[max_unit_bsize]; + mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); + mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); + + for (row = 0; row < max_blocks_high; row += mu_blocks_high) { + for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { + for (int plane = 0; plane < num_planes; ++plane) { + if (plane && !xd->is_chroma_ref) break; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE tx_size = av1_get_tx_size(plane, xd); + const int stepr = tx_size_high_unit[tx_size]; + const int stepc = tx_size_wide_unit[tx_size]; + + const int unit_height = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); + const int unit_width = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); + + for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; + blk_row += stepr) { + for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; + blk_col += stepc) { + td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row, + blk_col, tx_size); + td->predict_and_recon_intra_block_visit( + cm, dcb, r, plane, blk_row, blk_col, tx_size); + set_cb_buffer_offsets(dcb, tx_size, plane); + } + } + } + } + } + } else { + td->predict_inter_block_visit(cm, dcb, bsize); + // Reconstruction + if (!mbmi->skip_txfm) { + int eobtotal = 0; + + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + int row, col; + + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + assert(max_unit_bsize == + get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + int mu_blocks_wide = mi_size_wide[max_unit_bsize]; + int mu_blocks_high = mi_size_high[max_unit_bsize]; + + mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); + mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); + + for (row = 0; row < max_blocks_high; row += mu_blocks_high) { + for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { + for (int plane = 0; plane < num_planes; ++plane) { + if (plane && !xd->is_chroma_ref) break; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int ss_x = pd->subsampling_x; + const int ss_y = pd->subsampling_y; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, ss_x, ss_y); + const TX_SIZE max_tx_size = + get_vartx_max_txsize(xd, plane_bsize, plane); + const int bh_var_tx = tx_size_high_unit[max_tx_size]; + const int bw_var_tx = tx_size_wide_unit[max_tx_size]; + int block = 0; + int step = + tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + int blk_row, blk_col; + const int unit_height = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_high + row, max_blocks_high), ss_y); + const int unit_width = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_wide + col, max_blocks_wide), ss_x); + + for (blk_row = row >> ss_y; blk_row < unit_height; + blk_row += bh_var_tx) { + for (blk_col = col >> ss_x; blk_col < unit_width; + blk_col += bw_var_tx) { + decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, + blk_row, blk_col, block, max_tx_size, + &eobtotal); + block += step; + } + } + } + } + } + } + td->cfl_store_inter_block_visit(cm, xd); + } + + av1_visit_palette(pbi, xd, r, set_color_index_map_offset); +} + +static AOM_INLINE void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2, + int tx_w_log2, int tx_h_log2, + int min_txs, int split_size, int txs, + int blk_row, int blk_col) { + for (int idy = 0; idy < tx_size_high_unit[split_size]; + idy += tx_size_high_unit[min_txs]) { + for (int idx = 0; idx < tx_size_wide_unit[split_size]; + idx += tx_size_wide_unit[min_txs]) { + const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) + + ((blk_col + idx) >> tx_w_log2); + mbmi->inter_tx_size[index] = txs; + } + } +} + +static AOM_INLINE void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, + TX_SIZE tx_size, int depth, + int blk_row, int blk_col, + aom_reader *r) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + int is_split = 0; + const BLOCK_SIZE bsize = mbmi->bsize; + const int max_blocks_high = max_block_high(xd, bsize, 0); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + assert(tx_size > TX_4X4); + TX_SIZE txs = max_txsize_rect_lookup[bsize]; + for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) + txs = sub_tx_size_map[txs]; + const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; + const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; + const int bw_log2 = mi_size_wide_log2[bsize]; + const int stride_log2 = bw_log2 - tx_w_log2; + + if (depth == MAX_VARTX_DEPTH) { + set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, + tx_size, blk_row, blk_col); + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + return; + } + + const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, + mbmi->bsize, tx_size); + is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR); + + if (is_split) { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + + if (sub_txs == TX_4X4) { + set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, + sub_txs, blk_row, blk_col); + mbmi->tx_size = sub_txs; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, sub_txs, tx_size); + return; + } + + assert(bsw > 0 && bsh > 0); + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + int offsetr = blk_row + row; + int offsetc = blk_col + col; + read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, r); + } + } + } else { + set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, + tx_size, blk_row, blk_col); + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + } +} + +static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd, + aom_reader *r) { + // TODO(debargha): Clean up the logic here. This function should only + // be called for intra. + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + const int max_depths = bsize_to_max_depth(bsize); + const int ctx = get_tx_size_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], + max_depths + 1, ACCT_STR); + assert(depth >= 0 && depth <= max_depths); + const TX_SIZE tx_size = depth_to_tx_size(depth, bsize); + return tx_size; +} + +static TX_SIZE read_tx_size(const MACROBLOCKD *const xd, TX_MODE tx_mode, + int is_inter, int allow_select_inter, + aom_reader *r) { + const BLOCK_SIZE bsize = xd->mi[0]->bsize; + if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; + + if (block_signals_txsize(bsize)) { + if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { + const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r); + return coded_tx_size; + } else { + return tx_size_from_tx_mode(bsize, tx_mode); + } + } else { + assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); + return max_txsize_rect_lookup[bsize]; + } +} + +static AOM_INLINE void parse_decode_block(AV1Decoder *const pbi, + ThreadData *const td, int mi_row, + int mi_col, aom_reader *r, + PARTITION_TYPE partition, + BLOCK_SIZE bsize) { + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize); + + av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens); + + AV1_COMMON *cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + MB_MODE_INFO *mbmi = xd->mi[0]; + int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); + if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && + !mbmi->skip_txfm && inter_block_tx && !xd->lossless[mbmi->segment_id]) { + const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + const int width = mi_size_wide[bsize]; + const int height = mi_size_high[bsize]; + + for (int idy = 0; idy < height; idy += bh) + for (int idx = 0; idx < width; idx += bw) + read_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, r); + } else { + mbmi->tx_size = read_tx_size(xd, cm->features.tx_mode, inter_block_tx, + !mbmi->skip_txfm, r); + if (inter_block_tx) + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, + mbmi->skip_txfm && is_inter_block(mbmi), xd); + } + + if (cm->delta_q_info.delta_q_present_flag) { + for (int i = 0; i < MAX_SEGMENTS; i++) { + const int current_qindex = + av1_get_qindex(&cm->seg, i, xd->current_base_qindex); + const CommonQuantParams *const quant_params = &cm->quant_params; + for (int j = 0; j < num_planes; ++j) { + const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q + : (j == 1 ? quant_params->u_dc_delta_q + : quant_params->v_dc_delta_q); + const int ac_delta_q = j == 0 ? 0 + : (j == 1 ? quant_params->u_ac_delta_q + : quant_params->v_ac_delta_q); + xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX( + current_qindex, dc_delta_q, cm->seq_params->bit_depth); + xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX( + current_qindex, ac_delta_q, cm->seq_params->bit_depth); + } + } + } + if (mbmi->skip_txfm) av1_reset_entropy_context(xd, bsize, num_planes); + + decode_token_recon_block(pbi, td, r, bsize); +} + +static AOM_INLINE void set_offsets_for_pred_and_recon(AV1Decoder *const pbi, + ThreadData *const td, + int mi_row, int mi_col, + BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &pbi->common; + const CommonModeInfoParams *const mi_params = &cm->mi_params; + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int num_planes = av1_num_planes(cm); + + const int offset = mi_row * mi_params->mi_stride + mi_col; + const TileInfo *const tile = &xd->tile; + + xd->mi = mi_params->mi_grid_base + offset; + xd->tx_type_map = + &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col]; + xd->tx_type_map_stride = mi_params->mi_stride; + + set_plane_n4(xd, bw, bh, num_planes); + + // Distance of Mb to the various image edges. These are specified to 8th pel + // as they are always compared to values that are in 1/8th pel units + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, + mi_params->mi_cols); + + av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, + num_planes); +} + +static AOM_INLINE void decode_block(AV1Decoder *const pbi, ThreadData *const td, + int mi_row, int mi_col, aom_reader *r, + PARTITION_TYPE partition, + BLOCK_SIZE bsize) { + (void)partition; + set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); + decode_token_recon_block(pbi, td, r, bsize); +} + +static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col, + aom_reader *r, int has_rows, int has_cols, + BLOCK_SIZE bsize) { + const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!has_rows && !has_cols) return PARTITION_SPLIT; + + assert(ctx >= 0); + aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx]; + if (has_rows && has_cols) { + return (PARTITION_TYPE)aom_read_symbol( + r, partition_cdf, partition_cdf_length(bsize), ACCT_STR); + } else if (!has_rows && has_cols) { + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_vert_alike(cdf, partition_cdf, bsize); + assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); + return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; + } else { + assert(has_rows && !has_cols); + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_horz_alike(cdf, partition_cdf, bsize); + assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); + return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; + } +} + +// TODO(slavarnway): eliminate bsize and subsize in future commits +static AOM_INLINE void decode_partition(AV1Decoder *const pbi, + ThreadData *const td, int mi_row, + int mi_col, aom_reader *reader, + BLOCK_SIZE bsize, + int parse_decode_flag) { + assert(bsize < BLOCK_SIZES_ALL); + AV1_COMMON *const cm = &pbi->common; + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + const int bw = mi_size_wide[bsize]; + const int hbs = bw >> 1; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + const int quarter_step = bw / 4; + BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); + const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols; + + if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) + return; + + // parse_decode_flag takes the following values : + // 01 - do parse only + // 10 - do decode only + // 11 - do parse and decode + static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block, + decode_block, + parse_decode_block }; + + if (parse_decode_flag & 1) { + const int num_planes = av1_num_planes(cm); + for (int plane = 0; plane < num_planes; ++plane) { + int rcol0, rcol1, rrow0, rrow1; + + // Skip some unnecessary work if loop restoration is disabled + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; + + if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, + &rcol0, &rcol1, &rrow0, &rrow1)) { + const int rstride = cm->rst_info[plane].horz_units; + for (int rrow = rrow0; rrow < rrow1; ++rrow) { + for (int rcol = rcol0; rcol < rcol1; ++rcol) { + const int runit_idx = rcol + rrow * rstride; + loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx); + } + } + } + } + + partition = (bsize < BLOCK_8X8) ? PARTITION_NONE + : read_partition(xd, mi_row, mi_col, reader, + has_rows, has_cols, bsize); + } else { + partition = get_partition(cm, mi_row, mi_col, bsize); + } + subsize = get_partition_subsize(bsize, partition); + if (subsize == BLOCK_INVALID) { + // When an internal error occurs ensure that xd->mi_row is set appropriately + // w.r.t. current tile, which is used to signal processing of current row is + // done. + xd->mi_row = mi_row; + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Partition is invalid for block size %dx%d", + block_size_wide[bsize], block_size_high[bsize]); + } + // Check the bitstream is conformant: if there is subsampling on the + // chroma planes, subsize must subsample to a valid block size. + const struct macroblockd_plane *const pd_u = &xd->plane[1]; + if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) == + BLOCK_INVALID) { + // When an internal error occurs ensure that xd->mi_row is set appropriately + // w.r.t. current tile, which is used to signal processing of current row is + // done. + xd->mi_row = mi_row; + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Block size %dx%d invalid with this subsampling mode", + block_size_wide[subsize], block_size_high[subsize]); + } + +#define DEC_BLOCK_STX_ARG +#define DEC_BLOCK_EPT_ARG partition, +#define DEC_BLOCK(db_r, db_c, db_subsize) \ + block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \ + reader, DEC_BLOCK_EPT_ARG(db_subsize)) +#define DEC_PARTITION(db_r, db_c, db_subsize) \ + decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ + (db_subsize), parse_decode_flag) + + switch (partition) { + case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break; + case PARTITION_HORZ: + DEC_BLOCK(mi_row, mi_col, subsize); + if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize); + break; + case PARTITION_VERT: + DEC_BLOCK(mi_row, mi_col, subsize); + if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize); + break; + case PARTITION_SPLIT: + DEC_PARTITION(mi_row, mi_col, subsize); + DEC_PARTITION(mi_row, mi_col + hbs, subsize); + DEC_PARTITION(mi_row + hbs, mi_col, subsize); + DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize); + break; + case PARTITION_HORZ_A: + DEC_BLOCK(mi_row, mi_col, bsize2); + DEC_BLOCK(mi_row, mi_col + hbs, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col, subsize); + break; + case PARTITION_HORZ_B: + DEC_BLOCK(mi_row, mi_col, subsize); + DEC_BLOCK(mi_row + hbs, mi_col, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); + break; + case PARTITION_VERT_A: + DEC_BLOCK(mi_row, mi_col, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col, bsize2); + DEC_BLOCK(mi_row, mi_col + hbs, subsize); + break; + case PARTITION_VERT_B: + DEC_BLOCK(mi_row, mi_col, subsize); + DEC_BLOCK(mi_row, mi_col + hbs, bsize2); + DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); + break; + case PARTITION_HORZ_4: + for (int i = 0; i < 4; ++i) { + int this_mi_row = mi_row + i * quarter_step; + if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; + DEC_BLOCK(this_mi_row, mi_col, subsize); + } + break; + case PARTITION_VERT_4: + for (int i = 0; i < 4; ++i) { + int this_mi_col = mi_col + i * quarter_step; + if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; + DEC_BLOCK(mi_row, this_mi_col, subsize); + } + break; + default: assert(0 && "Invalid partition type"); + } + +#undef DEC_PARTITION +#undef DEC_BLOCK +#undef DEC_BLOCK_EPT_ARG +#undef DEC_BLOCK_STX_ARG + + if (parse_decode_flag & 1) + update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); +} + +static AOM_INLINE void setup_bool_decoder( + MACROBLOCKD *const xd, const uint8_t *data, const uint8_t *data_end, + const size_t read_size, struct aom_internal_error_info *error_info, + aom_reader *r, uint8_t allow_update_cdf) { + // Validate the calculated partition length. If the buffer + // described by the partition can't be fully read, then restrict + // it to the portion that can be (for EC mode) or throw an error. + if (!read_is_valid(data, read_size, data_end)) { + // When internal error occurs ensure that xd->mi_row is set appropriately + // w.r.t. current tile, which is used to signal processing of current row is + // done in row-mt decoding. + xd->mi_row = xd->tile.mi_row_start; + + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + } + if (aom_reader_init(r, data, read_size)) { + // When internal error occurs ensure that xd->mi_row is set appropriately + // w.r.t. current tile, which is used to signal processing of current row is + // done in row-mt decoding. + xd->mi_row = xd->tile.mi_row_start; + + aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, + "Failed to allocate bool decoder %d", 1); + } + + r->allow_update_cdf = allow_update_cdf; +} + +static AOM_INLINE void setup_segmentation(AV1_COMMON *const cm, + struct aom_read_bit_buffer *rb) { + struct segmentation *const seg = &cm->seg; + + seg->update_map = 0; + seg->update_data = 0; + seg->temporal_update = 0; + + seg->enabled = aom_rb_read_bit(rb); + if (!seg->enabled) { + if (cm->cur_frame->seg_map) { + memset(cm->cur_frame->seg_map, 0, + (cm->cur_frame->mi_rows * cm->cur_frame->mi_cols)); + } + + memset(seg, 0, sizeof(*seg)); + segfeatures_copy(&cm->cur_frame->seg, seg); + return; + } + if (cm->seg.enabled && cm->prev_frame && + (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) && + (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) { + cm->last_frame_seg_map = cm->prev_frame->seg_map; + } else { + cm->last_frame_seg_map = NULL; + } + // Read update flags + if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { + // These frames can't use previous frames, so must signal map + features + seg->update_map = 1; + seg->temporal_update = 0; + seg->update_data = 1; + } else { + seg->update_map = aom_rb_read_bit(rb); + if (seg->update_map) { + seg->temporal_update = aom_rb_read_bit(rb); + } else { + seg->temporal_update = 0; + } + seg->update_data = aom_rb_read_bit(rb); + } + + // Segmentation data update + if (seg->update_data) { + av1_clearall_segfeatures(seg); + + for (int i = 0; i < MAX_SEGMENTS; i++) { + for (int j = 0; j < SEG_LVL_MAX; j++) { + int data = 0; + const int feature_enabled = aom_rb_read_bit(rb); + if (feature_enabled) { + av1_enable_segfeature(seg, i, j); + + const int data_max = av1_seg_feature_data_max(j); + const int data_min = -data_max; + const int ubits = get_unsigned_bits(data_max); + + if (av1_is_segfeature_signed(j)) { + data = aom_rb_read_inv_signed_literal(rb, ubits); + } else { + data = aom_rb_read_literal(rb, ubits); + } + + data = clamp(data, data_min, data_max); + } + av1_set_segdata(seg, i, j, data); + } + } + av1_calculate_segdata(seg); + } else if (cm->prev_frame) { + segfeatures_copy(seg, &cm->prev_frame->seg); + } + segfeatures_copy(&cm->cur_frame->seg, seg); +} + +static AOM_INLINE void decode_restoration_mode(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + assert(!cm->features.all_lossless); + const int num_planes = av1_num_planes(cm); + if (cm->features.allow_intrabc) return; + int all_none = 1, chroma_none = 1; + for (int p = 0; p < num_planes; ++p) { + RestorationInfo *rsi = &cm->rst_info[p]; + if (aom_rb_read_bit(rb)) { + rsi->frame_restoration_type = + aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; + } else { + rsi->frame_restoration_type = + aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; + } + if (rsi->frame_restoration_type != RESTORE_NONE) { + all_none = 0; + chroma_none &= p == 0; + } + } + if (!all_none) { + assert(cm->seq_params->sb_size == BLOCK_64X64 || + cm->seq_params->sb_size == BLOCK_128X128); + const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64; + + for (int p = 0; p < num_planes; ++p) + cm->rst_info[p].restoration_unit_size = sb_size; + + RestorationInfo *rsi = &cm->rst_info[0]; + + if (sb_size == 64) { + rsi->restoration_unit_size <<= aom_rb_read_bit(rb); + } + if (rsi->restoration_unit_size > 64) { + rsi->restoration_unit_size <<= aom_rb_read_bit(rb); + } + } else { + const int size = RESTORATION_UNITSIZE_MAX; + for (int p = 0; p < num_planes; ++p) + cm->rst_info[p].restoration_unit_size = size; + } + + if (num_planes > 1) { + int s = + AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y); + if (s && !chroma_none) { + cm->rst_info[1].restoration_unit_size = + cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s); + } else { + cm->rst_info[1].restoration_unit_size = + cm->rst_info[0].restoration_unit_size; + } + cm->rst_info[2].restoration_unit_size = + cm->rst_info[1].restoration_unit_size; + } +} + +static AOM_INLINE void read_wiener_filter(int wiener_win, + WienerInfo *wiener_info, + WienerInfo *ref_wiener_info, + aom_reader *rb) { + memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter)); + memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter)); + + if (wiener_win == WIENER_WIN) + wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + + WIENER_FILT_TAP0_MINV; + else + wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0; + wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + + WIENER_FILT_TAP1_MINV; + wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + + WIENER_FILT_TAP2_MINV; + // The central element has an implicit +WIENER_FILT_STEP + wiener_info->vfilter[WIENER_HALFWIN] = + -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + + wiener_info->vfilter[2]); + + if (wiener_win == WIENER_WIN) + wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + + WIENER_FILT_TAP0_MINV; + else + wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0; + wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + + WIENER_FILT_TAP1_MINV; + wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = + aom_read_primitive_refsubexpfin( + rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + + WIENER_FILT_TAP2_MINV; + // The central element has an implicit +WIENER_FILT_STEP + wiener_info->hfilter[WIENER_HALFWIN] = + -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + + wiener_info->hfilter[2]); + memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); +} + +static AOM_INLINE void read_sgrproj_filter(SgrprojInfo *sgrproj_info, + SgrprojInfo *ref_sgrproj_info, + aom_reader *rb) { + sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); + const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; + + if (params->r[0] == 0) { + sgrproj_info->xqd[0] = 0; + sgrproj_info->xqd[1] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + + SGRPROJ_PRJ_MIN1; + } else if (params->r[1] == 0) { + sgrproj_info->xqd[0] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + + SGRPROJ_PRJ_MIN0; + sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0], + SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); + } else { + sgrproj_info->xqd[0] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + + SGRPROJ_PRJ_MIN0; + sgrproj_info->xqd[1] = + aom_read_primitive_refsubexpfin( + rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + + SGRPROJ_PRJ_MIN1; + } + + memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); +} + +static AOM_INLINE void loop_restoration_read_sb_coeffs( + const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane, + int runit_idx) { + const RestorationInfo *rsi = &cm->rst_info[plane]; + RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; + assert(rsi->frame_restoration_type != RESTORE_NONE); + + assert(!cm->features.all_lossless); + + const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; + WienerInfo *wiener_info = xd->wiener_info + plane; + SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; + + if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { + rui->restoration_type = + aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf, + RESTORE_SWITCHABLE_TYPES, ACCT_STR); + switch (rui->restoration_type) { + case RESTORE_WIENER: + read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); + break; + case RESTORE_SGRPROJ: + read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); + break; + default: assert(rui->restoration_type == RESTORE_NONE); break; + } + } else if (rsi->frame_restoration_type == RESTORE_WIENER) { + if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) { + rui->restoration_type = RESTORE_WIENER; + read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); + } else { + rui->restoration_type = RESTORE_NONE; + } + } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { + if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) { + rui->restoration_type = RESTORE_SGRPROJ; + read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); + } else { + rui->restoration_type = RESTORE_NONE; + } + } +} + +static AOM_INLINE void setup_loopfilter(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + const int num_planes = av1_num_planes(cm); + struct loopfilter *lf = &cm->lf; + + if (cm->features.allow_intrabc || cm->features.coded_lossless) { + // write default deltas to frame buffer + av1_set_default_ref_deltas(cm->cur_frame->ref_deltas); + av1_set_default_mode_deltas(cm->cur_frame->mode_deltas); + return; + } + assert(!cm->features.coded_lossless); + if (cm->prev_frame) { + // write deltas to frame buffer + memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); + memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); + } else { + av1_set_default_ref_deltas(lf->ref_deltas); + av1_set_default_mode_deltas(lf->mode_deltas); + } + lf->filter_level[0] = aom_rb_read_literal(rb, 6); + lf->filter_level[1] = aom_rb_read_literal(rb, 6); + if (num_planes > 1) { + if (lf->filter_level[0] || lf->filter_level[1]) { + lf->filter_level_u = aom_rb_read_literal(rb, 6); + lf->filter_level_v = aom_rb_read_literal(rb, 6); + } + } + lf->sharpness_level = aom_rb_read_literal(rb, 3); + + // Read in loop filter deltas applied at the MB level based on mode or ref + // frame. + lf->mode_ref_delta_update = 0; + + lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); + if (lf->mode_ref_delta_enabled) { + lf->mode_ref_delta_update = aom_rb_read_bit(rb); + if (lf->mode_ref_delta_update) { + for (int i = 0; i < REF_FRAMES; i++) + if (aom_rb_read_bit(rb)) + lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); + + for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) + if (aom_rb_read_bit(rb)) + lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); + } + } + + // write deltas to frame buffer + memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES); + memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS); +} + +static AOM_INLINE void setup_cdef(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + const int num_planes = av1_num_planes(cm); + CdefInfo *const cdef_info = &cm->cdef_info; + + if (cm->features.allow_intrabc) return; + cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3; + cdef_info->cdef_bits = aom_rb_read_literal(rb, 2); + cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits; + for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) { + cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); + cdef_info->cdef_uv_strengths[i] = + num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0; + } +} + +static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { + return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; +} + +static AOM_INLINE void setup_quantization(CommonQuantParams *quant_params, + int num_planes, + bool separate_uv_delta_q, + struct aom_read_bit_buffer *rb) { + quant_params->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); + quant_params->y_dc_delta_q = read_delta_q(rb); + if (num_planes > 1) { + int diff_uv_delta = 0; + if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb); + quant_params->u_dc_delta_q = read_delta_q(rb); + quant_params->u_ac_delta_q = read_delta_q(rb); + if (diff_uv_delta) { + quant_params->v_dc_delta_q = read_delta_q(rb); + quant_params->v_ac_delta_q = read_delta_q(rb); + } else { + quant_params->v_dc_delta_q = quant_params->u_dc_delta_q; + quant_params->v_ac_delta_q = quant_params->u_ac_delta_q; + } + } else { + quant_params->u_dc_delta_q = 0; + quant_params->u_ac_delta_q = 0; + quant_params->v_dc_delta_q = 0; + quant_params->v_ac_delta_q = 0; + } + quant_params->using_qmatrix = aom_rb_read_bit(rb); + if (quant_params->using_qmatrix) { + quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS); + quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS); + if (!separate_uv_delta_q) + quant_params->qmatrix_level_v = quant_params->qmatrix_level_u; + else + quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS); + } else { + quant_params->qmatrix_level_y = 0; + quant_params->qmatrix_level_u = 0; + quant_params->qmatrix_level_v = 0; + } +} + +// Build y/uv dequant values based on segmentation. +static AOM_INLINE void setup_segmentation_dequant(AV1_COMMON *const cm, + MACROBLOCKD *const xd) { + const int bit_depth = cm->seq_params->bit_depth; + // When segmentation is disabled, only the first value is used. The + // remaining are don't cares. + const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1; + CommonQuantParams *const quant_params = &cm->quant_params; + for (int i = 0; i < max_segments; ++i) { + const int qindex = xd->qindex[i]; + quant_params->y_dequant_QTX[i][0] = + av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, bit_depth); + quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth); + quant_params->u_dequant_QTX[i][0] = + av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, bit_depth); + quant_params->u_dequant_QTX[i][1] = + av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth); + quant_params->v_dequant_QTX[i][0] = + av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, bit_depth); + quant_params->v_dequant_QTX[i][1] = + av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth); + const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i); + // NB: depends on base index so there is only 1 set per frame + // No quant weighting when lossless or signalled not using QM + const int qmlevel_y = + use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1; + for (int j = 0; j < TX_SIZES_ALL; ++j) { + quant_params->y_iqmatrix[i][j] = + av1_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j); + } + const int qmlevel_u = + use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1; + for (int j = 0; j < TX_SIZES_ALL; ++j) { + quant_params->u_iqmatrix[i][j] = + av1_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j); + } + const int qmlevel_v = + use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1; + for (int j = 0; j < TX_SIZES_ALL; ++j) { + quant_params->v_iqmatrix[i][j] = + av1_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j); + } + } +} + +static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { + return aom_rb_read_bit(rb) ? SWITCHABLE + : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); +} + +static AOM_INLINE void setup_render_size(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + cm->render_width = cm->superres_upscaled_width; + cm->render_height = cm->superres_upscaled_height; + if (aom_rb_read_bit(rb)) + av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height); +} + +// TODO(afergs): make "struct aom_read_bit_buffer *const rb"? +static AOM_INLINE void setup_superres(AV1_COMMON *const cm, + struct aom_read_bit_buffer *rb, + int *width, int *height) { + cm->superres_upscaled_width = *width; + cm->superres_upscaled_height = *height; + + const SequenceHeader *const seq_params = cm->seq_params; + if (!seq_params->enable_superres) return; + + if (aom_rb_read_bit(rb)) { + cm->superres_scale_denominator = + (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); + cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN; + // Don't edit cm->width or cm->height directly, or the buffers won't get + // resized correctly + av1_calculate_scaled_superres_size(width, height, + cm->superres_scale_denominator); + } else { + // 1:1 scaling - ie. no scaling, scale not provided + cm->superres_scale_denominator = SCALE_NUMERATOR; + } +} + +static AOM_INLINE void resize_context_buffers(AV1_COMMON *cm, int width, + int height) { +#if CONFIG_SIZE_LIMIT + if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Dimensions of %dx%d beyond allowed size of %dx%d.", + width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); +#endif + if (cm->width != width || cm->height != height) { + const int new_mi_rows = CEIL_POWER_OF_TWO(height, MI_SIZE_LOG2); + const int new_mi_cols = CEIL_POWER_OF_TWO(width, MI_SIZE_LOG2); + + // Allocations in av1_alloc_context_buffers() depend on individual + // dimensions as well as the overall size. + if (new_mi_cols > cm->mi_params.mi_cols || + new_mi_rows > cm->mi_params.mi_rows) { + if (av1_alloc_context_buffers(cm, width, height, BLOCK_4X4)) { + // The cm->mi_* values have been cleared and any existing context + // buffers have been freed. Clear cm->width and cm->height to be + // consistent and to force a realloc next time. + cm->width = 0; + cm->height = 0; + aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate context buffers"); + } + } else { + cm->mi_params.set_mb_mi(&cm->mi_params, width, height, BLOCK_4X4); + } + av1_init_mi_buffers(&cm->mi_params); + cm->width = width; + cm->height = height; + } + + ensure_mv_buffer(cm->cur_frame, cm); + cm->cur_frame->width = cm->width; + cm->cur_frame->height = cm->height; +} + +static AOM_INLINE void setup_buffer_pool(AV1_COMMON *cm) { + BufferPool *const pool = cm->buffer_pool; + const SequenceHeader *const seq_params = cm->seq_params; + + lock_buffer_pool(pool); + if (aom_realloc_frame_buffer( + &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, + seq_params->subsampling_y, seq_params->use_highbitdepth, + AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment, + &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, 0, + 0)) { + unlock_buffer_pool(pool); + aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + } + unlock_buffer_pool(pool); + + cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth; + cm->cur_frame->buf.color_primaries = seq_params->color_primaries; + cm->cur_frame->buf.transfer_characteristics = + seq_params->transfer_characteristics; + cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; + cm->cur_frame->buf.monochrome = seq_params->monochrome; + cm->cur_frame->buf.chroma_sample_position = + seq_params->chroma_sample_position; + cm->cur_frame->buf.color_range = seq_params->color_range; + cm->cur_frame->buf.render_width = cm->render_width; + cm->cur_frame->buf.render_height = cm->render_height; +} + +static AOM_INLINE void setup_frame_size(AV1_COMMON *cm, + int frame_size_override_flag, + struct aom_read_bit_buffer *rb) { + const SequenceHeader *const seq_params = cm->seq_params; + int width, height; + + if (frame_size_override_flag) { + int num_bits_width = seq_params->num_bits_width; + int num_bits_height = seq_params->num_bits_height; + av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); + if (width > seq_params->max_frame_width || + height > seq_params->max_frame_height) { + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Frame dimensions are larger than the maximum values"); + } + } else { + width = seq_params->max_frame_width; + height = seq_params->max_frame_height; + } + + setup_superres(cm, rb, &width, &height); + resize_context_buffers(cm, width, height); + setup_render_size(cm, rb); + setup_buffer_pool(cm); +} + +static AOM_INLINE void setup_sb_size(SequenceHeader *seq_params, + struct aom_read_bit_buffer *rb) { + set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); +} + +static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, + int ref_xss, int ref_yss, + aom_bit_depth_t this_bit_depth, + int this_xss, int this_yss) { + return ref_bit_depth == this_bit_depth && ref_xss == this_xss && + ref_yss == this_yss; +} + +static AOM_INLINE void setup_frame_size_with_refs( + AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { + int width, height; + int found = 0; + int has_valid_ref_frame = 0; + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + if (aom_rb_read_bit(rb)) { + const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); + // This will never be NULL in a normal stream, as streams are required to + // have a shown keyframe before any inter frames, which would refresh all + // the reference buffers. However, it might be null if we're starting in + // the middle of a stream, and static analysis will error if we don't do + // a null check here. + if (ref_buf == NULL) { + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid condition: invalid reference buffer"); + } else { + const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf; + width = buf->y_crop_width; + height = buf->y_crop_height; + cm->render_width = buf->render_width; + cm->render_height = buf->render_height; + setup_superres(cm, rb, &width, &height); + resize_context_buffers(cm, width, height); + found = 1; + break; + } + } + } + + const SequenceHeader *const seq_params = cm->seq_params; + if (!found) { + int num_bits_width = seq_params->num_bits_width; + int num_bits_height = seq_params->num_bits_height; + + av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); + setup_superres(cm, rb, &width, &height); + resize_context_buffers(cm, width, height); + setup_render_size(cm, rb); + } + + if (width <= 0 || height <= 0) + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid frame size"); + + // Check to make sure at least one of frames that this frame references + // has valid dimensions. + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); + has_valid_ref_frame |= + valid_ref_frame_size(ref_frame->buf.y_crop_width, + ref_frame->buf.y_crop_height, width, height); + } + if (!has_valid_ref_frame) + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Referenced frame has invalid size"); + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); + if (!valid_ref_frame_img_fmt( + ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x, + ref_frame->buf.subsampling_y, seq_params->bit_depth, + seq_params->subsampling_x, seq_params->subsampling_y)) + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Referenced frame has incompatible color format"); + } + setup_buffer_pool(cm); +} + +// Same function as av1_read_uniform but reading from uncompresses header wb +static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + const int v = aom_rb_read_literal(rb, l - 1); + assert(l != 0); + if (v < m) + return v; + else + return (v << 1) - m + aom_rb_read_bit(rb); +} + +static AOM_INLINE void read_tile_info_max_tile( + AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) { + const SequenceHeader *const seq_params = cm->seq_params; + CommonTileParams *const tiles = &cm->tiles; + int width_sb = + CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2); + int height_sb = + CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2); + + av1_get_tile_limits(cm); + tiles->uniform_spacing = aom_rb_read_bit(rb); + + // Read tile columns + if (tiles->uniform_spacing) { + tiles->log2_cols = tiles->min_log2_cols; + while (tiles->log2_cols < tiles->max_log2_cols) { + if (!aom_rb_read_bit(rb)) { + break; + } + tiles->log2_cols++; + } + } else { + int i; + int start_sb; + for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) { + const int size_sb = + 1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb)); + tiles->col_start_sb[i] = start_sb; + start_sb += size_sb; + width_sb -= size_sb; + } + tiles->cols = i; + tiles->col_start_sb[i] = start_sb + width_sb; + } + av1_calculate_tile_cols(seq_params, cm->mi_params.mi_rows, + cm->mi_params.mi_cols, tiles); + + // Read tile rows + if (tiles->uniform_spacing) { + tiles->log2_rows = tiles->min_log2_rows; + while (tiles->log2_rows < tiles->max_log2_rows) { + if (!aom_rb_read_bit(rb)) { + break; + } + tiles->log2_rows++; + } + } else { + int i; + int start_sb; + for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) { + const int size_sb = + 1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb)); + tiles->row_start_sb[i] = start_sb; + start_sb += size_sb; + height_sb -= size_sb; + } + tiles->rows = i; + tiles->row_start_sb[i] = start_sb + height_sb; + } + av1_calculate_tile_rows(seq_params, cm->mi_params.mi_rows, tiles); +} + +void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) { + cm->tiles.single_tile_decoding = 0; + if (cm->tiles.large_scale) { + struct loopfilter *lf = &cm->lf; + RestorationInfo *const rst_info = cm->rst_info; + const CdefInfo *const cdef_info = &cm->cdef_info; + + // Figure out single_tile_decoding by loopfilter_level. + const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]); + const int no_cdef = cdef_info->cdef_bits == 0 && + cdef_info->cdef_strengths[0] == 0 && + cdef_info->cdef_uv_strengths[0] == 0; + const int no_restoration = + rst_info[0].frame_restoration_type == RESTORE_NONE && + rst_info[1].frame_restoration_type == RESTORE_NONE && + rst_info[2].frame_restoration_type == RESTORE_NONE; + assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef)); + assert(IMPLIES(cm->features.all_lossless, no_restoration)); + cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration; + } +} + +static AOM_INLINE void read_tile_info(AV1Decoder *const pbi, + struct aom_read_bit_buffer *const rb) { + AV1_COMMON *const cm = &pbi->common; + + read_tile_info_max_tile(cm, rb); + + pbi->context_update_tile_id = 0; + if (cm->tiles.rows * cm->tiles.cols > 1) { + // tile to use for cdf update + pbi->context_update_tile_id = + aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols); + if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid context_update_tile_id"); + } + // tile size magnitude + pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; + } +} + +#if EXT_TILE_DEBUG +static AOM_INLINE void read_ext_tile_info( + AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) { + AV1_COMMON *const cm = &pbi->common; + + // This information is stored as a separate byte. + int mod = rb->bit_offset % CHAR_BIT; + if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod); + assert(rb->bit_offset % CHAR_BIT == 0); + + if (cm->tiles.cols * cm->tiles.rows > 1) { + // Read the number of bytes used to store tile size + pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; + pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; + } +} +#endif // EXT_TILE_DEBUG + +static size_t mem_get_varsize(const uint8_t *src, int sz) { + switch (sz) { + case 1: return src[0]; + case 2: return mem_get_le16(src); + case 3: return mem_get_le24(src); + case 4: return mem_get_le32(src); + default: assert(0 && "Invalid size"); return -1; + } +} + +#if EXT_TILE_DEBUG +// Reads the next tile returning its size and adjusting '*data' accordingly +// based on 'is_last'. On return, '*data' is updated to point to the end of the +// raw tile buffer in the bit stream. +static AOM_INLINE void get_ls_tile_buffer( + const uint8_t *const data_end, struct aom_internal_error_info *error_info, + const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], + int tile_size_bytes, int col, int row, int tile_copy_mode) { + size_t size; + + size_t copy_size = 0; + const uint8_t *copy_data = NULL; + + if (!read_is_valid(*data, tile_size_bytes, data_end)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + size = mem_get_varsize(*data, tile_size_bytes); + + // If tile_copy_mode = 1, then the top bit of the tile header indicates copy + // mode. + if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { + // The remaining bits in the top byte signal the row offset + int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; + + // Currently, only use tiles in same column as reference tiles. + copy_data = tile_buffers[row - offset][col].data; + copy_size = tile_buffers[row - offset][col].size; + size = 0; + } else { + size += AV1_MIN_TILE_SIZE_BYTES; + } + + *data += tile_size_bytes; + + if (size > (size_t)(data_end - *data)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile size"); + + if (size > 0) { + tile_buffers[row][col].data = *data; + tile_buffers[row][col].size = size; + } else { + tile_buffers[row][col].data = copy_data; + tile_buffers[row][col].size = copy_size; + } + + *data += size; +} + +// Returns the end of the last tile buffer +// (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]). +static const uint8_t *get_ls_tile_buffers( + AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, + TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { + AV1_COMMON *const cm = &pbi->common; + const int tile_cols = cm->tiles.cols; + const int tile_rows = cm->tiles.rows; + const int have_tiles = tile_cols * tile_rows > 1; + const uint8_t *raw_data_end; // The end of the last tile buffer + + if (!have_tiles) { + const size_t tile_size = data_end - data; + tile_buffers[0][0].data = data; + tile_buffers[0][0].size = tile_size; + raw_data_end = NULL; + } else { + // We locate only the tile buffers that are required, which are the ones + // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always + // need the last (bottom right) tile buffer, as we need to know where the + // end of the compressed frame buffer is for proper superframe decoding. + + const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL }; + const uint8_t *const data_start = data; + + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int tile_rows_start = single_row ? dec_tile_row : 0; + const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + const int tile_cols_start = single_col ? dec_tile_col : 0; + const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + + const int tile_col_size_bytes = pbi->tile_col_size_bytes; + const int tile_size_bytes = pbi->tile_size_bytes; + int tile_width, tile_height; + av1_get_uniform_tile_size(cm, &tile_width, &tile_height); + const int tile_copy_mode = + ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0; + // Read tile column sizes for all columns (we need the last tile buffer) + for (int c = 0; c < tile_cols; ++c) { + const int is_last = c == tile_cols - 1; + size_t tile_col_size; + + if (!is_last) { + tile_col_size = mem_get_varsize(data, tile_col_size_bytes); + data += tile_col_size_bytes; + tile_col_data_end[c] = data + tile_col_size; + } else { + tile_col_size = data_end - data; + tile_col_data_end[c] = data_end; + } + data += tile_col_size; + } + + data = data_start; + + // Read the required tile sizes. + for (int c = tile_cols_start; c < tile_cols_end; ++c) { + const int is_last = c == tile_cols - 1; + + if (c > 0) data = tile_col_data_end[c - 1]; + + if (!is_last) data += tile_col_size_bytes; + + // Get the whole of the last column, otherwise stop at the required tile. + for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { + get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data, + tile_buffers, tile_size_bytes, c, r, tile_copy_mode); + } + } + + // If we have not read the last column, then read it to get the last tile. + if (tile_cols_end != tile_cols) { + const int c = tile_cols - 1; + + data = tile_col_data_end[c - 1]; + + for (int r = 0; r < tile_rows; ++r) { + get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data, + tile_buffers, tile_size_bytes, c, r, tile_copy_mode); + } + } + raw_data_end = data; + } + return raw_data_end; +} +#endif // EXT_TILE_DEBUG + +static const uint8_t *get_ls_single_tile_buffer( + AV1Decoder *pbi, const uint8_t *data, + TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { + assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0); + tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data; + tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size = + (size_t)pbi->coded_tile_data_size; + return data + pbi->coded_tile_data_size; +} + +// Reads the next tile returning its size and adjusting '*data' accordingly +// based on 'is_last'. +static AOM_INLINE void get_tile_buffer( + const uint8_t *const data_end, const int tile_size_bytes, int is_last, + struct aom_internal_error_info *error_info, const uint8_t **data, + TileBufferDec *const buf) { + size_t size; + + if (!is_last) { + if (!read_is_valid(*data, tile_size_bytes, data_end)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Not enough data to read tile size"); + + size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES; + *data += tile_size_bytes; + + if (size > (size_t)(data_end - *data)) + aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile size"); + } else { + size = data_end - *data; + } + + buf->data = *data; + buf->size = size; + + *data += size; +} + +static AOM_INLINE void get_tile_buffers( + AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, + TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile, + int end_tile) { + AV1_COMMON *const cm = &pbi->common; + const int tile_cols = cm->tiles.cols; + const int tile_rows = cm->tiles.rows; + int tc = 0; + + for (int r = 0; r < tile_rows; ++r) { + for (int c = 0; c < tile_cols; ++c, ++tc) { + TileBufferDec *const buf = &tile_buffers[r][c]; + + const int is_last = (tc == end_tile); + const size_t hdr_offset = 0; + + if (tc < start_tile || tc > end_tile) continue; + + if (data + hdr_offset >= data_end) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Data ended before all tiles were read."); + data += hdr_offset; + get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &pbi->error, + &data, buf); + } + } +} + +static AOM_INLINE void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb, + CB_BUFFER *cb_buffer_base, + const int num_planes, int mi_row, + int mi_col) { + AV1_COMMON *const cm = &pbi->common; + int mib_size_log2 = cm->seq_params->mib_size_log2; + int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1; + int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); + CB_BUFFER *cb_buffer = cb_buffer_base + offset; + + for (int plane = 0; plane < num_planes; ++plane) { + dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane]; + dcb->eob_data[plane] = cb_buffer->eob_data[plane]; + dcb->cb_offset[plane] = 0; + dcb->txb_offset[plane] = 0; + } + MACROBLOCKD *const xd = &dcb->xd; + xd->plane[0].color_index_map = cb_buffer->color_index_map[0]; + xd->plane[1].color_index_map = cb_buffer->color_index_map[1]; + xd->color_index_map_offset[0] = 0; + xd->color_index_map_offset[1] = 0; +} + +static AOM_INLINE void decoder_alloc_tile_data(AV1Decoder *pbi, + const int n_tiles) { + AV1_COMMON *const cm = &pbi->common; + aom_free(pbi->tile_data); + pbi->allocated_tiles = 0; + CHECK_MEM_ERROR(cm, pbi->tile_data, + aom_memalign(32, n_tiles * sizeof(*pbi->tile_data))); + pbi->allocated_tiles = n_tiles; + for (int i = 0; i < n_tiles; i++) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_zero(tile_data->dec_row_mt_sync); + } + pbi->allocated_row_mt_sync_rows = 0; +} + +// Set up nsync by width. +static INLINE int get_sync_range(int width) { +// nsync numbers are picked by testing. +#if 0 + if (width < 640) + return 1; + else if (width <= 1280) + return 2; + else if (width <= 4096) + return 4; + else + return 8; +#else + (void)width; +#endif + return 1; +} + +// Allocate memory for decoder row synchronization +static AOM_INLINE void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync, + AV1_COMMON *cm, int rows) { + dec_row_mt_sync->allocated_sb_rows = rows; +#if CONFIG_MULTITHREAD + { + int i; + + CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_, + aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows)); + if (dec_row_mt_sync->mutex_) { + for (i = 0; i < rows; ++i) { + pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL); + } + } + + CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_, + aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows)); + if (dec_row_mt_sync->cond_) { + for (i = 0; i < rows; ++i) { + pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL); + } + } + } +#endif // CONFIG_MULTITHREAD + + CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col, + aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows)); + + // Set up nsync. + dec_row_mt_sync->sync_range = get_sync_range(cm->width); +} + +// Deallocate decoder row synchronization related mutex and data +void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) { + if (dec_row_mt_sync != NULL) { +#if CONFIG_MULTITHREAD + int i; + if (dec_row_mt_sync->mutex_ != NULL) { + for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { + pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]); + } + aom_free(dec_row_mt_sync->mutex_); + } + if (dec_row_mt_sync->cond_ != NULL) { + for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { + pthread_cond_destroy(&dec_row_mt_sync->cond_[i]); + } + aom_free(dec_row_mt_sync->cond_); + } +#endif // CONFIG_MULTITHREAD + aom_free(dec_row_mt_sync->cur_sb_col); + + // clear the structure as the source of this call may be a resize in which + // case this call will be followed by an _alloc() which may fail. + av1_zero(*dec_row_mt_sync); + } +} + +static INLINE void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r, + int c) { +#if CONFIG_MULTITHREAD + const int nsync = dec_row_mt_sync->sync_range; + + if (r && !(c & (nsync - 1))) { + pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1]; + pthread_mutex_lock(mutex); + + while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync - + dec_row_mt_sync->intrabc_extra_top_right_sb_delay) { + pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex); + } + pthread_mutex_unlock(mutex); + } +#else + (void)dec_row_mt_sync; + (void)r; + (void)c; +#endif // CONFIG_MULTITHREAD +} + +static INLINE void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r, + int c, const int sb_cols) { +#if CONFIG_MULTITHREAD + const int nsync = dec_row_mt_sync->sync_range; + int cur; + int sig = 1; + + if (c < sb_cols - 1) { + cur = c; + if (c % nsync) sig = 0; + } else { + cur = sb_cols + nsync + dec_row_mt_sync->intrabc_extra_top_right_sb_delay; + } + + if (sig) { + pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]); + + dec_row_mt_sync->cur_sb_col[r] = cur; + + pthread_cond_signal(&dec_row_mt_sync->cond_[r]); + pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]); + } +#else + (void)dec_row_mt_sync; + (void)r; + (void)c; + (void)sb_cols; +#endif // CONFIG_MULTITHREAD +} + +static INLINE void signal_decoding_done_for_erroneous_row( + AV1Decoder *const pbi, const MACROBLOCKD *const xd) { + AV1_COMMON *const cm = &pbi->common; + const TileInfo *const tile = &xd->tile; + const int sb_row_in_tile = + ((xd->mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2); + const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile); + TileDataDec *const tile_data = + pbi->tile_data + tile->tile_row * cm->tiles.cols + tile->tile_col; + AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; + + sync_write(dec_row_mt_sync, sb_row_in_tile, sb_cols_in_tile - 1, + sb_cols_in_tile); +} + +static AOM_INLINE void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td, + const TileInfo *tile_info, + const int mi_row) { + AV1_COMMON *const cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + TileDataDec *const tile_data = pbi->tile_data + + tile_info->tile_row * cm->tiles.cols + + tile_info->tile_col; + const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); + const int sb_row_in_tile = + (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; + int sb_col_in_tile = 0; + int row_mt_exit = 0; + + for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; + mi_col += cm->seq_params->mib_size, sb_col_in_tile++) { + set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row, + mi_col); + + sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile); + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + row_mt_exit = pbi->frame_row_mt_info.row_mt_exit; +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + + if (!row_mt_exit) { + // Decoding of the super-block + decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, + cm->seq_params->sb_size, 0x2); + } + + sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile, + sb_cols_in_tile); + } +} + +static int check_trailing_bits_after_symbol_coder(aom_reader *r) { + if (aom_reader_has_overflowed(r)) return -1; + + uint32_t nb_bits = aom_reader_tell(r); + uint32_t nb_bytes = (nb_bits + 7) >> 3; + const uint8_t *p = aom_reader_find_begin(r) + nb_bytes; + + // aom_reader_tell() returns 1 for a newly initialized decoder, and the + // return value only increases as values are decoded. So nb_bits > 0, and + // thus p > p_begin. Therefore accessing p[-1] is safe. + uint8_t last_byte = p[-1]; + uint8_t pattern = 128 >> ((nb_bits - 1) & 7); + if ((last_byte & (2 * pattern - 1)) != pattern) return -1; + + // Make sure that all padding bytes are zero as required by the spec. + const uint8_t *p_end = aom_reader_find_end(r); + while (p < p_end) { + if (*p != 0) return -1; + p++; + } + return 0; +} + +static AOM_INLINE void set_decode_func_pointers(ThreadData *td, + int parse_decode_flag) { + td->read_coeffs_tx_intra_block_visit = decode_block_void; + td->predict_and_recon_intra_block_visit = decode_block_void; + td->read_coeffs_tx_inter_block_visit = decode_block_void; + td->inverse_tx_inter_block_visit = decode_block_void; + td->predict_inter_block_visit = predict_inter_block_void; + td->cfl_store_inter_block_visit = cfl_store_inter_block_void; + + if (parse_decode_flag & 0x1) { + td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block; + td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade; + } + if (parse_decode_flag & 0x2) { + td->predict_and_recon_intra_block_visit = + predict_and_reconstruct_intra_block; + td->inverse_tx_inter_block_visit = inverse_transform_inter_block; + td->predict_inter_block_visit = predict_inter_block; + td->cfl_store_inter_block_visit = cfl_store_inter_block; + } +} + +static AOM_INLINE void decode_tile(AV1Decoder *pbi, ThreadData *const td, + int tile_row, int tile_col) { + TileInfo tile_info; + + AV1_COMMON *const cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + + av1_tile_set_row(&tile_info, cm, tile_row); + av1_tile_set_col(&tile_info, cm, tile_col); + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + + av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end, + tile_row); + av1_reset_loop_filter_delta(xd, num_planes); + av1_reset_loop_restoration(xd, num_planes); + + for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; + mi_row += cm->seq_params->mib_size) { + av1_zero_left_context(xd); + + for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; + mi_col += cm->seq_params->mib_size) { + set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0); + + // Bit-stream parsing and decoding of the superblock + decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, + cm->seq_params->sb_size, 0x3); + + if (aom_reader_has_overflowed(td->bit_reader)) { + aom_merge_corrupted_flag(&dcb->corrupted, 1); + return; + } + } + } + + int corrupted = + (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; + aom_merge_corrupted_flag(&dcb->corrupted, corrupted); +} + +static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, int start_tile, + int end_tile) { + AV1_COMMON *const cm = &pbi->common; + ThreadData *const td = &pbi->td; + CommonTileParams *const tiles = &cm->tiles; + const int tile_cols = tiles->cols; + const int tile_rows = tiles->rows; + const int n_tiles = tile_cols * tile_rows; + TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int inv_col_order; + int inv_row_order; + int tile_row, tile_col; + uint8_t allow_update_cdf; + const uint8_t *raw_data_end = NULL; + + if (tiles->large_scale) { + tile_rows_start = single_row ? dec_tile_row : 0; + tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; + tile_cols_start = single_col ? dec_tile_col : 0; + tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + inv_col_order = pbi->inv_tile_order && !single_col; + inv_row_order = pbi->inv_tile_order && !single_row; + allow_update_cdf = 0; + } else { + tile_rows_start = 0; + tile_rows_end = tile_rows; + tile_cols_start = 0; + tile_cols_end = tile_cols; + inv_col_order = pbi->inv_tile_order; + inv_row_order = pbi->inv_tile_order; + allow_update_cdf = 1; + } + + // No tiles to decode. + if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || + // First tile is larger than end_tile. + tile_rows_start * tiles->cols + tile_cols_start > end_tile || + // Last tile is smaller than start_tile. + (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile) + return data; + + allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; + + assert(tile_rows <= MAX_TILE_ROWS); + assert(tile_cols <= MAX_TILE_COLS); + +#if EXT_TILE_DEBUG + if (tiles->large_scale && !pbi->ext_tile_debug) + raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers); + else if (tiles->large_scale && pbi->ext_tile_debug) + raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); + else +#endif // EXT_TILE_DEBUG + get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); + + if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { + decoder_alloc_tile_data(pbi, n_tiles); + } + if (pbi->dcb.xd.seg_mask == NULL) + CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask, + (uint8_t *)aom_memalign( + 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask))); +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + aom_accounting_reset(&pbi->accounting); + } +#endif + + set_decode_func_pointers(&pbi->td, 0x3); + + // Load all tile information into thread_data. + td->dcb = pbi->dcb; + + td->dcb.corrupted = 0; + td->dcb.mc_buf[0] = td->mc_buf[0]; + td->dcb.mc_buf[1] = td->mc_buf[1]; + td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst; + for (int j = 0; j < 2; ++j) { + td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j]; + } + + for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { + const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; + + for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { + const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; + TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col; + const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col]; + + if (row * tiles->cols + col < start_tile || + row * tiles->cols + col > end_tile) + continue; + + td->bit_reader = &tile_data->bit_reader; + av1_zero(td->cb_buffer_base.dqcoeff); + av1_tile_init(&td->dcb.xd.tile, cm, row, col); + td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex; + setup_bool_decoder(&td->dcb.xd, tile_bs_buf->data, data_end, + tile_bs_buf->size, &pbi->error, td->bit_reader, + allow_update_cdf); +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + td->bit_reader->accounting = &pbi->accounting; + td->bit_reader->accounting->last_tell_frac = + aom_reader_tell_frac(td->bit_reader); + } else { + td->bit_reader->accounting = NULL; + } +#endif + av1_init_macroblockd(cm, &td->dcb.xd); + av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row, + &td->dcb.xd); + + // Initialise the tile context from the frame context + tile_data->tctx = *cm->fc; + td->dcb.xd.tile_ctx = &tile_data->tctx; + + // decode tile + decode_tile(pbi, td, row, col); + aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted); + if (pbi->dcb.corrupted) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + } + } + + if (tiles->large_scale) { + if (n_tiles == 1) { + // Find the end of the single tile buffer + return aom_reader_find_end(&pbi->tile_data->bit_reader); + } + // Return the end of the last tile buffer + return raw_data_end; + } + TileDataDec *const tile_data = pbi->tile_data + end_tile; + + return aom_reader_find_end(&tile_data->bit_reader); +} + +static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) { + TileJobsDec *cur_job_info = NULL; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(tile_mt_info->job_mutex); + + if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) { + cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued; + tile_mt_info->jobs_dequeued++; + } + + pthread_mutex_unlock(tile_mt_info->job_mutex); +#else + (void)tile_mt_info; +#endif + return cur_job_info; +} + +static AOM_INLINE void tile_worker_hook_init( + AV1Decoder *const pbi, DecWorkerData *const thread_data, + const TileBufferDec *const tile_buffer, TileDataDec *const tile_data, + uint8_t allow_update_cdf) { + AV1_COMMON *cm = &pbi->common; + ThreadData *const td = thread_data->td; + int tile_row = tile_data->tile_info.tile_row; + int tile_col = tile_data->tile_info.tile_col; + + td->bit_reader = &tile_data->bit_reader; + av1_zero(td->cb_buffer_base.dqcoeff); + + MACROBLOCKD *const xd = &td->dcb.xd; + av1_tile_init(&xd->tile, cm, tile_row, tile_col); + xd->current_base_qindex = cm->quant_params.base_qindex; + + setup_bool_decoder(xd, tile_buffer->data, thread_data->data_end, + tile_buffer->size, &thread_data->error_info, + td->bit_reader, allow_update_cdf); +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + td->bit_reader->accounting = &pbi->accounting; + td->bit_reader->accounting->last_tell_frac = + aom_reader_tell_frac(td->bit_reader); + } else { + td->bit_reader->accounting = NULL; + } +#endif + av1_init_macroblockd(cm, xd); + xd->error_info = &thread_data->error_info; + av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd); + + // Initialise the tile context from the frame context + tile_data->tctx = *cm->fc; + xd->tile_ctx = &tile_data->tctx; +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + tile_data->bit_reader.accounting->last_tell_frac = + aom_reader_tell_frac(&tile_data->bit_reader); + } +#endif +} + +static int tile_worker_hook(void *arg1, void *arg2) { + DecWorkerData *const thread_data = (DecWorkerData *)arg1; + AV1Decoder *const pbi = (AV1Decoder *)arg2; + AV1_COMMON *cm = &pbi->common; + ThreadData *const td = thread_data->td; + uint8_t allow_update_cdf; + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(thread_data->error_info.jmp)) { + thread_data->error_info.setjmp = 0; + thread_data->td->dcb.corrupted = 1; + return 0; + } + thread_data->error_info.setjmp = 1; + + allow_update_cdf = cm->tiles.large_scale ? 0 : 1; + allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; + + set_decode_func_pointers(td, 0x3); + + assert(cm->tiles.cols > 0); + while (!td->dcb.corrupted) { + TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); + + if (cur_job_info != NULL) { + const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; + TileDataDec *const tile_data = cur_job_info->tile_data; + tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, + allow_update_cdf); + // decode tile + int tile_row = tile_data->tile_info.tile_row; + int tile_col = tile_data->tile_info.tile_col; + decode_tile(pbi, td, tile_row, tile_col); + } else { + break; + } + } + thread_data->error_info.setjmp = 0; + return !td->dcb.corrupted; +} + +static INLINE int get_max_row_mt_workers_per_tile(AV1_COMMON *cm, + const TileInfo *tile) { + // NOTE: Currently value of max workers is calculated based + // on the parse and decode time. As per the theoretical estimate + // when percentage of parse time is equal to percentage of decode + // time, number of workers needed to parse + decode a tile can not + // exceed more than 2. + // TODO(any): Modify this value if parsing is optimized in future. + int sb_rows = av1_get_sb_rows_in_tile(cm, tile); + int max_workers = + sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE; + return max_workers; +} + +// The caller must hold pbi->row_mt_mutex_ when calling this function. +// Returns 1 if either the next job is stored in *next_job_info or 1 is stored +// in *end_of_frame. +// NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0. +// The return value of this function depends on the following variables: +// - frame_row_mt_info->mi_rows_parse_done +// - frame_row_mt_info->mi_rows_decode_started +// - frame_row_mt_info->row_mt_exit +// Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of +// these variables is modified. +static int get_next_job_info(AV1Decoder *const pbi, + AV1DecRowMTJobInfo *next_job_info, + int *end_of_frame) { + AV1_COMMON *cm = &pbi->common; + TileDataDec *tile_data; + AV1DecRowMTSync *dec_row_mt_sync; + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; + const int tile_rows_start = frame_row_mt_info->tile_rows_start; + const int tile_rows_end = frame_row_mt_info->tile_rows_end; + const int tile_cols_start = frame_row_mt_info->tile_cols_start; + const int tile_cols_end = frame_row_mt_info->tile_cols_end; + const int start_tile = frame_row_mt_info->start_tile; + const int end_tile = frame_row_mt_info->end_tile; + const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size]; + int num_mis_to_decode, num_threads_working; + int num_mis_waiting_for_decode; + int min_threads_working = INT_MAX; + int max_mis_to_decode = 0; + int tile_row_idx, tile_col_idx; + int tile_row = -1; + int tile_col = -1; + + memset(next_job_info, 0, sizeof(*next_job_info)); + + // Frame decode is completed or error is encountered. + *end_of_frame = (frame_row_mt_info->mi_rows_decode_started == + frame_row_mt_info->mi_rows_to_decode) || + (frame_row_mt_info->row_mt_exit == 1); + if (*end_of_frame) { + return 1; + } + + // Decoding cannot start as bit-stream parsing is not complete. + assert(frame_row_mt_info->mi_rows_parse_done >= + frame_row_mt_info->mi_rows_decode_started); + if (frame_row_mt_info->mi_rows_parse_done == + frame_row_mt_info->mi_rows_decode_started) + return 0; + + // Choose the tile to decode. + for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end; + ++tile_row_idx) { + for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end; + ++tile_col_idx) { + if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile || + tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile) + continue; + + tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx; + dec_row_mt_sync = &tile_data->dec_row_mt_sync; + + num_threads_working = dec_row_mt_sync->num_threads_working; + num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done - + dec_row_mt_sync->mi_rows_decode_started) * + dec_row_mt_sync->mi_cols; + num_mis_to_decode = + (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) * + dec_row_mt_sync->mi_cols; + + assert(num_mis_to_decode >= num_mis_waiting_for_decode); + + // Pick the tile which has minimum number of threads working on it. + if (num_mis_waiting_for_decode > 0) { + if (num_threads_working < min_threads_working) { + min_threads_working = num_threads_working; + max_mis_to_decode = 0; + } + if (num_threads_working == min_threads_working && + num_mis_to_decode > max_mis_to_decode && + num_threads_working < + get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info)) { + max_mis_to_decode = num_mis_to_decode; + tile_row = tile_row_idx; + tile_col = tile_col_idx; + } + } + } + } + // No job found to process + if (tile_row == -1 || tile_col == -1) return 0; + + tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col; + dec_row_mt_sync = &tile_data->dec_row_mt_sync; + + next_job_info->tile_row = tile_row; + next_job_info->tile_col = tile_col; + next_job_info->mi_row = dec_row_mt_sync->mi_rows_decode_started + + tile_data->tile_info.mi_row_start; + + dec_row_mt_sync->num_threads_working++; + dec_row_mt_sync->mi_rows_decode_started += sb_mi_size; + frame_row_mt_info->mi_rows_decode_started += sb_mi_size; + assert(frame_row_mt_info->mi_rows_parse_done >= + frame_row_mt_info->mi_rows_decode_started); +#if CONFIG_MULTITHREAD + if (frame_row_mt_info->mi_rows_decode_started == + frame_row_mt_info->mi_rows_to_decode) { + pthread_cond_broadcast(pbi->row_mt_cond_); + } +#endif + + return 1; +} + +static INLINE void signal_parse_sb_row_done(AV1Decoder *const pbi, + TileDataDec *const tile_data, + const int sb_mi_size) { + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + assert(frame_row_mt_info->mi_rows_parse_done >= + frame_row_mt_info->mi_rows_decode_started); + tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size; + frame_row_mt_info->mi_rows_parse_done += sb_mi_size; +#if CONFIG_MULTITHREAD + // A new decode job is available. Wake up one worker thread to handle the + // new decode job. + // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started + // by the same increment (sb_mi_size). + pthread_cond_signal(pbi->row_mt_cond_); + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif +} + +// This function is very similar to decode_tile(). It would be good to figure +// out how to share code. +static AOM_INLINE void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td, + TileDataDec *const tile_data) { + AV1_COMMON *const cm = &pbi->common; + const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size]; + const int num_planes = av1_num_planes(cm); + const TileInfo *const tile_info = &tile_data->tile_info; + int tile_row = tile_info->tile_row; + DecoderCodingBlock *const dcb = &td->dcb; + MACROBLOCKD *const xd = &dcb->xd; + + av1_zero_above_context(cm, xd, tile_info->mi_col_start, tile_info->mi_col_end, + tile_row); + av1_reset_loop_filter_delta(xd, num_planes); + av1_reset_loop_restoration(xd, num_planes); + + for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; + mi_row += cm->seq_params->mib_size) { + av1_zero_left_context(xd); + + for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; + mi_col += cm->seq_params->mib_size) { + set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col); + + // Bit-stream parsing of the superblock + decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, + cm->seq_params->sb_size, 0x1); + + if (aom_reader_has_overflowed(td->bit_reader)) { + aom_merge_corrupted_flag(&dcb->corrupted, 1); + return; + } + } + signal_parse_sb_row_done(pbi, tile_data, sb_mi_size); + } + + int corrupted = + (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; + aom_merge_corrupted_flag(&dcb->corrupted, corrupted); +} + +static int row_mt_worker_hook(void *arg1, void *arg2) { + DecWorkerData *const thread_data = (DecWorkerData *)arg1; + AV1Decoder *const pbi = (AV1Decoder *)arg2; + ThreadData *const td = thread_data->td; + uint8_t allow_update_cdf; + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; + td->dcb.corrupted = 0; + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(thread_data->error_info.jmp)) { + thread_data->error_info.setjmp = 0; + thread_data->td->dcb.corrupted = 1; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + frame_row_mt_info->row_mt_exit = 1; +#if CONFIG_MULTITHREAD + pthread_cond_broadcast(pbi->row_mt_cond_); + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + // If any SB row (erroneous row) processed by a thread encounters an + // internal error, there is a need to indicate other threads that decoding + // of the erroneous row is complete. This ensures that other threads which + // wait upon the completion of SB's present in erroneous row are not waiting + // indefinitely. + signal_decoding_done_for_erroneous_row(pbi, &thread_data->td->dcb.xd); + return 0; + } + thread_data->error_info.setjmp = 1; + + AV1_COMMON *cm = &pbi->common; + allow_update_cdf = cm->tiles.large_scale ? 0 : 1; + allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; + + set_decode_func_pointers(td, 0x1); + + assert(cm->tiles.cols > 0); + while (!td->dcb.corrupted) { + TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); + + if (cur_job_info != NULL) { + const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; + TileDataDec *const tile_data = cur_job_info->tile_data; + tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, + allow_update_cdf); +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + tile_data->dec_row_mt_sync.num_threads_working++; +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + // decode tile + parse_tile_row_mt(pbi, td, tile_data); +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + tile_data->dec_row_mt_sync.num_threads_working--; +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + } else { + break; + } + } + + if (td->dcb.corrupted) { + thread_data->error_info.setjmp = 0; +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + frame_row_mt_info->row_mt_exit = 1; +#if CONFIG_MULTITHREAD + pthread_cond_broadcast(pbi->row_mt_cond_); + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + return 0; + } + + set_decode_func_pointers(td, 0x2); + + while (1) { + AV1DecRowMTJobInfo next_job_info; + int end_of_frame = 0; + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) { +#if CONFIG_MULTITHREAD + pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_); +#endif + } +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + + if (end_of_frame) break; + + int tile_row = next_job_info.tile_row; + int tile_col = next_job_info.tile_col; + int mi_row = next_job_info.mi_row; + + TileDataDec *tile_data = + pbi->tile_data + tile_row * cm->tiles.cols + tile_col; + AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; + + av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col); + av1_init_macroblockd(cm, &td->dcb.xd); + td->dcb.xd.error_info = &thread_data->error_info; + + decode_tile_sb_row(pbi, td, &tile_data->tile_info, mi_row); + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(pbi->row_mt_mutex_); +#endif + dec_row_mt_sync->num_threads_working--; +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(pbi->row_mt_mutex_); +#endif + } + thread_data->error_info.setjmp = 0; + return !td->dcb.corrupted; +} + +// sorts in descending order +static int compare_tile_buffers(const void *a, const void *b) { + const TileJobsDec *const buf1 = (const TileJobsDec *)a; + const TileJobsDec *const buf2 = (const TileJobsDec *)b; + return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size)); +} + +static AOM_INLINE void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm, + int tile_rows_start, int tile_rows_end, + int tile_cols_start, int tile_cols_end, + int start_tile, int end_tile) { + AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info; + TileJobsDec *tile_job_queue = tile_mt_info->job_queue; + tile_mt_info->jobs_enqueued = 0; + tile_mt_info->jobs_dequeued = 0; + + for (int row = tile_rows_start; row < tile_rows_end; row++) { + for (int col = tile_cols_start; col < tile_cols_end; col++) { + if (row * cm->tiles.cols + col < start_tile || + row * cm->tiles.cols + col > end_tile) + continue; + tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col]; + tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col; + tile_job_queue++; + tile_mt_info->jobs_enqueued++; + } + } +} + +static AOM_INLINE void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, + AV1_COMMON *cm, int tile_rows, + int tile_cols) { + tile_mt_info->alloc_tile_rows = tile_rows; + tile_mt_info->alloc_tile_cols = tile_cols; + int num_tiles = tile_rows * tile_cols; +#if CONFIG_MULTITHREAD + { + CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex, + aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles)); + + for (int i = 0; i < num_tiles; i++) { + pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL); + } + } +#endif + CHECK_MEM_ERROR(cm, tile_mt_info->job_queue, + aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles)); +} + +void av1_free_mc_tmp_buf(ThreadData *thread_data) { + int ref; + for (ref = 0; ref < 2; ref++) { + if (thread_data->mc_buf_use_highbd) + aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref])); + else + aom_free(thread_data->mc_buf[ref]); + thread_data->mc_buf[ref] = NULL; + } + thread_data->mc_buf_size = 0; + thread_data->mc_buf_use_highbd = 0; + + aom_free(thread_data->tmp_conv_dst); + thread_data->tmp_conv_dst = NULL; + aom_free(thread_data->seg_mask); + thread_data->seg_mask = NULL; + for (int i = 0; i < 2; ++i) { + aom_free(thread_data->tmp_obmc_bufs[i]); + thread_data->tmp_obmc_bufs[i] = NULL; + } +} + +static AOM_INLINE void allocate_mc_tmp_buf(AV1_COMMON *const cm, + ThreadData *thread_data, + int buf_size, int use_highbd) { + for (int ref = 0; ref < 2; ref++) { + // The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error + // 'Conditional jump or move depends on uninitialised value' from the loop + // filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in + // av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the + // potential reason for this issue. + if (use_highbd) { + uint16_t *hbd_mc_buf; + CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size)); + memset(hbd_mc_buf, 0, buf_size); + thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf); + } else { + CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref], + (uint8_t *)aom_memalign(16, buf_size)); + memset(thread_data->mc_buf[ref], 0, buf_size); + } + } + thread_data->mc_buf_size = buf_size; + thread_data->mc_buf_use_highbd = use_highbd; + + CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst, + aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * + sizeof(*thread_data->tmp_conv_dst))); + CHECK_MEM_ERROR(cm, thread_data->seg_mask, + (uint8_t *)aom_memalign( + 16, 2 * MAX_SB_SQUARE * sizeof(*thread_data->seg_mask))); + + for (int i = 0; i < 2; ++i) { + CHECK_MEM_ERROR( + cm, thread_data->tmp_obmc_bufs[i], + aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*thread_data->tmp_obmc_bufs[i]))); + } +} + +static AOM_INLINE void reset_dec_workers(AV1Decoder *pbi, + AVxWorkerHook worker_hook, + int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + + // Reset tile decoding hook + for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx]; + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + thread_data->td->dcb = pbi->dcb; + thread_data->td->dcb.corrupted = 0; + thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0]; + thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1]; + thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst; + if (worker_idx) + thread_data->td->dcb.xd.seg_mask = thread_data->td->seg_mask; + for (int j = 0; j < 2; ++j) { + thread_data->td->dcb.xd.tmp_obmc_bufs[j] = + thread_data->td->tmp_obmc_bufs[j]; + } + winterface->sync(worker); + + worker->hook = worker_hook; + worker->data1 = thread_data; + worker->data2 = pbi; + } +#if CONFIG_ACCOUNTING + if (pbi->acct_enabled) { + aom_accounting_reset(&pbi->accounting); + } +#endif +} + +static AOM_INLINE void launch_dec_workers(AV1Decoder *pbi, + const uint8_t *data_end, + int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + + for (int worker_idx = num_workers - 1; worker_idx >= 0; --worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx]; + DecWorkerData *const thread_data = (DecWorkerData *)worker->data1; + + thread_data->data_end = data_end; + + worker->had_error = 0; + if (worker_idx == 0) { + winterface->execute(worker); + } else { + winterface->launch(worker); + } + } +} + +static AOM_INLINE void sync_dec_workers(AV1Decoder *pbi, int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + int corrupted = 0; + + for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1]; + aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker)); + } + + pbi->dcb.corrupted = corrupted; +} + +static AOM_INLINE void decode_mt_init(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + int worker_idx; + + // Create workers and thread_data + if (pbi->num_workers == 0) { + const int num_threads = pbi->max_threads; + CHECK_MEM_ERROR(cm, pbi->tile_workers, + aom_malloc(num_threads * sizeof(*pbi->tile_workers))); + CHECK_MEM_ERROR(cm, pbi->thread_data, + aom_calloc(num_threads, sizeof(*pbi->thread_data))); + + for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) { + AVxWorker *const worker = &pbi->tile_workers[worker_idx]; + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + + winterface->init(worker); + worker->thread_name = "aom tile worker"; + if (worker_idx != 0 && !winterface->reset(worker)) { + aom_internal_error(&pbi->error, AOM_CODEC_ERROR, + "Tile decoder thread creation failed"); + } + ++pbi->num_workers; + + if (worker_idx != 0) { + // Allocate thread data. + CHECK_MEM_ERROR(cm, thread_data->td, + aom_memalign(32, sizeof(*thread_data->td))); + av1_zero(*thread_data->td); + } else { + // Main thread acts as a worker and uses the thread data in pbi + thread_data->td = &pbi->td; + } + thread_data->error_info.error_code = AOM_CODEC_OK; + thread_data->error_info.setjmp = 0; + } + } + const int use_highbd = cm->seq_params->use_highbitdepth; + const int buf_size = MC_TEMP_BUF_PELS << use_highbd; + for (worker_idx = 1; worker_idx < pbi->max_threads; ++worker_idx) { + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + if (thread_data->td->mc_buf_size != buf_size) { + av1_free_mc_tmp_buf(thread_data->td); + allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd); + } + } +} + +static AOM_INLINE void tile_mt_queue(AV1Decoder *pbi, int tile_cols, + int tile_rows, int tile_rows_start, + int tile_rows_end, int tile_cols_start, + int tile_cols_end, int start_tile, + int end_tile) { + AV1_COMMON *const cm = &pbi->common; + if (pbi->tile_mt_info.alloc_tile_cols != tile_cols || + pbi->tile_mt_info.alloc_tile_rows != tile_rows) { + av1_dealloc_dec_jobs(&pbi->tile_mt_info); + alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols); + } + enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start, + tile_cols_end, start_tile, end_tile); + qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued, + sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers); +} + +static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, int start_tile, + int end_tile) { + AV1_COMMON *const cm = &pbi->common; + CommonTileParams *const tiles = &cm->tiles; + const int tile_cols = tiles->cols; + const int tile_rows = tiles->rows; + const int n_tiles = tile_cols * tile_rows; + TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int tile_count_tg; + int num_workers; + const uint8_t *raw_data_end = NULL; + + if (tiles->large_scale) { + tile_rows_start = single_row ? dec_tile_row : 0; + tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; + tile_cols_start = single_col ? dec_tile_col : 0; + tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + } else { + tile_rows_start = 0; + tile_rows_end = tile_rows; + tile_cols_start = 0; + tile_cols_end = tile_cols; + } + tile_count_tg = end_tile - start_tile + 1; + num_workers = AOMMIN(pbi->max_threads, tile_count_tg); + + // No tiles to decode. + if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || + // First tile is larger than end_tile. + tile_rows_start * tile_cols + tile_cols_start > end_tile || + // Last tile is smaller than start_tile. + (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) + return data; + + assert(tile_rows <= MAX_TILE_ROWS); + assert(tile_cols <= MAX_TILE_COLS); + assert(tile_count_tg > 0); + assert(num_workers > 0); + assert(start_tile <= end_tile); + assert(start_tile >= 0 && end_tile < n_tiles); + + decode_mt_init(pbi); + + // get tile size in tile group +#if EXT_TILE_DEBUG + if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); + if (tiles->large_scale) + raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); + else +#endif // EXT_TILE_DEBUG + get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); + + if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { + decoder_alloc_tile_data(pbi, n_tiles); + } + if (pbi->dcb.xd.seg_mask == NULL) + CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask, + (uint8_t *)aom_memalign( + 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask))); + + for (int row = 0; row < tile_rows; row++) { + for (int col = 0; col < tile_cols; col++) { + TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; + av1_tile_init(&tile_data->tile_info, cm, row, col); + } + } + + tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, + tile_cols_start, tile_cols_end, start_tile, end_tile); + + reset_dec_workers(pbi, tile_worker_hook, num_workers); + launch_dec_workers(pbi, data_end, num_workers); + sync_dec_workers(pbi, num_workers); + + if (pbi->dcb.corrupted) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + + if (tiles->large_scale) { + if (n_tiles == 1) { + // Find the end of the single tile buffer + return aom_reader_find_end(&pbi->tile_data->bit_reader); + } + // Return the end of the last tile buffer + return raw_data_end; + } + TileDataDec *const tile_data = pbi->tile_data + end_tile; + + return aom_reader_find_end(&tile_data->bit_reader); +} + +static AOM_INLINE void dec_alloc_cb_buf(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + int size = ((cm->mi_params.mi_rows >> cm->seq_params->mib_size_log2) + 1) * + ((cm->mi_params.mi_cols >> cm->seq_params->mib_size_log2) + 1); + + if (pbi->cb_buffer_alloc_size < size) { + av1_dec_free_cb_buf(pbi); + CHECK_MEM_ERROR(cm, pbi->cb_buffer_base, + aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size)); + memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size); + pbi->cb_buffer_alloc_size = size; + } +} + +static AOM_INLINE void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start, + int tile_rows_end, int tile_cols_start, + int tile_cols_end, int start_tile, + int end_tile, int max_sb_rows) { + AV1_COMMON *const cm = &pbi->common; + AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; + + frame_row_mt_info->tile_rows_start = tile_rows_start; + frame_row_mt_info->tile_rows_end = tile_rows_end; + frame_row_mt_info->tile_cols_start = tile_cols_start; + frame_row_mt_info->tile_cols_end = tile_cols_end; + frame_row_mt_info->start_tile = start_tile; + frame_row_mt_info->end_tile = end_tile; + frame_row_mt_info->mi_rows_to_decode = 0; + frame_row_mt_info->mi_rows_parse_done = 0; + frame_row_mt_info->mi_rows_decode_started = 0; + frame_row_mt_info->row_mt_exit = 0; + + for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { + for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { + if (tile_row * cm->tiles.cols + tile_col < start_tile || + tile_row * cm->tiles.cols + tile_col > end_tile) + continue; + + TileDataDec *const tile_data = + pbi->tile_data + tile_row * cm->tiles.cols + tile_col; + const TileInfo *const tile_info = &tile_data->tile_info; + + tile_data->dec_row_mt_sync.mi_rows_parse_done = 0; + tile_data->dec_row_mt_sync.mi_rows_decode_started = 0; + tile_data->dec_row_mt_sync.num_threads_working = 0; + tile_data->dec_row_mt_sync.mi_rows = + ALIGN_POWER_OF_TWO(tile_info->mi_row_end - tile_info->mi_row_start, + cm->seq_params->mib_size_log2); + tile_data->dec_row_mt_sync.mi_cols = + ALIGN_POWER_OF_TWO(tile_info->mi_col_end - tile_info->mi_col_start, + cm->seq_params->mib_size_log2); + tile_data->dec_row_mt_sync.intrabc_extra_top_right_sb_delay = + av1_get_intrabc_extra_top_right_sb_delay(cm); + + frame_row_mt_info->mi_rows_to_decode += + tile_data->dec_row_mt_sync.mi_rows; + + // Initialize cur_sb_col to -1 for all SB rows. + memset(tile_data->dec_row_mt_sync.cur_sb_col, -1, + sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows); + } + } + +#if CONFIG_MULTITHREAD + if (pbi->row_mt_mutex_ == NULL) { + CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_, + aom_malloc(sizeof(*(pbi->row_mt_mutex_)))); + if (pbi->row_mt_mutex_) { + pthread_mutex_init(pbi->row_mt_mutex_, NULL); + } + } + + if (pbi->row_mt_cond_ == NULL) { + CHECK_MEM_ERROR(cm, pbi->row_mt_cond_, + aom_malloc(sizeof(*(pbi->row_mt_cond_)))); + if (pbi->row_mt_cond_) { + pthread_cond_init(pbi->row_mt_cond_, NULL); + } + } +#endif +} + +static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + int start_tile, int end_tile) { + AV1_COMMON *const cm = &pbi->common; + CommonTileParams *const tiles = &cm->tiles; + const int tile_cols = tiles->cols; + const int tile_rows = tiles->rows; + const int n_tiles = tile_cols * tile_rows; + TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; + const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); + const int single_row = pbi->dec_tile_row >= 0; + const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); + const int single_col = pbi->dec_tile_col >= 0; + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int tile_count_tg; + int num_workers = 0; + int max_threads; + const uint8_t *raw_data_end = NULL; + int max_sb_rows = 0; + + if (tiles->large_scale) { + tile_rows_start = single_row ? dec_tile_row : 0; + tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; + tile_cols_start = single_col ? dec_tile_col : 0; + tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; + } else { + tile_rows_start = 0; + tile_rows_end = tile_rows; + tile_cols_start = 0; + tile_cols_end = tile_cols; + } + tile_count_tg = end_tile - start_tile + 1; + max_threads = pbi->max_threads; + + // No tiles to decode. + if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || + // First tile is larger than end_tile. + tile_rows_start * tile_cols + tile_cols_start > end_tile || + // Last tile is smaller than start_tile. + (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) + return data; + + assert(tile_rows <= MAX_TILE_ROWS); + assert(tile_cols <= MAX_TILE_COLS); + assert(tile_count_tg > 0); + assert(max_threads > 0); + assert(start_tile <= end_tile); + assert(start_tile >= 0 && end_tile < n_tiles); + + (void)tile_count_tg; + + decode_mt_init(pbi); + + // get tile size in tile group +#if EXT_TILE_DEBUG + if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); + if (tiles->large_scale) + raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); + else +#endif // EXT_TILE_DEBUG + get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); + + if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { + if (pbi->tile_data != NULL) { + for (int i = 0; i < pbi->allocated_tiles; i++) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); + } + } + decoder_alloc_tile_data(pbi, n_tiles); + } + if (pbi->dcb.xd.seg_mask == NULL) + CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask, + (uint8_t *)aom_memalign( + 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask))); + + for (int row = 0; row < tile_rows; row++) { + for (int col = 0; col < tile_cols; col++) { + TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; + av1_tile_init(&tile_data->tile_info, cm, row, col); + + max_sb_rows = AOMMAX(max_sb_rows, + av1_get_sb_rows_in_tile(cm, &tile_data->tile_info)); + num_workers += get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info); + } + } + num_workers = AOMMIN(num_workers, max_threads); + + if (pbi->allocated_row_mt_sync_rows != max_sb_rows) { + for (int i = 0; i < n_tiles; ++i) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); + dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows); + } + pbi->allocated_row_mt_sync_rows = max_sb_rows; + } + + tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, + tile_cols_start, tile_cols_end, start_tile, end_tile); + + dec_alloc_cb_buf(pbi); + + row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start, + tile_cols_end, start_tile, end_tile, max_sb_rows); + + reset_dec_workers(pbi, row_mt_worker_hook, num_workers); + launch_dec_workers(pbi, data_end, num_workers); + sync_dec_workers(pbi, num_workers); + + if (pbi->dcb.corrupted) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + + if (tiles->large_scale) { + if (n_tiles == 1) { + // Find the end of the single tile buffer + return aom_reader_find_end(&pbi->tile_data->bit_reader); + } + // Return the end of the last tile buffer + return raw_data_end; + } + TileDataDec *const tile_data = pbi->tile_data + end_tile; + + return aom_reader_find_end(&tile_data->bit_reader); +} + +static AOM_INLINE void error_handler(void *data) { + AV1_COMMON *const cm = (AV1_COMMON *)data; + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); +} + +// Reads the high_bitdepth and twelve_bit fields in color_config() and sets +// seq_params->bit_depth based on the values of those fields and +// seq_params->profile. Reports errors by calling rb->error_handler() or +// aom_internal_error(). +static AOM_INLINE void read_bitdepth( + struct aom_read_bit_buffer *rb, SequenceHeader *seq_params, + struct aom_internal_error_info *error_info) { + const int high_bitdepth = aom_rb_read_bit(rb); + if (seq_params->profile == PROFILE_2 && high_bitdepth) { + const int twelve_bit = aom_rb_read_bit(rb); + seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10; + } else if (seq_params->profile <= PROFILE_2) { + seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8; + } else { + aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Unsupported profile/bit-depth combination"); + } +#if !CONFIG_AV1_HIGHBITDEPTH + if (seq_params->bit_depth > AOM_BITS_8) { + aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Bit-depth %d not supported", seq_params->bit_depth); + } +#endif +} + +void av1_read_film_grain_params(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + aom_film_grain_t *pars = &cm->film_grain_params; + const SequenceHeader *const seq_params = cm->seq_params; + + pars->apply_grain = aom_rb_read_bit(rb); + if (!pars->apply_grain) { + memset(pars, 0, sizeof(*pars)); + return; + } + + pars->random_seed = aom_rb_read_literal(rb, 16); + if (cm->current_frame.frame_type == INTER_FRAME) + pars->update_parameters = aom_rb_read_bit(rb); + else + pars->update_parameters = 1; + + pars->bit_depth = seq_params->bit_depth; + + if (!pars->update_parameters) { + // inherit parameters from a previous reference frame + int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3); + // Section 6.8.20: It is a requirement of bitstream conformance that + // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value + // of j in the range 0 to REFS_PER_FRAME - 1. + int found = 0; + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) { + found = 1; + break; + } + } + if (!found) { + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Invalid film grain reference idx %d. ref_frame_idx = " + "{%d, %d, %d, %d, %d, %d, %d}", + film_grain_params_ref_idx, cm->remapped_ref_idx[0], + cm->remapped_ref_idx[1], cm->remapped_ref_idx[2], + cm->remapped_ref_idx[3], cm->remapped_ref_idx[4], + cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]); + } + RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx]; + if (buf == NULL) { + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Invalid Film grain reference idx"); + } + if (!buf->film_grain_params_present) { + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Film grain reference parameters not available"); + } + uint16_t random_seed = pars->random_seed; + *pars = buf->film_grain_params; // inherit paramaters + pars->random_seed = random_seed; // with new random seed + return; + } + + // Scaling functions parameters + pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14 + if (pars->num_y_points > 14) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Number of points for film grain luma scaling function " + "exceeds the maximum value."); + for (int i = 0; i < pars->num_y_points; i++) { + pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8); + if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0]) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "First coordinate of the scaling function points " + "shall be increasing."); + pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8); + } + + if (!seq_params->monochrome) + pars->chroma_scaling_from_luma = aom_rb_read_bit(rb); + else + pars->chroma_scaling_from_luma = 0; + + if (seq_params->monochrome || pars->chroma_scaling_from_luma || + ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && + (pars->num_y_points == 0))) { + pars->num_cb_points = 0; + pars->num_cr_points = 0; + } else { + pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10 + if (pars->num_cb_points > 10) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Number of points for film grain cb scaling function " + "exceeds the maximum value."); + for (int i = 0; i < pars->num_cb_points; i++) { + pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8); + if (i && + pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0]) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "First coordinate of the scaling function points " + "shall be increasing."); + pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8); + } + + pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10 + if (pars->num_cr_points > 10) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Number of points for film grain cr scaling function " + "exceeds the maximum value."); + for (int i = 0; i < pars->num_cr_points; i++) { + pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8); + if (i && + pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0]) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "First coordinate of the scaling function points " + "shall be increasing."); + pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8); + } + + if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && + (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) || + ((pars->num_cb_points != 0) && (pars->num_cr_points == 0)))) + aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "In YCbCr 4:2:0, film grain shall be applied " + "to both chroma components or neither."); + } + + pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value + + // AR coefficients + // Only sent if the corresponsing scaling function has + // more than 0 points + + pars->ar_coeff_lag = aom_rb_read_literal(rb, 2); + + int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); + int num_pos_chroma = num_pos_luma; + if (pars->num_y_points > 0) ++num_pos_chroma; + + if (pars->num_y_points) + for (int i = 0; i < num_pos_luma; i++) + pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128; + + if (pars->num_cb_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128; + + if (pars->num_cr_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128; + + pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value + + pars->grain_scale_shift = aom_rb_read_literal(rb, 2); + + if (pars->num_cb_points) { + pars->cb_mult = aom_rb_read_literal(rb, 8); + pars->cb_luma_mult = aom_rb_read_literal(rb, 8); + pars->cb_offset = aom_rb_read_literal(rb, 9); + } + + if (pars->num_cr_points) { + pars->cr_mult = aom_rb_read_literal(rb, 8); + pars->cr_luma_mult = aom_rb_read_literal(rb, 8); + pars->cr_offset = aom_rb_read_literal(rb, 9); + } + + pars->overlap_flag = aom_rb_read_bit(rb); + + pars->clip_to_restricted_range = aom_rb_read_bit(rb); +} + +static AOM_INLINE void read_film_grain(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + if (cm->seq_params->film_grain_params_present && + (cm->show_frame || cm->showable_frame)) { + av1_read_film_grain_params(cm, rb); + } else { + memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); + } + cm->film_grain_params.bit_depth = cm->seq_params->bit_depth; + memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params, + sizeof(aom_film_grain_t)); +} + +void av1_read_color_config(struct aom_read_bit_buffer *rb, + int allow_lowbitdepth, SequenceHeader *seq_params, + struct aom_internal_error_info *error_info) { + read_bitdepth(rb, seq_params, error_info); + + seq_params->use_highbitdepth = + seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth; + // monochrome bit (not needed for PROFILE_1) + const int is_monochrome = + seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0; + seq_params->monochrome = is_monochrome; + int color_description_present_flag = aom_rb_read_bit(rb); + if (color_description_present_flag) { + seq_params->color_primaries = aom_rb_read_literal(rb, 8); + seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8); + seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8); + } else { + seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED; + seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED; + seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED; + } + if (is_monochrome) { + // [16,235] (including xvycc) vs [0,255] range + seq_params->color_range = aom_rb_read_bit(rb); + seq_params->subsampling_y = seq_params->subsampling_x = 1; + seq_params->chroma_sample_position = AOM_CSP_UNKNOWN; + seq_params->separate_uv_delta_q = 0; + return; + } + if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && + seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && + seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { + seq_params->subsampling_y = seq_params->subsampling_x = 0; + seq_params->color_range = 1; // assume full color-range + if (!(seq_params->profile == PROFILE_1 || + (seq_params->profile == PROFILE_2 && + seq_params->bit_depth == AOM_BITS_12))) { + aom_internal_error( + error_info, AOM_CODEC_UNSUP_BITSTREAM, + "sRGB colorspace not compatible with specified profile"); + } + } else { + // [16,235] (including xvycc) vs [0,255] range + seq_params->color_range = aom_rb_read_bit(rb); + if (seq_params->profile == PROFILE_0) { + // 420 only + seq_params->subsampling_x = seq_params->subsampling_y = 1; + } else if (seq_params->profile == PROFILE_1) { + // 444 only + seq_params->subsampling_x = seq_params->subsampling_y = 0; + } else { + assert(seq_params->profile == PROFILE_2); + if (seq_params->bit_depth == AOM_BITS_12) { + seq_params->subsampling_x = aom_rb_read_bit(rb); + if (seq_params->subsampling_x) + seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420 + else + seq_params->subsampling_y = 0; // 444 + } else { + // 422 + seq_params->subsampling_x = 1; + seq_params->subsampling_y = 0; + } + } + if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY && + (seq_params->subsampling_x || seq_params->subsampling_y)) { + aom_internal_error( + error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Identity CICP Matrix incompatible with non 4:4:4 color sampling"); + } + if (seq_params->subsampling_x && seq_params->subsampling_y) { + seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2); + } + } + seq_params->separate_uv_delta_q = aom_rb_read_bit(rb); +} + +void av1_read_timing_info_header(aom_timing_info_t *timing_info, + struct aom_internal_error_info *error, + struct aom_read_bit_buffer *rb) { + timing_info->num_units_in_display_tick = + aom_rb_read_unsigned_literal(rb, + 32); // Number of units in a display tick + timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale + if (timing_info->num_units_in_display_tick == 0 || + timing_info->time_scale == 0) { + aom_internal_error( + error, AOM_CODEC_UNSUP_BITSTREAM, + "num_units_in_display_tick and time_scale must be greater than 0."); + } + timing_info->equal_picture_interval = + aom_rb_read_bit(rb); // Equal picture interval bit + if (timing_info->equal_picture_interval) { + const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb); + if (num_ticks_per_picture_minus_1 == UINT32_MAX) { + aom_internal_error( + error, AOM_CODEC_UNSUP_BITSTREAM, + "num_ticks_per_picture_minus_1 cannot be (1 << 32) - 1."); + } + timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1; + } +} + +void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info, + struct aom_read_bit_buffer *rb) { + decoder_model_info->encoder_decoder_buffer_delay_length = + aom_rb_read_literal(rb, 5) + 1; + decoder_model_info->num_units_in_decoding_tick = + aom_rb_read_unsigned_literal(rb, + 32); // Number of units in a decoding tick + decoder_model_info->buffer_removal_time_length = + aom_rb_read_literal(rb, 5) + 1; + decoder_model_info->frame_presentation_time_length = + aom_rb_read_literal(rb, 5) + 1; +} + +void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params, + int buffer_delay_length, + struct aom_read_bit_buffer *rb) { + op_params->decoder_buffer_delay = + aom_rb_read_unsigned_literal(rb, buffer_delay_length); + op_params->encoder_buffer_delay = + aom_rb_read_unsigned_literal(rb, buffer_delay_length); + op_params->low_delay_mode_flag = aom_rb_read_bit(rb); +} + +static AOM_INLINE void read_temporal_point_info( + AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { + cm->frame_presentation_time = aom_rb_read_unsigned_literal( + rb, cm->seq_params->decoder_model_info.frame_presentation_time_length); +} + +void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, + SequenceHeader *seq_params) { + const int num_bits_width = aom_rb_read_literal(rb, 4) + 1; + const int num_bits_height = aom_rb_read_literal(rb, 4) + 1; + const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1; + const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1; + + seq_params->num_bits_width = num_bits_width; + seq_params->num_bits_height = num_bits_height; + seq_params->max_frame_width = max_frame_width; + seq_params->max_frame_height = max_frame_height; + + if (seq_params->reduced_still_picture_hdr) { + seq_params->frame_id_numbers_present_flag = 0; + } else { + seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb); + } + if (seq_params->frame_id_numbers_present_flag) { + // We must always have delta_frame_id_length < frame_id_length, + // in order for a frame to be referenced with a unique delta. + // Avoid wasting bits by using a coding that enforces this restriction. + seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2; + seq_params->frame_id_length = + aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1; + if (seq_params->frame_id_length > 16) + aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid frame_id_length"); + } + + setup_sb_size(seq_params, rb); + + seq_params->enable_filter_intra = aom_rb_read_bit(rb); + seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb); + + if (seq_params->reduced_still_picture_hdr) { + seq_params->enable_interintra_compound = 0; + seq_params->enable_masked_compound = 0; + seq_params->enable_warped_motion = 0; + seq_params->enable_dual_filter = 0; + seq_params->order_hint_info.enable_order_hint = 0; + seq_params->order_hint_info.enable_dist_wtd_comp = 0; + seq_params->order_hint_info.enable_ref_frame_mvs = 0; + seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS + seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV + seq_params->order_hint_info.order_hint_bits_minus_1 = -1; + } else { + seq_params->enable_interintra_compound = aom_rb_read_bit(rb); + seq_params->enable_masked_compound = aom_rb_read_bit(rb); + seq_params->enable_warped_motion = aom_rb_read_bit(rb); + seq_params->enable_dual_filter = aom_rb_read_bit(rb); + + seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb); + seq_params->order_hint_info.enable_dist_wtd_comp = + seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; + seq_params->order_hint_info.enable_ref_frame_mvs = + seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; + + if (aom_rb_read_bit(rb)) { + seq_params->force_screen_content_tools = + 2; // SELECT_SCREEN_CONTENT_TOOLS + } else { + seq_params->force_screen_content_tools = aom_rb_read_bit(rb); + } + + if (seq_params->force_screen_content_tools > 0) { + if (aom_rb_read_bit(rb)) { + seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV + } else { + seq_params->force_integer_mv = aom_rb_read_bit(rb); + } + } else { + seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV + } + seq_params->order_hint_info.order_hint_bits_minus_1 = + seq_params->order_hint_info.enable_order_hint + ? aom_rb_read_literal(rb, 3) + : -1; + } + + seq_params->enable_superres = aom_rb_read_bit(rb); + seq_params->enable_cdef = aom_rb_read_bit(rb); + seq_params->enable_restoration = aom_rb_read_bit(rb); +} + +static int read_global_motion_params(WarpedMotionParams *params, + const WarpedMotionParams *ref_params, + struct aom_read_bit_buffer *rb, + int allow_hp) { + TransformationType type = aom_rb_read_bit(rb); + if (type != IDENTITY) { + if (aom_rb_read_bit(rb)) + type = ROTZOOM; + else + type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE; + } + + *params = default_warp_params; + params->wmtype = type; + + if (type >= ROTZOOM) { + params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS)) * + GM_ALPHA_DECODE_FACTOR + + (1 << WARPEDMODEL_PREC_BITS); + params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * + GM_ALPHA_DECODE_FACTOR; + } + + if (type >= AFFINE) { + params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * + GM_ALPHA_DECODE_FACTOR; + params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin( + rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS)) * + GM_ALPHA_DECODE_FACTOR + + (1 << WARPEDMODEL_PREC_BITS); + } else { + params->wmmat[4] = -params->wmmat[3]; + params->wmmat[5] = params->wmmat[2]; + } + + if (type >= TRANSLATION) { + const int trans_bits = (type == TRANSLATION) + ? GM_ABS_TRANS_ONLY_BITS - !allow_hp + : GM_ABS_TRANS_BITS; + const int trans_dec_factor = + (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp) + : GM_TRANS_DECODE_FACTOR; + const int trans_prec_diff = (type == TRANSLATION) + ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp + : GM_TRANS_PREC_DIFF; + params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin( + rb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[0] >> trans_prec_diff)) * + trans_dec_factor; + params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin( + rb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[1] >> trans_prec_diff)) * + trans_dec_factor; + } + + int good_shear_params = av1_get_shear_params(params); + if (!good_shear_params) return 0; + + return 1; +} + +static AOM_INLINE void read_global_motion(AV1_COMMON *cm, + struct aom_read_bit_buffer *rb) { + for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { + const WarpedMotionParams *ref_params = + cm->prev_frame ? &cm->prev_frame->global_motion[frame] + : &default_warp_params; + int good_params = + read_global_motion_params(&cm->global_motion[frame], ref_params, rb, + cm->features.allow_high_precision_mv); + if (!good_params) { +#if WARPED_MOTION_DEBUG + printf("Warning: unexpected global motion shear params from aomenc\n"); +#endif + cm->global_motion[frame].invalid = 1; + } + + // TODO(sarahparker, debargha): The logic in the commented out code below + // does not work currently and causes mismatches when resize is on. Fix it + // before turning the optimization back on. + /* + YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame); + if (cm->width == ref_buf->y_crop_width && + cm->height == ref_buf->y_crop_height) { + read_global_motion_params(&cm->global_motion[frame], + &cm->prev_frame->global_motion[frame], rb, + cm->features.allow_high_precision_mv); + } else { + cm->global_motion[frame] = default_warp_params; + } + */ + /* + printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", + frame, cm->current_frame.frame_number, cm->show_frame, + cm->global_motion[frame].wmmat[0], + cm->global_motion[frame].wmmat[1], + cm->global_motion[frame].wmmat[2], + cm->global_motion[frame].wmmat[3]); + */ + } + memcpy(cm->cur_frame->global_motion, cm->global_motion, + REF_FRAMES * sizeof(WarpedMotionParams)); +} + +// Release the references to the frame buffers in cm->ref_frame_map and reset +// all elements of cm->ref_frame_map to NULL. +static AOM_INLINE void reset_ref_frame_map(AV1_COMMON *const cm) { + BufferPool *const pool = cm->buffer_pool; + + for (int i = 0; i < REF_FRAMES; i++) { + decrease_ref_count(cm->ref_frame_map[i], pool); + cm->ref_frame_map[i] = NULL; + } +} + +// If the refresh_frame_flags bitmask is set, update reference frame id values +// and mark frames as valid for reference. +static AOM_INLINE void update_ref_frame_id(AV1Decoder *const pbi) { + AV1_COMMON *const cm = &pbi->common; + int refresh_frame_flags = cm->current_frame.refresh_frame_flags; + for (int i = 0; i < REF_FRAMES; i++) { + if ((refresh_frame_flags >> i) & 1) { + cm->ref_frame_id[i] = cm->current_frame_id; + pbi->valid_for_referencing[i] = 1; + } + } +} + +static AOM_INLINE void show_existing_frame_reset(AV1Decoder *const pbi, + int existing_frame_idx) { + AV1_COMMON *const cm = &pbi->common; + + assert(cm->show_existing_frame); + + cm->current_frame.frame_type = KEY_FRAME; + + cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1; + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + cm->remapped_ref_idx[i] = INVALID_IDX; + } + + if (pbi->need_resync) { + reset_ref_frame_map(cm); + pbi->need_resync = 0; + } + + // Note that the displayed frame must be valid for referencing in order to + // have been selected. + cm->current_frame_id = cm->ref_frame_id[existing_frame_idx]; + update_ref_frame_id(pbi); + + cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; +} + +static INLINE void reset_frame_buffers(AV1_COMMON *cm) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int i; + + lock_buffer_pool(cm->buffer_pool); + reset_ref_frame_map(cm); + assert(cm->cur_frame->ref_count == 1); + for (i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) { + // Reset all unreferenced frame buffers. We can also reset cm->cur_frame + // because we are the sole owner of cm->cur_frame. + if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) { + continue; + } + frame_bufs[i].order_hint = 0; + av1_zero(frame_bufs[i].ref_order_hints); + } + av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers); + unlock_buffer_pool(cm->buffer_pool); +} + +// On success, returns 0. On failure, calls aom_internal_error and does not +// return. +static int read_uncompressed_header(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb) { + AV1_COMMON *const cm = &pbi->common; + const SequenceHeader *const seq_params = cm->seq_params; + CurrentFrame *const current_frame = &cm->current_frame; + FeatureFlags *const features = &cm->features; + MACROBLOCKD *const xd = &pbi->dcb.xd; + BufferPool *const pool = cm->buffer_pool; + RefCntBuffer *const frame_bufs = pool->frame_bufs; + aom_s_frame_info *sframe_info = &pbi->sframe_info; + sframe_info->is_s_frame = 0; + sframe_info->is_s_frame_at_altref = 0; + + if (!pbi->sequence_header_ready) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "No sequence header"); + } + + if (seq_params->reduced_still_picture_hdr) { + cm->show_existing_frame = 0; + cm->show_frame = 1; + current_frame->frame_type = KEY_FRAME; + if (pbi->sequence_header_changed) { + // This is the start of a new coded video sequence. + pbi->sequence_header_changed = 0; + pbi->decoding_first_frame = 1; + reset_frame_buffers(cm); + } + features->error_resilient_mode = 1; + } else { + cm->show_existing_frame = aom_rb_read_bit(rb); + pbi->reset_decoder_state = 0; + + if (cm->show_existing_frame) { + if (pbi->sequence_header_changed) { + aom_internal_error( + &pbi->error, AOM_CODEC_CORRUPT_FRAME, + "New sequence header starts with a show_existing_frame."); + } + // Show an existing frame directly. + const int existing_frame_idx = aom_rb_read_literal(rb, 3); + RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx]; + if (frame_to_show == NULL) { + aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "Buffer does not contain a decoded frame"); + } + if (seq_params->decoder_model_info_present_flag && + seq_params->timing_info.equal_picture_interval == 0) { + read_temporal_point_info(cm, rb); + } + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_length = seq_params->frame_id_length; + int display_frame_id = aom_rb_read_literal(rb, frame_id_length); + /* Compare display_frame_id with ref_frame_id and check valid for + * referencing */ + if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || + pbi->valid_for_referencing[existing_frame_idx] == 0) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Reference buffer frame ID mismatch"); + } + lock_buffer_pool(pool); + assert(frame_to_show->ref_count > 0); + // cm->cur_frame should be the buffer referenced by the return value + // of the get_free_fb() call in assign_cur_frame_new_fb() (called by + // av1_receive_compressed_data()), so the ref_count should be 1. + assert(cm->cur_frame->ref_count == 1); + // assign_frame_buffer_p() decrements ref_count directly rather than + // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has + // already been allocated, it will not be released by + // assign_frame_buffer_p()! + assert(!cm->cur_frame->raw_frame_buffer.data); + assign_frame_buffer_p(&cm->cur_frame, frame_to_show); + pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME; + unlock_buffer_pool(pool); + + cm->lf.filter_level[0] = 0; + cm->lf.filter_level[1] = 0; + cm->show_frame = 1; + current_frame->order_hint = frame_to_show->order_hint; + + // Section 6.8.2: It is a requirement of bitstream conformance that when + // show_existing_frame is used to show a previous frame, that the value + // of showable_frame for the previous frame was equal to 1. + if (!frame_to_show->showable_frame) { + aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "Buffer does not contain a showable frame"); + } + // Section 6.8.2: It is a requirement of bitstream conformance that when + // show_existing_frame is used to show a previous frame with + // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the + // frame is output via the show_existing_frame mechanism at most once. + if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0; + + cm->film_grain_params = frame_to_show->film_grain_params; + + if (pbi->reset_decoder_state) { + show_existing_frame_reset(pbi, existing_frame_idx); + } else { + current_frame->refresh_frame_flags = 0; + } + + return 0; + } + + current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); + if (pbi->sequence_header_changed) { + if (current_frame->frame_type == KEY_FRAME) { + // This is the start of a new coded video sequence. + pbi->sequence_header_changed = 0; + pbi->decoding_first_frame = 1; + reset_frame_buffers(cm); + } else { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Sequence header has changed without a keyframe."); + } + } + + cm->show_frame = aom_rb_read_bit(rb); + if (cm->show_frame == 0) pbi->is_arf_frame_present = 1; + if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME) + pbi->is_fwd_kf_present = 1; + if (cm->current_frame.frame_type == S_FRAME) { + sframe_info->is_s_frame = 1; + sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1; + } + if (seq_params->still_picture && + (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Still pictures must be coded as shown keyframes"); + } + cm->showable_frame = current_frame->frame_type != KEY_FRAME; + if (cm->show_frame) { + if (seq_params->decoder_model_info_present_flag && + seq_params->timing_info.equal_picture_interval == 0) + read_temporal_point_info(cm, rb); + } else { + // See if this frame can be used as show_existing_frame in future + cm->showable_frame = aom_rb_read_bit(rb); + } + cm->cur_frame->showable_frame = cm->showable_frame; + features->error_resilient_mode = + frame_is_sframe(cm) || + (current_frame->frame_type == KEY_FRAME && cm->show_frame) + ? 1 + : aom_rb_read_bit(rb); + } + + if (current_frame->frame_type == KEY_FRAME && cm->show_frame) { + /* All frames need to be marked as not valid for referencing */ + for (int i = 0; i < REF_FRAMES; i++) { + pbi->valid_for_referencing[i] = 0; + } + } + features->disable_cdf_update = aom_rb_read_bit(rb); + if (seq_params->force_screen_content_tools == 2) { + features->allow_screen_content_tools = aom_rb_read_bit(rb); + } else { + features->allow_screen_content_tools = + seq_params->force_screen_content_tools; + } + + if (features->allow_screen_content_tools) { + if (seq_params->force_integer_mv == 2) { + features->cur_frame_force_integer_mv = aom_rb_read_bit(rb); + } else { + features->cur_frame_force_integer_mv = seq_params->force_integer_mv; + } + } else { + features->cur_frame_force_integer_mv = 0; + } + + int frame_size_override_flag = 0; + features->allow_intrabc = 0; + features->primary_ref_frame = PRIMARY_REF_NONE; + + if (!seq_params->reduced_still_picture_hdr) { + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_length = seq_params->frame_id_length; + int diff_len = seq_params->delta_frame_id_length; + int prev_frame_id = 0; + int have_prev_frame_id = + !pbi->decoding_first_frame && + !(current_frame->frame_type == KEY_FRAME && cm->show_frame); + if (have_prev_frame_id) { + prev_frame_id = cm->current_frame_id; + } + cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); + + if (have_prev_frame_id) { + int diff_frame_id; + if (cm->current_frame_id > prev_frame_id) { + diff_frame_id = cm->current_frame_id - prev_frame_id; + } else { + diff_frame_id = + (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; + } + /* Check current_frame_id for conformance */ + if (prev_frame_id == cm->current_frame_id || + diff_frame_id >= (1 << (frame_id_length - 1))) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Invalid value of current_frame_id"); + } + } + /* Check if some frames need to be marked as not valid for referencing */ + for (int i = 0; i < REF_FRAMES; i++) { + if (cm->current_frame_id - (1 << diff_len) > 0) { + if (cm->ref_frame_id[i] > cm->current_frame_id || + cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) + pbi->valid_for_referencing[i] = 0; + } else { + if (cm->ref_frame_id[i] > cm->current_frame_id && + cm->ref_frame_id[i] < (1 << frame_id_length) + + cm->current_frame_id - (1 << diff_len)) + pbi->valid_for_referencing[i] = 0; + } + } + } + + frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb); + + current_frame->order_hint = aom_rb_read_literal( + rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); + + if (seq_params->order_hint_info.enable_order_hint) + current_frame->frame_number = current_frame->order_hint; + + if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { + features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); + } + } + + if (seq_params->decoder_model_info_present_flag) { + pbi->buffer_removal_time_present = aom_rb_read_bit(rb); + if (pbi->buffer_removal_time_present) { + for (int op_num = 0; + op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { + if (seq_params->op_params[op_num].decoder_model_param_present_flag) { + if (seq_params->operating_point_idc[op_num] == 0 || + (((seq_params->operating_point_idc[op_num] >> + cm->temporal_layer_id) & + 0x1) && + ((seq_params->operating_point_idc[op_num] >> + (cm->spatial_layer_id + 8)) & + 0x1))) { + cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal( + rb, seq_params->decoder_model_info.buffer_removal_time_length); + } else { + cm->buffer_removal_times[op_num] = 0; + } + } else { + cm->buffer_removal_times[op_num] = 0; + } + } + } + } + if (current_frame->frame_type == KEY_FRAME) { + if (!cm->show_frame) { // unshown keyframe (forward keyframe) + current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); + } else { // shown keyframe + current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1; + } + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + cm->remapped_ref_idx[i] = INVALID_IDX; + } + if (pbi->need_resync) { + reset_ref_frame_map(cm); + pbi->need_resync = 0; + } + } else { + if (current_frame->frame_type == INTRA_ONLY_FRAME) { + current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); + if (current_frame->refresh_frame_flags == 0xFF) { + aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "Intra only frames cannot have refresh flags 0xFF"); + } + if (pbi->need_resync) { + reset_ref_frame_map(cm); + pbi->need_resync = 0; + } + } else if (pbi->need_resync != 1) { /* Skip if need resync */ + current_frame->refresh_frame_flags = + frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES); + } + } + + if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) { + // Read all ref frame order hints if error_resilient_mode == 1 + if (features->error_resilient_mode && + seq_params->order_hint_info.enable_order_hint) { + for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { + // Read order hint from bit stream + unsigned int order_hint = aom_rb_read_literal( + rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); + // Get buffer + RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; + if (buf == NULL || order_hint != buf->order_hint) { + if (buf != NULL) { + lock_buffer_pool(pool); + decrease_ref_count(buf, pool); + unlock_buffer_pool(pool); + cm->ref_frame_map[ref_idx] = NULL; + } + // If no corresponding buffer exists, allocate a new buffer with all + // pixels set to neutral grey. + int buf_idx = get_free_fb(cm); + if (buf_idx == INVALID_IDX) { + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Unable to find free frame buffer"); + } + buf = &frame_bufs[buf_idx]; + lock_buffer_pool(pool); + if (aom_realloc_frame_buffer( + &buf->buf, seq_params->max_frame_width, + seq_params->max_frame_height, seq_params->subsampling_x, + seq_params->subsampling_y, seq_params->use_highbitdepth, + AOM_BORDER_IN_PIXELS, features->byte_alignment, + &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, 0, + 0)) { + decrease_ref_count(buf, pool); + unlock_buffer_pool(pool); + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + } + unlock_buffer_pool(pool); + // According to the specification, valid bitstreams are required to + // never use missing reference frames so the filling process for + // missing frames is not normatively defined and RefValid for missing + // frames is set to 0. + + // To make libaom more robust when the bitstream has been corrupted + // by the loss of some frames of data, this code adds a neutral grey + // buffer in place of missing frames, i.e. + // + set_planes_to_neutral_grey(seq_params, &buf->buf, 0); + // + // and allows the frames to be used for referencing, i.e. + // + pbi->valid_for_referencing[ref_idx] = 1; + // + // Please note such behavior is not normative and other decoders may + // use a different approach. + cm->ref_frame_map[ref_idx] = buf; + buf->order_hint = order_hint; + } + } + } + } + + if (current_frame->frame_type == KEY_FRAME) { + setup_frame_size(cm, frame_size_override_flag, rb); + + if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) + features->allow_intrabc = aom_rb_read_bit(rb); + features->allow_ref_frame_mvs = 0; + cm->prev_frame = NULL; + } else { + features->allow_ref_frame_mvs = 0; + + if (current_frame->frame_type == INTRA_ONLY_FRAME) { + cm->cur_frame->film_grain_params_present = + seq_params->film_grain_params_present; + setup_frame_size(cm, frame_size_override_flag, rb); + if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) + features->allow_intrabc = aom_rb_read_bit(rb); + + } else if (pbi->need_resync != 1) { /* Skip if need resync */ + int frame_refs_short_signaling = 0; + // Frame refs short signaling is off when error resilient mode is on. + if (seq_params->order_hint_info.enable_order_hint) + frame_refs_short_signaling = aom_rb_read_bit(rb); + + if (frame_refs_short_signaling) { + // == LAST_FRAME == + const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); + const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref]; + + // == GOLDEN_FRAME == + const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); + const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref]; + + // Most of the time, streams start with a keyframe. In that case, + // ref_frame_map will have been filled in at that point and will not + // contain any NULLs. However, streams are explicitly allowed to start + // with an intra-only frame, so long as they don't then signal a + // reference to a slot that hasn't been set yet. That's what we are + // checking here. + if (lst_buf == NULL) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Inter frame requests nonexistent reference"); + if (gld_buf == NULL) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Inter frame requests nonexistent reference"); + + av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref); + } + + for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { + int ref = 0; + if (!frame_refs_short_signaling) { + ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); + + // Most of the time, streams start with a keyframe. In that case, + // ref_frame_map will have been filled in at that point and will not + // contain any NULLs. However, streams are explicitly allowed to start + // with an intra-only frame, so long as they don't then signal a + // reference to a slot that hasn't been set yet. That's what we are + // checking here. + if (cm->ref_frame_map[ref] == NULL) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Inter frame requests nonexistent reference"); + cm->remapped_ref_idx[i] = ref; + } else { + ref = cm->remapped_ref_idx[i]; + } + // Check valid for referencing + if (pbi->valid_for_referencing[ref] == 0) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Reference frame not valid for referencing"); + + cm->ref_frame_sign_bias[LAST_FRAME + i] = 0; + + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_length = seq_params->frame_id_length; + int diff_len = seq_params->delta_frame_id_length; + int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len); + int ref_frame_id = + ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) + + (1 << frame_id_length)) % + (1 << frame_id_length)); + // Compare values derived from delta_frame_id_minus_1 and + // refresh_frame_flags. + if (ref_frame_id != cm->ref_frame_id[ref]) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Reference buffer frame ID mismatch"); + } + } + + if (!features->error_resilient_mode && frame_size_override_flag) { + setup_frame_size_with_refs(cm, rb); + } else { + setup_frame_size(cm, frame_size_override_flag, rb); + } + + if (features->cur_frame_force_integer_mv) { + features->allow_high_precision_mv = 0; + } else { + features->allow_high_precision_mv = aom_rb_read_bit(rb); + } + features->interp_filter = read_frame_interp_filter(rb); + features->switchable_motion_mode = aom_rb_read_bit(rb); + } + + cm->prev_frame = get_primary_ref_frame_buf(cm); + if (features->primary_ref_frame != PRIMARY_REF_NONE && + get_primary_ref_frame_buf(cm) == NULL) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Reference frame containing this frame's initial " + "frame context is unavailable."); + } + + if (!(current_frame->frame_type == INTRA_ONLY_FRAME) && + pbi->need_resync != 1) { + if (frame_might_allow_ref_frame_mvs(cm)) + features->allow_ref_frame_mvs = aom_rb_read_bit(rb); + else + features->allow_ref_frame_mvs = 0; + + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); + struct scale_factors *const ref_scale_factors = + get_ref_scale_factors(cm, i); + av1_setup_scale_factors_for_frame( + ref_scale_factors, ref_buf->buf.y_crop_width, + ref_buf->buf.y_crop_height, cm->width, cm->height); + if ((!av1_is_valid_scale(ref_scale_factors))) + aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + } + } + } + + av1_setup_frame_buf_refs(cm); + + av1_setup_frame_sign_bias(cm); + + cm->cur_frame->frame_type = current_frame->frame_type; + + update_ref_frame_id(pbi); + + const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && + !(features->disable_cdf_update); + if (might_bwd_adapt) { + features->refresh_frame_context = aom_rb_read_bit(rb) + ? REFRESH_FRAME_CONTEXT_DISABLED + : REFRESH_FRAME_CONTEXT_BACKWARD; + } else { + features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + } + + cm->cur_frame->buf.bit_depth = seq_params->bit_depth; + cm->cur_frame->buf.color_primaries = seq_params->color_primaries; + cm->cur_frame->buf.transfer_characteristics = + seq_params->transfer_characteristics; + cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; + cm->cur_frame->buf.monochrome = seq_params->monochrome; + cm->cur_frame->buf.chroma_sample_position = + seq_params->chroma_sample_position; + cm->cur_frame->buf.color_range = seq_params->color_range; + cm->cur_frame->buf.render_width = cm->render_width; + cm->cur_frame->buf.render_height = cm->render_height; + + if (pbi->need_resync) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Keyframe / intra-only frame required to reset decoder" + " state"); + } + + if (features->allow_intrabc) { + // Set parameters corresponding to no filtering. + struct loopfilter *lf = &cm->lf; + lf->filter_level[0] = 0; + lf->filter_level[1] = 0; + cm->cdef_info.cdef_bits = 0; + cm->cdef_info.cdef_strengths[0] = 0; + cm->cdef_info.nb_cdef_strengths = 1; + cm->cdef_info.cdef_uv_strengths[0] = 0; + cm->rst_info[0].frame_restoration_type = RESTORE_NONE; + cm->rst_info[1].frame_restoration_type = RESTORE_NONE; + cm->rst_info[2].frame_restoration_type = RESTORE_NONE; + } + + read_tile_info(pbi, rb); + if (!av1_is_min_tile_width_satisfied(cm)) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Minimum tile width requirement not satisfied"); + } + + CommonQuantParams *const quant_params = &cm->quant_params; + setup_quantization(quant_params, av1_num_planes(cm), + cm->seq_params->separate_uv_delta_q, rb); + xd->bd = (int)seq_params->bit_depth; + + CommonContexts *const above_contexts = &cm->above_contexts; + if (above_contexts->num_planes < av1_num_planes(cm) || + above_contexts->num_mi_cols < cm->mi_params.mi_cols || + above_contexts->num_tile_rows < cm->tiles.rows) { + av1_free_above_context_buffers(above_contexts); + if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows, + cm->mi_params.mi_cols, + av1_num_planes(cm))) { + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate context buffers"); + } + } + + if (features->primary_ref_frame == PRIMARY_REF_NONE) { + av1_setup_past_independence(cm); + } + + setup_segmentation(cm, rb); + + cm->delta_q_info.delta_q_res = 1; + cm->delta_q_info.delta_lf_res = 1; + cm->delta_q_info.delta_lf_present_flag = 0; + cm->delta_q_info.delta_lf_multi = 0; + cm->delta_q_info.delta_q_present_flag = + quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0; + if (cm->delta_q_info.delta_q_present_flag) { + xd->current_base_qindex = quant_params->base_qindex; + cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2); + if (!features->allow_intrabc) + cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb); + if (cm->delta_q_info.delta_lf_present_flag) { + cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2); + cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb); + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + + xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv; + + for (int i = 0; i < MAX_SEGMENTS; ++i) { + const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex); + xd->lossless[i] = + qindex == 0 && quant_params->y_dc_delta_q == 0 && + quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && + quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; + xd->qindex[i] = qindex; + } + features->coded_lossless = is_coded_lossless(cm, xd); + features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); + setup_segmentation_dequant(cm, xd); + if (features->coded_lossless) { + cm->lf.filter_level[0] = 0; + cm->lf.filter_level[1] = 0; + } + if (features->coded_lossless || !seq_params->enable_cdef) { + cm->cdef_info.cdef_bits = 0; + cm->cdef_info.cdef_strengths[0] = 0; + cm->cdef_info.cdef_uv_strengths[0] = 0; + } + if (features->all_lossless || !seq_params->enable_restoration) { + cm->rst_info[0].frame_restoration_type = RESTORE_NONE; + cm->rst_info[1].frame_restoration_type = RESTORE_NONE; + cm->rst_info[2].frame_restoration_type = RESTORE_NONE; + } + setup_loopfilter(cm, rb); + + if (!features->coded_lossless && seq_params->enable_cdef) { + setup_cdef(cm, rb); + } + if (!features->all_lossless && seq_params->enable_restoration) { + decode_restoration_mode(cm, rb); + } + + features->tx_mode = read_tx_mode(rb, features->coded_lossless); + current_frame->reference_mode = read_frame_reference_mode(cm, rb); + + av1_setup_skip_mode_allowed(cm); + current_frame->skip_mode_info.skip_mode_flag = + current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0; + + if (frame_might_allow_warped_motion(cm)) + features->allow_warped_motion = aom_rb_read_bit(rb); + else + features->allow_warped_motion = 0; + + features->reduced_tx_set_used = aom_rb_read_bit(rb); + + if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Frame wrongly requests reference frame MVs"); + } + + if (!frame_is_intra_only(cm)) read_global_motion(cm, rb); + + cm->cur_frame->film_grain_params_present = + seq_params->film_grain_params_present; + read_film_grain(cm, rb); + +#if EXT_TILE_DEBUG + if (pbi->ext_tile_debug && cm->tiles.large_scale) { + read_ext_tile_info(pbi, rb); + av1_set_single_tile_decoding_mode(cm); + } +#endif // EXT_TILE_DEBUG + return 0; +} + +struct aom_read_bit_buffer *av1_init_read_bit_buffer( + AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, + const uint8_t *data_end) { + rb->bit_offset = 0; + rb->error_handler = error_handler; + rb->error_handler_data = &pbi->common; + rb->bit_buffer = data; + rb->bit_buffer_end = data_end; + return rb; +} + +void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, + int num_bits_height, int *width, int *height) { + *width = aom_rb_read_literal(rb, num_bits_width) + 1; + *height = aom_rb_read_literal(rb, num_bits_height) + 1; +} + +BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { + int profile = aom_rb_read_literal(rb, PROFILE_BITS); + return (BITSTREAM_PROFILE)profile; +} + +static AOM_INLINE void superres_post_decode(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + + if (!av1_superres_scaled(cm)) return; + assert(!cm->features.all_lossless); + + av1_superres_upscale(cm, pool, 0); +} + +uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb, + int trailing_bits_present) { + AV1_COMMON *const cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &pbi->dcb.xd; + +#if CONFIG_BITSTREAM_DEBUG + if (cm->seq_params->order_hint_info.enable_order_hint) { + aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 + + cm->show_frame); + } else { + // This is currently used in RTC encoding. cm->show_frame is always 1. + assert(cm->show_frame); + aom_bitstream_queue_set_frame_read(cm->current_frame.frame_number); + } +#endif +#if CONFIG_MISMATCH_DEBUG + mismatch_move_frame_idx_r(); +#endif + + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + cm->global_motion[i] = default_warp_params; + cm->cur_frame->global_motion[i] = default_warp_params; + } + xd->global_motion = cm->global_motion; + + read_uncompressed_header(pbi, rb); + + if (trailing_bits_present) av1_check_trailing_bits(pbi, rb); + + if (!cm->tiles.single_tile_decoding && + (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { + pbi->dec_tile_row = -1; + pbi->dec_tile_col = -1; + } + + const uint32_t uncomp_hdr_size = + (uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header + YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf; + xd->cur_buf = new_fb; + if (av1_allow_intrabc(cm)) { + av1_setup_scale_factors_for_frame( + &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height, + xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height); + } + + // Showing a frame directly. + if (cm->show_existing_frame) { + if (pbi->reset_decoder_state) { + // Use the default frame context values. + *cm->fc = *cm->default_frame_context; + if (!cm->fc->initialized) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Uninitialized entropy context."); + } + return uncomp_hdr_size; + } + + cm->mi_params.setup_mi(&cm->mi_params); + + av1_calculate_ref_frame_side(cm); + if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm); + + av1_setup_block_planes(xd, cm->seq_params->subsampling_x, + cm->seq_params->subsampling_y, num_planes); + if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { + // use the default frame context values + *cm->fc = *cm->default_frame_context; + } else { + *cm->fc = get_primary_ref_frame_buf(cm)->frame_context; + } + if (!cm->fc->initialized) + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Uninitialized entropy context."); + + pbi->dcb.corrupted = 0; + return uncomp_hdr_size; +} + +// Once-per-frame initialization +static AOM_INLINE void setup_frame_info(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + + if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || + cm->rst_info[1].frame_restoration_type != RESTORE_NONE || + cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { + av1_alloc_restoration_buffers(cm, /*is_sgr_enabled =*/true); + for (int p = 0; p < av1_num_planes(cm); p++) { + av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0); + } + } + + const int use_highbd = cm->seq_params->use_highbitdepth; + const int buf_size = MC_TEMP_BUF_PELS << use_highbd; + if (pbi->td.mc_buf_size != buf_size) { + av1_free_mc_tmp_buf(&pbi->td); + allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd); + } +} + +void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + const uint8_t **p_data_end, int start_tile, + int end_tile, int initialize_flag) { + AV1_COMMON *const cm = &pbi->common; + CommonTileParams *const tiles = &cm->tiles; + MACROBLOCKD *const xd = &pbi->dcb.xd; + const int tile_count_tg = end_tile - start_tile + 1; + + xd->error_info = cm->error; + if (initialize_flag) setup_frame_info(pbi); + const int num_planes = av1_num_planes(cm); + + if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) && + pbi->row_mt) + *p_data_end = + decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile); + else if (pbi->max_threads > 1 && tile_count_tg > 1 && + !(tiles->large_scale && !pbi->ext_tile_debug)) + *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile); + else + *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile); + + // If the bit stream is monochrome, set the U and V buffers to a constant. + if (num_planes < 3) { + set_planes_to_neutral_grey(cm->seq_params, xd->cur_buf, 1); + } + + if (end_tile != tiles->rows * tiles->cols - 1) { + return; + } + + av1_alloc_cdef_buffers(cm, &pbi->cdef_worker, &pbi->cdef_sync, + pbi->num_workers, 1); + av1_alloc_cdef_sync(cm, &pbi->cdef_sync, pbi->num_workers); + + if (!cm->features.allow_intrabc && !tiles->single_tile_decoding) { + if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) { + av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &pbi->dcb.xd, 0, + num_planes, 0, pbi->tile_workers, + pbi->num_workers, &pbi->lf_row_sync, 0); + } + + const int do_cdef = + !pbi->skip_loop_filter && !cm->features.coded_lossless && + (cm->cdef_info.cdef_bits || cm->cdef_info.cdef_strengths[0] || + cm->cdef_info.cdef_uv_strengths[0]); + const int do_superres = av1_superres_scaled(cm); + const int optimized_loop_restoration = !do_cdef && !do_superres; + const int do_loop_restoration = + cm->rst_info[0].frame_restoration_type != RESTORE_NONE || + cm->rst_info[1].frame_restoration_type != RESTORE_NONE || + cm->rst_info[2].frame_restoration_type != RESTORE_NONE; + // Frame border extension is not required in the decoder + // as it happens in extend_mc_border(). + int do_extend_border_mt = 0; + if (!optimized_loop_restoration) { + if (do_loop_restoration) + av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, + cm, 0); + + if (do_cdef) { + if (pbi->num_workers > 1) { + av1_cdef_frame_mt(cm, &pbi->dcb.xd, pbi->cdef_worker, + pbi->tile_workers, &pbi->cdef_sync, + pbi->num_workers, av1_cdef_init_fb_row_mt, + do_extend_border_mt); + } else { + av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd, + av1_cdef_init_fb_row); + } + } + + superres_post_decode(pbi); + + if (do_loop_restoration) { + av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, + cm, 1); + if (pbi->num_workers > 1) { + av1_loop_restoration_filter_frame_mt( + (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, + pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, + &pbi->lr_ctxt, do_extend_border_mt); + } else { + av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, + cm, optimized_loop_restoration, + &pbi->lr_ctxt); + } + } + } else { + // In no cdef and no superres case. Provide an optimized version of + // loop_restoration_filter. + if (do_loop_restoration) { + if (pbi->num_workers > 1) { + av1_loop_restoration_filter_frame_mt( + (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, + pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, + &pbi->lr_ctxt, do_extend_border_mt); + } else { + av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, + cm, optimized_loop_restoration, + &pbi->lr_ctxt); + } + } + } + } + + if (!pbi->dcb.corrupted) { + if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { + assert(pbi->context_update_tile_id < pbi->allocated_tiles); + *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx; + av1_reset_cdf_symbol_counters(cm->fc); + } + } else { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Decode failed. Frame data is corrupted."); + } + +#if CONFIG_INSPECTION + if (pbi->inspect_cb != NULL) { + (*pbi->inspect_cb)(pbi, pbi->inspect_ctx); + } +#endif + + // Non frame parallel update frame context here. + if (!tiles->large_scale) { + cm->cur_frame->frame_context = *cm->fc; + } + + if (cm->show_frame && !cm->seq_params->order_hint_info.enable_order_hint) { + ++cm->current_frame.frame_number; + } +} diff --git a/third_party/aom/av1/decoder/decodeframe.h b/third_party/aom/av1/decoder/decodeframe.h new file mode 100644 index 0000000000..46ae475ff5 --- /dev/null +++ b/third_party/aom/av1/decoder/decodeframe.h @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_DECODEFRAME_H_ +#define AOM_AV1_DECODER_DECODEFRAME_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct AV1Decoder; +struct aom_read_bit_buffer; +struct ThreadData; + +// Reads the middle part of the sequence header OBU (from +// frame_width_bits_minus_1 to enable_restoration) into seq_params. +// Reports errors by calling rb->error_handler() or aom_internal_error(). +void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, + SequenceHeader *seq_params); + +void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, + int num_bits_height, int *width, int *height); +BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb); + +// Returns 0 on success. Sets pbi->common.error.error_code and returns -1 on +// failure. +int av1_check_trailing_bits(struct AV1Decoder *pbi, + struct aom_read_bit_buffer *rb); + +// On success, returns the frame header size. On failure, calls +// aom_internal_error and does not return. +uint32_t av1_decode_frame_headers_and_setup(struct AV1Decoder *pbi, + struct aom_read_bit_buffer *rb, + int trailing_bits_present); + +void av1_decode_tg_tiles_and_wrapup(struct AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + const uint8_t **p_data_end, int start_tile, + int end_tile, int initialize_flag); + +// Implements the color_config() function in the spec. Reports errors by +// calling rb->error_handler() or aom_internal_error(). +void av1_read_color_config(struct aom_read_bit_buffer *rb, + int allow_lowbitdepth, SequenceHeader *seq_params, + struct aom_internal_error_info *error_info); + +// Implements the timing_info() function in the spec. Reports errors by calling +// rb->error_handler() or aom_internal_error(). +void av1_read_timing_info_header(aom_timing_info_t *timing_info, + struct aom_internal_error_info *error, + struct aom_read_bit_buffer *rb); + +// Implements the decoder_model_info() function in the spec. Reports errors by +// calling rb->error_handler(). +void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info, + struct aom_read_bit_buffer *rb); + +// Implements the operating_parameters_info() function in the spec. Reports +// errors by calling rb->error_handler(). +void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params, + int buffer_delay_length, + struct aom_read_bit_buffer *rb); + +struct aom_read_bit_buffer *av1_init_read_bit_buffer( + struct AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, + const uint8_t *data_end); + +void av1_free_mc_tmp_buf(struct ThreadData *thread_data); + +void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_DECODER_DECODEFRAME_H_ diff --git a/third_party/aom/av1/decoder/decodemv.c b/third_party/aom/av1/decoder/decodemv.c new file mode 100644 index 0000000000..bb0ccf5fd8 --- /dev/null +++ b/third_party/aom/av1/decoder/decodemv.c @@ -0,0 +1,1586 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> + +#include "av1/common/cfl.h" +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/entropymv.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/seg_common.h" +#include "av1/common/warped_motion.h" + +#include "av1/decoder/decodeframe.h" +#include "av1/decoder/decodemv.h" + +#include "aom_dsp/aom_dsp_common.h" + +#define ACCT_STR __func__ + +#define DEC_MISMATCH_DEBUG 0 + +static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) { + return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR); +} + +static void read_cdef(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd) { + const int skip_txfm = xd->mi[0]->skip_txfm; + if (cm->features.coded_lossless) return; + if (cm->features.allow_intrabc) { + assert(cm->cdef_info.cdef_bits == 0); + return; + } + + // At the start of a superblock, mark that we haven't yet read CDEF strengths + // for any of the CDEF units contained in this superblock. + const int sb_mask = (cm->seq_params->mib_size - 1); + const int mi_row_in_sb = (xd->mi_row & sb_mask); + const int mi_col_in_sb = (xd->mi_col & sb_mask); + if (mi_row_in_sb == 0 && mi_col_in_sb == 0) { + xd->cdef_transmitted[0] = xd->cdef_transmitted[1] = + xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false; + } + + // CDEF unit size is 64x64 irrespective of the superblock size. + const int cdef_size = 1 << (6 - MI_SIZE_LOG2); + + // Find index of this CDEF unit in this superblock. + const int index_mask = cdef_size; + const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0); + const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0); + const int index = (cm->seq_params->sb_size == BLOCK_128X128) + ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb + : 0; + + // Read CDEF strength from the first non-skip coding block in this CDEF unit. + if (!xd->cdef_transmitted[index] && !skip_txfm) { + // CDEF strength for this CDEF unit needs to be read into the MB_MODE_INFO + // of the 1st block in this CDEF unit. + const int first_block_mask = ~(cdef_size - 1); + CommonModeInfoParams *const mi_params = &cm->mi_params; + const int grid_idx = + get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask, + xd->mi_col & first_block_mask); + MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx]; + mbmi->cdef_strength = + aom_read_literal(r, cm->cdef_info.cdef_bits, ACCT_STR); + xd->cdef_transmitted[index] = true; + } +} + +static int read_delta_qindex(AV1_COMMON *cm, const MACROBLOCKD *xd, + aom_reader *r, MB_MODE_INFO *const mbmi) { + int sign, abs, reduced_delta_qindex = 0; + BLOCK_SIZE bsize = mbmi->bsize; + const int b_col = xd->mi_col & (cm->seq_params->mib_size - 1); + const int b_row = xd->mi_row & (cm->seq_params->mib_size - 1); + const int read_delta_q_flag = (b_col == 0 && b_row == 0); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if ((bsize != cm->seq_params->sb_size || mbmi->skip_txfm == 0) && + read_delta_q_flag) { + abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR); + const int smallval = (abs < DELTA_Q_SMALL); + + if (!smallval) { + const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1; + const int thr = (1 << rem_bits) + 1; + abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr; + } + + if (abs) { + sign = aom_read_bit(r, ACCT_STR); + } else { + sign = 1; + } + + reduced_delta_qindex = sign ? -abs : abs; + } + return reduced_delta_qindex; +} +static int read_delta_lflevel(const AV1_COMMON *const cm, aom_reader *r, + aom_cdf_prob *const cdf, + const MB_MODE_INFO *const mbmi, int mi_col, + int mi_row) { + int reduced_delta_lflevel = 0; + const BLOCK_SIZE bsize = mbmi->bsize; + const int b_col = mi_col & (cm->seq_params->mib_size - 1); + const int b_row = mi_row & (cm->seq_params->mib_size - 1); + const int read_delta_lf_flag = (b_col == 0 && b_row == 0); + + if ((bsize != cm->seq_params->sb_size || mbmi->skip_txfm == 0) && + read_delta_lf_flag) { + int abs = aom_read_symbol(r, cdf, DELTA_LF_PROBS + 1, ACCT_STR); + const int smallval = (abs < DELTA_LF_SMALL); + if (!smallval) { + const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1; + const int thr = (1 << rem_bits) + 1; + abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr; + } + const int sign = abs ? aom_read_bit(r, ACCT_STR) : 1; + reduced_delta_lflevel = sign ? -abs : abs; + } + return reduced_delta_lflevel; +} + +static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx, + aom_reader *r, + CFL_ALLOWED_TYPE cfl_allowed, + PREDICTION_MODE y_mode) { + const UV_PREDICTION_MODE uv_mode = + aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][y_mode], + UV_INTRA_MODES - !cfl_allowed, ACCT_STR); + return uv_mode; +} + +static uint8_t read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r, + int8_t *signs_out) { + const int8_t joint_sign = + aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs"); + uint8_t idx = 0; + // Magnitudes are only coded for nonzero values + if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; + idx = (uint8_t)aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u") + << CFL_ALPHABET_SIZE_LOG2; + } + if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; + idx += (uint8_t)aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v"); + } + *signs_out = joint_sign; + return idx; +} + +static INTERINTRA_MODE read_interintra_mode(MACROBLOCKD *xd, aom_reader *r, + int size_group) { + const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol( + r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES, + ACCT_STR); + return ii_mode; +} + +static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, aom_reader *r, + int16_t ctx) { + int16_t mode_ctx = ctx & NEWMV_CTX_MASK; + int is_newmv, is_zeromv, is_refmv; + is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0; + if (is_newmv) return NEWMV; + + mode_ctx = (ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + is_zeromv = + aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0; + if (is_zeromv) return GLOBALMV; + + mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; + is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0; + if (is_refmv) + return NEARESTMV; + else + return NEARMV; +} + +static void read_drl_idx(FRAME_CONTEXT *ec_ctx, DecoderCodingBlock *dcb, + MB_MODE_INFO *mbmi, aom_reader *r) { + MACROBLOCKD *const xd = &dcb->xd; + uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + mbmi->ref_mv_idx = 0; + if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { + for (int idx = 0; idx < 2; ++idx) { + if (dcb->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx); + int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR); + mbmi->ref_mv_idx = idx + drl_idx; + if (!drl_idx) return; + } + } + } + if (have_nearmv_in_inter_mode(mbmi->mode)) { + // Offset the NEARESTMV mode. + // TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV + // mode is factored in. + for (int idx = 1; idx < 3; ++idx) { + if (dcb->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx); + int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR); + mbmi->ref_mv_idx = idx + drl_idx - 1; + if (!drl_idx) return; + } + } + } +} + +static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd, + MB_MODE_INFO *mbmi, aom_reader *r) { + if (cm->features.switchable_motion_mode == 0) return SIMPLE_TRANSLATION; + if (mbmi->skip_mode) return SIMPLE_TRANSLATION; + + const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed( + xd->global_motion, xd, mbmi, cm->features.allow_warped_motion); + int motion_mode; + + if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION; + + if (last_motion_mode_allowed == OBMC_CAUSAL) { + motion_mode = + aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->bsize], 2, ACCT_STR); + return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); + } else { + motion_mode = aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->bsize], + MOTION_MODES, ACCT_STR); + return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode); + } +} + +static PREDICTION_MODE read_inter_compound_mode(MACROBLOCKD *xd, aom_reader *r, + int16_t ctx) { + const int mode = + aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx], + INTER_COMPOUND_MODES, ACCT_STR); + assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode)); + return NEAREST_NEARESTMV + mode; +} + +int av1_neg_deinterleave(int diff, int ref, int max) { + if (!ref) return diff; + if (ref >= (max - 1)) return max - diff - 1; + if (2 * ref < max) { + if (diff <= 2 * ref) { + if (diff & 1) + return ref + ((diff + 1) >> 1); + else + return ref - (diff >> 1); + } + return diff; + } else { + if (diff <= 2 * (max - ref - 1)) { + if (diff & 1) + return ref + ((diff + 1) >> 1); + else + return ref - (diff >> 1); + } + return max - (diff + 1); + } +} + +static int read_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd, + aom_reader *r, int skip) { + int cdf_num; + const uint8_t pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num, 0); + if (skip) return pred; + + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + struct segmentation *const seg = &cm->seg; + struct segmentation_probs *const segp = &ec_ctx->seg; + aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; + const int coded_id = aom_read_symbol(r, pred_cdf, MAX_SEGMENTS, ACCT_STR); + const int segment_id = + av1_neg_deinterleave(coded_id, pred, seg->last_active_segid + 1); + + if (segment_id < 0 || segment_id > seg->last_active_segid) { + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Corrupted segment_ids"); + } + return segment_id; +} + +static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids, + int mi_offset, int x_mis, int y_mis) { + int segment_id = INT_MAX; + + for (int y = 0; y < y_mis; y++) + for (int x = 0; x < x_mis; x++) + segment_id = AOMMIN( + segment_id, segment_ids[mi_offset + y * cm->mi_params.mi_cols + x]); + + assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); + return segment_id; +} + +static int read_intra_segment_id(AV1_COMMON *const cm, + const MACROBLOCKD *const xd, BLOCK_SIZE bsize, + aom_reader *r, int skip) { + struct segmentation *const seg = &cm->seg; + if (!seg->enabled) return 0; // Default for disabled segmentation + assert(seg->update_map && !seg->temporal_update); + + const CommonModeInfoParams *const mi_params = &cm->mi_params; + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + const int mi_stride = cm->mi_params.mi_cols; + const int mi_offset = mi_row * mi_stride + mi_col; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw); + const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh); + const int segment_id = read_segment_id(cm, xd, r, skip); + set_segment_id(cm->cur_frame->seg_map, mi_offset, x_mis, y_mis, mi_stride, + segment_id); + return segment_id; +} + +static void copy_segment_id(const CommonModeInfoParams *const mi_params, + const uint8_t *last_segment_ids, + uint8_t *current_segment_ids, int mi_offset, + int x_mis, int y_mis) { + const int stride = mi_params->mi_cols; + if (last_segment_ids) { + assert(last_segment_ids != current_segment_ids); + for (int y = 0; y < y_mis; y++) { + memcpy(¤t_segment_ids[mi_offset + y * stride], + &last_segment_ids[mi_offset + y * stride], + sizeof(current_segment_ids[0]) * x_mis); + } + } else { + for (int y = 0; y < y_mis; y++) { + memset(¤t_segment_ids[mi_offset + y * stride], 0, + sizeof(current_segment_ids[0]) * x_mis); + } + } +} + +static int get_predicted_segment_id(AV1_COMMON *const cm, int mi_offset, + int x_mis, int y_mis) { + return cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map, + mi_offset, x_mis, y_mis) + : 0; +} + +static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd, + int preskip, aom_reader *r) { + struct segmentation *const seg = &cm->seg; + const CommonModeInfoParams *const mi_params = &cm->mi_params; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + const int mi_offset = mi_row * mi_params->mi_cols + mi_col; + const int bw = mi_size_wide[mbmi->bsize]; + const int bh = mi_size_high[mbmi->bsize]; + + // TODO(slavarnway): move x_mis, y_mis into xd ????? + const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw); + const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh); + + if (!seg->enabled) return 0; // Default for disabled segmentation + + if (!seg->update_map) { + copy_segment_id(mi_params, cm->last_frame_seg_map, cm->cur_frame->seg_map, + mi_offset, x_mis, y_mis); + return get_predicted_segment_id(cm, mi_offset, x_mis, y_mis); + } + + uint8_t segment_id; + const int mi_stride = cm->mi_params.mi_cols; + if (preskip) { + if (!seg->segid_preskip) return 0; + } else { + if (mbmi->skip_txfm) { + if (seg->temporal_update) { + mbmi->seg_id_predicted = 0; + } + segment_id = read_segment_id(cm, xd, r, 1); + set_segment_id(cm->cur_frame->seg_map, mi_offset, x_mis, y_mis, mi_stride, + segment_id); + return segment_id; + } + } + + if (seg->temporal_update) { + const uint8_t ctx = av1_get_pred_context_seg_id(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + struct segmentation_probs *const segp = &ec_ctx->seg; + aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx]; + mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR); + if (mbmi->seg_id_predicted) { + segment_id = get_predicted_segment_id(cm, mi_offset, x_mis, y_mis); + } else { + segment_id = read_segment_id(cm, xd, r, 0); + } + } else { + segment_id = read_segment_id(cm, xd, r, 0); + } + set_segment_id(cm->cur_frame->seg_map, mi_offset, x_mis, y_mis, mi_stride, + segment_id); + return segment_id; +} + +static int read_skip_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, + aom_reader *r) { + if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0; + + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 0; + } + + if (!is_comp_ref_allowed(xd->mi[0]->bsize)) return 0; + + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || + segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + // These features imply single-reference mode, while skip mode implies + // compound reference. Hence, the two are mutually exclusive. + // In other words, skip_mode is implicitly 0 here. + return 0; + } + + const int ctx = av1_get_skip_mode_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int skip_mode = + aom_read_symbol(r, ec_ctx->skip_mode_cdfs[ctx], 2, ACCT_STR); + return skip_mode; +} + +static int read_skip_txfm(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, + aom_reader *r) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 1; + } else { + const int ctx = av1_get_skip_txfm_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int skip_txfm = + aom_read_symbol(r, ec_ctx->skip_txfm_cdfs[ctx], 2, ACCT_STR); + return skip_txfm; + } +} + +// Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1]) +// and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into +// one single sorted list(colors[...]). +static void merge_colors(uint16_t *colors, uint16_t *cached_colors, + int n_colors, int n_cached_colors) { + if (n_cached_colors == 0) return; + int cache_idx = 0, trans_idx = n_cached_colors; + for (int i = 0; i < n_colors; ++i) { + if (cache_idx < n_cached_colors && + (trans_idx >= n_colors || + cached_colors[cache_idx] <= colors[trans_idx])) { + colors[i] = cached_colors[cache_idx++]; + } else { + assert(trans_idx < n_colors); + colors[i] = colors[trans_idx++]; + } + } +} + +static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth, + PALETTE_MODE_INFO *const pmi, aom_reader *r) { + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + uint16_t cached_colors[PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + const int n = pmi->palette_size[0]; + int idx = 0; + for (int i = 0; i < n_cache && idx < n; ++i) + if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i]; + if (idx < n) { + const int n_cached_colors = idx; + pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR); + if (idx < n) { + const int min_bits = bit_depth - 3; + int bits = min_bits + aom_read_literal(r, 2, ACCT_STR); + int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1; + for (; idx < n; ++idx) { + assert(range >= 0); + const int delta = aom_read_literal(r, bits, ACCT_STR) + 1; + pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta, + 0, (1 << bit_depth) - 1); + range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]); + bits = AOMMIN(bits, av1_ceil_log2(range)); + } + } + merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors); + } else { + memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0])); + } +} + +static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth, + PALETTE_MODE_INFO *const pmi, + aom_reader *r) { + const int n = pmi->palette_size[1]; + // U channel colors. + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + uint16_t cached_colors[PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + int idx = 0; + for (int i = 0; i < n_cache && idx < n; ++i) + if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i]; + if (idx < n) { + const int n_cached_colors = idx; + idx += PALETTE_MAX_SIZE; + pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR); + if (idx < PALETTE_MAX_SIZE + n) { + const int min_bits = bit_depth - 3; + int bits = min_bits + aom_read_literal(r, 2, ACCT_STR); + int range = (1 << bit_depth) - pmi->palette_colors[idx - 1]; + for (; idx < PALETTE_MAX_SIZE + n; ++idx) { + assert(range >= 0); + const int delta = aom_read_literal(r, bits, ACCT_STR); + pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta, + 0, (1 << bit_depth) - 1); + range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]); + bits = AOMMIN(bits, av1_ceil_log2(range)); + } + } + merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n, + n_cached_colors); + } else { + memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, + n * sizeof(cached_colors[0])); + } + + // V channel colors. + if (aom_read_bit(r, ACCT_STR)) { // Delta encoding. + const int min_bits_v = bit_depth - 4; + const int max_val = 1 << bit_depth; + int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR); + pmi->palette_colors[2 * PALETTE_MAX_SIZE] = + aom_read_literal(r, bit_depth, ACCT_STR); + for (int i = 1; i < n; ++i) { + int delta = aom_read_literal(r, bits, ACCT_STR); + if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta; + int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta; + if (val < 0) val += max_val; + if (val >= max_val) val -= max_val; + pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val; + } + } else { + for (int i = 0; i < n; ++i) { + pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = + aom_read_literal(r, bit_depth, ACCT_STR); + } + } +} + +static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd, + aom_reader *r) { + const int num_planes = av1_num_planes(cm); + MB_MODE_INFO *const mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->bsize; + assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize)); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + + if (mbmi->mode == DC_PRED) { + const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); + const int modev = aom_read_symbol( + r, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_mode_ctx], 2, + ACCT_STR); + if (modev) { + pmi->palette_size[0] = + aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[bsize_ctx], + PALETTE_SIZES, ACCT_STR) + + 2; + read_palette_colors_y(xd, cm->seq_params->bit_depth, pmi, r); + } + } + if (num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref) { + const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); + const int modev = aom_read_symbol( + r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR); + if (modev) { + pmi->palette_size[1] = + aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], + PALETTE_SIZES, ACCT_STR) + + 2; + read_palette_colors_uv(xd, cm->seq_params->bit_depth, pmi, r); + } + } +} + +static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) { + const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR); + return sym - MAX_ANGLE_DELTA; +} + +static void read_filter_intra_mode_info(const AV1_COMMON *const cm, + MACROBLOCKD *const xd, aom_reader *r) { + MB_MODE_INFO *const mbmi = xd->mi[0]; + FILTER_INTRA_MODE_INFO *filter_intra_mode_info = + &mbmi->filter_intra_mode_info; + + if (av1_filter_intra_allowed(cm, mbmi)) { + filter_intra_mode_info->use_filter_intra = aom_read_symbol( + r, xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2, ACCT_STR); + if (filter_intra_mode_info->use_filter_intra) { + filter_intra_mode_info->filter_intra_mode = aom_read_symbol( + r, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES, ACCT_STR); + } + } else { + filter_intra_mode_info->use_filter_intra = 0; + } +} + +void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row, + int blk_col, TX_SIZE tx_size, aom_reader *r) { + MB_MODE_INFO *mbmi = xd->mi[0]; + uint8_t *tx_type = + &xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; + *tx_type = DCT_DCT; + + // No need to read transform type if block is skipped. + if (mbmi->skip_txfm || + segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) + return; + + // No need to read transform type for lossless mode(qindex==0). + const int qindex = xd->qindex[mbmi->segment_id]; + if (qindex == 0) return; + + const int inter_block = is_inter_block(mbmi); + if (get_ext_tx_types(tx_size, inter_block, cm->features.reduced_tx_set_used) > + 1) { + const TxSetType tx_set_type = av1_get_ext_tx_set_type( + tx_size, inter_block, cm->features.reduced_tx_set_used); + const int eset = + get_ext_tx_set(tx_size, inter_block, cm->features.reduced_tx_set_used); + // eset == 0 should correspond to a set with only DCT_DCT and + // there is no need to read the tx_type + assert(eset != 0); + + const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + if (inter_block) { + *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( + r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], + av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; + } else { + const PREDICTION_MODE intra_mode = + mbmi->filter_intra_mode_info.use_filter_intra + ? fimode_to_intradir[mbmi->filter_intra_mode_info + .filter_intra_mode] + : mbmi->mode; + *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol( + r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode], + av1_num_ext_tx_set[tx_set_type], ACCT_STR)]; + } + } +} + +static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref, + nmv_context *ctx, MvSubpelPrecision precision); + +static INLINE int is_mv_valid(const MV *mv); + +static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv, + const int_mv *ref_mv, int mi_row, int mi_col, + BLOCK_SIZE bsize, aom_reader *r) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, MV_SUBPEL_NONE); + // DV should not have sub-pel. + assert((mv->as_mv.col & 7) == 0); + assert((mv->as_mv.row & 7) == 0); + mv->as_mv.col = (mv->as_mv.col >> 3) * 8; + mv->as_mv.row = (mv->as_mv.row >> 3) * 8; + int valid = is_mv_valid(&mv->as_mv) && + av1_is_dv_valid(mv->as_mv, cm, xd, mi_row, mi_col, bsize, + cm->seq_params->mib_size_log2); + return valid; +} + +static void read_intrabc_info(AV1_COMMON *const cm, DecoderCodingBlock *dcb, + aom_reader *r) { + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR); + if (mbmi->use_intrabc) { + BLOCK_SIZE bsize = mbmi->bsize; + mbmi->mode = DC_PRED; + mbmi->uv_mode = UV_DC_PRED; + mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); + mbmi->motion_mode = SIMPLE_TRANSLATION; + + int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; + int_mv ref_mvs[INTRA_FRAME + 1][MAX_MV_REF_CANDIDATES]; + + av1_find_mv_refs(cm, xd, mbmi, INTRA_FRAME, dcb->ref_mv_count, + xd->ref_mv_stack, xd->weight, ref_mvs, /*global_mvs=*/NULL, + inter_mode_ctx); + + int_mv nearestmv, nearmv; + + av1_find_best_ref_mvs(0, ref_mvs[INTRA_FRAME], &nearestmv, &nearmv, 0); + int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; + if (dv_ref.as_int == 0) + av1_find_ref_dv(&dv_ref, &xd->tile, cm->seq_params->mib_size, xd->mi_row); + // Ref DV should not have sub-pel. + int valid_dv = (dv_ref.as_mv.col & 7) == 0 && (dv_ref.as_mv.row & 7) == 0; + dv_ref.as_mv.col = (dv_ref.as_mv.col >> 3) * 8; + dv_ref.as_mv.row = (dv_ref.as_mv.row >> 3) * 8; + valid_dv = valid_dv && assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, xd->mi_row, + xd->mi_col, bsize, r); + if (!valid_dv) { + // Intra bc motion vectors are not valid - signal corrupt frame + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Invalid intrabc dv"); + } + } +} + +// If delta q is present, reads delta_q index. +// Also reads delta_q loop filter levels, if present. +static void read_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd, + aom_reader *r) { + DeltaQInfo *const delta_q_info = &cm->delta_q_info; + + if (delta_q_info->delta_q_present_flag) { + MB_MODE_INFO *const mbmi = xd->mi[0]; + xd->current_base_qindex += + read_delta_qindex(cm, xd, r, mbmi) * delta_q_info->delta_q_res; + /* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */ + xd->current_base_qindex = clamp(xd->current_base_qindex, 1, MAXQ); + FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; + if (delta_q_info->delta_lf_present_flag) { + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + if (delta_q_info->delta_lf_multi) { + const int frame_lf_count = + av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; + for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { + const int tmp_lvl = + xd->delta_lf[lf_id] + + read_delta_lflevel(cm, r, ec_ctx->delta_lf_multi_cdf[lf_id], mbmi, + mi_col, mi_row) * + delta_q_info->delta_lf_res; + mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id] = + clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); + } + } else { + const int tmp_lvl = xd->delta_lf_from_base + + read_delta_lflevel(cm, r, ec_ctx->delta_lf_cdf, + mbmi, mi_col, mi_row) * + delta_q_info->delta_lf_res; + mbmi->delta_lf_from_base = xd->delta_lf_from_base = + clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); + } + } + } +} + +static void read_intra_frame_mode_info(AV1_COMMON *const cm, + DecoderCodingBlock *dcb, aom_reader *r) { + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const MB_MODE_INFO *above_mi = xd->above_mbmi; + const MB_MODE_INFO *left_mi = xd->left_mbmi; + const BLOCK_SIZE bsize = mbmi->bsize; + struct segmentation *const seg = &cm->seg; + + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (seg->segid_preskip) + mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, 0); + + mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r); + + if (!seg->segid_preskip) + mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, mbmi->skip_txfm); + + read_cdef(cm, r, xd); + + read_delta_q_params(cm, xd, r); + + mbmi->current_qindex = xd->current_base_qindex; + + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->palette_mode_info.palette_size[0] = 0; + mbmi->palette_mode_info.palette_size[1] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + + if (av1_allow_intrabc(cm)) { + read_intrabc_info(cm, dcb, r); + if (is_intrabc_block(mbmi)) return; + } + + mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, above_mi, left_mi)); + + const int use_angle_delta = av1_use_angle_delta(bsize); + mbmi->angle_delta[PLANE_TYPE_Y] = + (use_angle_delta && av1_is_directional_mode(mbmi->mode)) + ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED]) + : 0; + + if (!cm->seq_params->monochrome && xd->is_chroma_ref) { + mbmi->uv_mode = + read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode); + if (mbmi->uv_mode == UV_CFL_PRED) { + mbmi->cfl_alpha_idx = read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs); + } + const PREDICTION_MODE intra_mode = get_uv_mode(mbmi->uv_mode); + mbmi->angle_delta[PLANE_TYPE_UV] = + (use_angle_delta && av1_is_directional_mode(intra_mode)) + ? read_angle_delta(r, ec_ctx->angle_delta_cdf[intra_mode - V_PRED]) + : 0; + } else { + // Avoid decoding angle_info if there is no chroma prediction + mbmi->uv_mode = UV_DC_PRED; + } + xd->cfl.store_y = store_cfl_required(cm, xd); + + if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) + read_palette_mode_info(cm, xd, r); + + read_filter_intra_mode_info(cm, xd, r); +} + +static int read_mv_component(aom_reader *r, nmv_component *mvcomp, + int use_subpel, int usehp) { + int mag, d, fr, hp; + const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR); + const int mv_class = + aom_read_symbol(r, mvcomp->classes_cdf, MV_CLASSES, ACCT_STR); + const int class0 = mv_class == MV_CLASS_0; + + // Integer part + if (class0) { + d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR); + mag = 0; + } else { + const int n = mv_class + CLASS0_BITS - 1; // number of bits + d = 0; + for (int i = 0; i < n; ++i) + d |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i; + mag = CLASS0_SIZE << (mv_class + 2); + } + + if (use_subpel) { + // Fractional part + fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, + MV_FP_SIZE, ACCT_STR); + + // High precision part (if hp is not used, the default value of the hp is 1) + hp = usehp ? aom_read_symbol( + r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2, + ACCT_STR) + : 1; + } else { + fr = 3; + hp = 1; + } + + // Result + mag += ((d << 3) | (fr << 1) | hp) + 1; + return sign ? -mag : mag; +} + +static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref, + nmv_context *ctx, MvSubpelPrecision precision) { + MV diff = kZeroMv; + const MV_JOINT_TYPE joint_type = + (MV_JOINT_TYPE)aom_read_symbol(r, ctx->joints_cdf, MV_JOINTS, ACCT_STR); + + if (mv_joint_vertical(joint_type)) + diff.row = read_mv_component(r, &ctx->comps[0], precision > MV_SUBPEL_NONE, + precision > MV_SUBPEL_LOW_PRECISION); + + if (mv_joint_horizontal(joint_type)) + diff.col = read_mv_component(r, &ctx->comps[1], precision > MV_SUBPEL_NONE, + precision > MV_SUBPEL_LOW_PRECISION); + + mv->row = ref->row + diff.row; + mv->col = ref->col + diff.col; +} + +static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm, + const MACROBLOCKD *xd, + aom_reader *r) { + if (!is_comp_ref_allowed(xd->mi[0]->bsize)) return SINGLE_REFERENCE; + if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { + const int ctx = av1_get_reference_mode_context(xd); + const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol( + r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR); + return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE + } else { + assert(cm->current_frame.reference_mode == SINGLE_REFERENCE); + return cm->current_frame.reference_mode; + } +} + +#define READ_REF_BIT(pname) \ + aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR) + +static COMP_REFERENCE_TYPE read_comp_reference_type(const MACROBLOCKD *xd, + aom_reader *r) { + const int ctx = av1_get_comp_reference_type_context(xd); + const COMP_REFERENCE_TYPE comp_ref_type = + (COMP_REFERENCE_TYPE)aom_read_symbol( + r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR); + return comp_ref_type; // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE +} + +static void set_ref_frames_for_skip_mode(AV1_COMMON *const cm, + MV_REFERENCE_FRAME ref_frame[2]) { + ref_frame[0] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_0; + ref_frame[1] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_1; +} + +// Read the referncence frame +static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd, + aom_reader *r, int segment_id, + MV_REFERENCE_FRAME ref_frame[2]) { + if (xd->mi[0]->skip_mode) { + set_ref_frames_for_skip_mode(cm, ref_frame); + return; + } + + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id, + SEG_LVL_REF_FRAME); + ref_frame[1] = NONE_FRAME; + } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || + segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + ref_frame[0] = LAST_FRAME; + ref_frame[1] = NONE_FRAME; + } else { + const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); + + if (mode == COMPOUND_REFERENCE) { + const COMP_REFERENCE_TYPE comp_ref_type = read_comp_reference_type(xd, r); + + if (comp_ref_type == UNIDIR_COMP_REFERENCE) { + const int bit = READ_REF_BIT(uni_comp_ref_p); + if (bit) { + ref_frame[0] = BWDREF_FRAME; + ref_frame[1] = ALTREF_FRAME; + } else { + const int bit1 = READ_REF_BIT(uni_comp_ref_p1); + if (bit1) { + const int bit2 = READ_REF_BIT(uni_comp_ref_p2); + if (bit2) { + ref_frame[0] = LAST_FRAME; + ref_frame[1] = GOLDEN_FRAME; + } else { + ref_frame[0] = LAST_FRAME; + ref_frame[1] = LAST3_FRAME; + } + } else { + ref_frame[0] = LAST_FRAME; + ref_frame[1] = LAST2_FRAME; + } + } + + return; + } + + assert(comp_ref_type == BIDIR_COMP_REFERENCE); + + const int idx = 1; + const int bit = READ_REF_BIT(comp_ref_p); + // Decode forward references. + if (!bit) { + const int bit1 = READ_REF_BIT(comp_ref_p1); + ref_frame[!idx] = bit1 ? LAST2_FRAME : LAST_FRAME; + } else { + const int bit2 = READ_REF_BIT(comp_ref_p2); + ref_frame[!idx] = bit2 ? GOLDEN_FRAME : LAST3_FRAME; + } + + // Decode backward references. + const int bit_bwd = READ_REF_BIT(comp_bwdref_p); + if (!bit_bwd) { + const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1); + ref_frame[idx] = bit1_bwd ? ALTREF2_FRAME : BWDREF_FRAME; + } else { + ref_frame[idx] = ALTREF_FRAME; + } + } else if (mode == SINGLE_REFERENCE) { + const int bit0 = READ_REF_BIT(single_ref_p1); + if (bit0) { + const int bit1 = READ_REF_BIT(single_ref_p2); + if (!bit1) { + const int bit5 = READ_REF_BIT(single_ref_p6); + ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME; + } else { + ref_frame[0] = ALTREF_FRAME; + } + } else { + const int bit2 = READ_REF_BIT(single_ref_p3); + if (bit2) { + const int bit4 = READ_REF_BIT(single_ref_p5); + ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME; + } else { + const int bit3 = READ_REF_BIT(single_ref_p4); + ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME; + } + } + + ref_frame[1] = NONE_FRAME; + } else { + assert(0 && "Invalid prediction mode."); + } + } +} + +static INLINE void read_mb_interp_filter(const MACROBLOCKD *const xd, + InterpFilter interp_filter, + bool enable_dual_filter, + MB_MODE_INFO *const mbmi, + aom_reader *r) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!av1_is_interp_needed(xd)) { + set_default_interp_filters(mbmi, interp_filter); + return; + } + + if (interp_filter != SWITCHABLE) { + mbmi->interp_filters = av1_broadcast_interp_filter(interp_filter); + } else { + InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }; + for (int dir = 0; dir < 2; ++dir) { + const int ctx = av1_get_pred_context_switchable_interp(xd, dir); + ref0_filter[dir] = (InterpFilter)aom_read_symbol( + r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR); + if (!enable_dual_filter) { + ref0_filter[1] = ref0_filter[0]; + break; + } + } + // The index system works as: (0, 1) -> (vertical, horizontal) filter types + mbmi->interp_filters.as_filters.x_filter = ref0_filter[1]; + mbmi->interp_filters.as_filters.y_filter = ref0_filter[0]; + } +} + +static void read_intra_block_mode_info(AV1_COMMON *const cm, + MACROBLOCKD *const xd, + MB_MODE_INFO *const mbmi, + aom_reader *r) { + const BLOCK_SIZE bsize = mbmi->bsize; + const int use_angle_delta = av1_use_angle_delta(bsize); + + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]); + + mbmi->angle_delta[PLANE_TYPE_Y] = + use_angle_delta && av1_is_directional_mode(mbmi->mode) + ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED]) + : 0; + if (!cm->seq_params->monochrome && xd->is_chroma_ref) { + mbmi->uv_mode = + read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode); + if (mbmi->uv_mode == UV_CFL_PRED) { + mbmi->cfl_alpha_idx = + read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs); + } + const PREDICTION_MODE intra_mode = get_uv_mode(mbmi->uv_mode); + mbmi->angle_delta[PLANE_TYPE_UV] = + use_angle_delta && av1_is_directional_mode(intra_mode) + ? read_angle_delta(r, ec_ctx->angle_delta_cdf[intra_mode - V_PRED]) + : 0; + } else { + // Avoid decoding angle_info if there is no chroma prediction + mbmi->uv_mode = UV_DC_PRED; + } + xd->cfl.store_y = store_cfl_required(cm, xd); + + mbmi->palette_mode_info.palette_size[0] = 0; + mbmi->palette_mode_info.palette_size[1] = 0; + if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) + read_palette_mode_info(cm, xd, r); + + read_filter_intra_mode_info(cm, xd, r); +} + +static INLINE int is_mv_valid(const MV *mv) { + return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && + mv->col < MV_UPP; +} + +static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd, + PREDICTION_MODE mode, + MV_REFERENCE_FRAME ref_frame[2], int_mv mv[2], + int_mv ref_mv[2], int_mv nearest_mv[2], + int_mv near_mv[2], int is_compound, int allow_hp, + aom_reader *r) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + MB_MODE_INFO *mbmi = xd->mi[0]; + BLOCK_SIZE bsize = mbmi->bsize; + FeatureFlags *const features = &cm->features; + if (features->cur_frame_force_integer_mv) { + allow_hp = MV_SUBPEL_NONE; + } + switch (mode) { + case NEWMV: { + nmv_context *const nmvc = &ec_ctx->nmvc; + read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp); + break; + } + case NEARESTMV: { + mv[0].as_int = nearest_mv[0].as_int; + break; + } + case NEARMV: { + mv[0].as_int = near_mv[0].as_int; + break; + } + case GLOBALMV: { + mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], + features->allow_high_precision_mv, + bsize, xd->mi_col, xd->mi_row, + features->cur_frame_force_integer_mv) + .as_int; + break; + } + case NEW_NEWMV: { + assert(is_compound); + for (int i = 0; i < 2; ++i) { + nmv_context *const nmvc = &ec_ctx->nmvc; + read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, allow_hp); + } + break; + } + case NEAREST_NEARESTMV: { + assert(is_compound); + mv[0].as_int = nearest_mv[0].as_int; + mv[1].as_int = nearest_mv[1].as_int; + break; + } + case NEAR_NEARMV: { + assert(is_compound); + mv[0].as_int = near_mv[0].as_int; + mv[1].as_int = near_mv[1].as_int; + break; + } + case NEW_NEARESTMV: { + nmv_context *const nmvc = &ec_ctx->nmvc; + read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp); + assert(is_compound); + mv[1].as_int = nearest_mv[1].as_int; + break; + } + case NEAREST_NEWMV: { + nmv_context *const nmvc = &ec_ctx->nmvc; + mv[0].as_int = nearest_mv[0].as_int; + read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp); + assert(is_compound); + break; + } + case NEAR_NEWMV: { + nmv_context *const nmvc = &ec_ctx->nmvc; + mv[0].as_int = near_mv[0].as_int; + read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp); + assert(is_compound); + break; + } + case NEW_NEARMV: { + nmv_context *const nmvc = &ec_ctx->nmvc; + read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp); + assert(is_compound); + mv[1].as_int = near_mv[1].as_int; + break; + } + case GLOBAL_GLOBALMV: { + assert(is_compound); + mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]], + features->allow_high_precision_mv, + bsize, xd->mi_col, xd->mi_row, + features->cur_frame_force_integer_mv) + .as_int; + mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]], + features->allow_high_precision_mv, + bsize, xd->mi_col, xd->mi_row, + features->cur_frame_force_integer_mv) + .as_int; + break; + } + default: { + return 0; + } + } + + int ret = is_mv_valid(&mv[0].as_mv); + if (is_compound) { + ret = ret && is_mv_valid(&mv[1].as_mv); + } + return ret; +} + +static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd, + int segment_id, aom_reader *r) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + const int frame = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); + if (frame < LAST_FRAME) return 0; + return frame != INTRA_FRAME; + } + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + return 1; + } + const int ctx = av1_get_intra_inter_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int is_inter = + aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR); + return is_inter; +} + +#if DEC_MISMATCH_DEBUG +static void dec_dump_logs(AV1_COMMON *cm, MB_MODE_INFO *const mbmi, int mi_row, + int mi_col, int16_t mode_ctx) { + int_mv mv[2] = { { 0 } }; + for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) + mv[ref].as_mv = mbmi->mv[ref].as_mv; + + const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; + int16_t zeromv_ctx = -1; + int16_t refmv_ctx = -1; + if (mbmi->mode != NEWMV) { + zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + if (mbmi->mode != GLOBALMV) + refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; + } + +#define FRAME_TO_CHECK 11 + if (cm->current_frame.frame_number == FRAME_TO_CHECK && cm->show_frame == 1) { + printf( + "=== DECODER ===: " + "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " + "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " + "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " + "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", + cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode, + mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row, + mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], + mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx, + refmv_ctx, mbmi->tx_size); + } +} +#endif // DEC_MISMATCH_DEBUG + +static void read_inter_block_mode_info(AV1Decoder *const pbi, + DecoderCodingBlock *dcb, + MB_MODE_INFO *const mbmi, + aom_reader *r) { + AV1_COMMON *const cm = &pbi->common; + FeatureFlags *const features = &cm->features; + const BLOCK_SIZE bsize = mbmi->bsize; + const int allow_hp = features->allow_high_precision_mv; + int_mv nearestmv[2], nearmv[2]; + int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } }; + int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES]; + int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; + MACROBLOCKD *const xd = &dcb->xd; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + mbmi->uv_mode = UV_DC_PRED; + mbmi->palette_mode_info.palette_size[0] = 0; + mbmi->palette_mode_info.palette_size[1] = 0; + + av1_collect_neighbors_ref_counts(xd); + + read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame); + const int is_compound = has_second_ref(mbmi); + + const MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame); + av1_find_mv_refs(cm, xd, mbmi, ref_frame, dcb->ref_mv_count, xd->ref_mv_stack, + xd->weight, ref_mvs, /*global_mvs=*/NULL, inter_mode_ctx); + + mbmi->ref_mv_idx = 0; + + if (mbmi->skip_mode) { + assert(is_compound); + mbmi->mode = NEAREST_NEARESTMV; + } else { + if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) || + segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_GLOBALMV)) { + mbmi->mode = GLOBALMV; + } else { + const int mode_ctx = + av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame); + if (is_compound) + mbmi->mode = read_inter_compound_mode(xd, r, mode_ctx); + else + mbmi->mode = read_inter_mode(ec_ctx, r, mode_ctx); + if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV || + have_nearmv_in_inter_mode(mbmi->mode)) + read_drl_idx(ec_ctx, dcb, mbmi, r); + } + } + + if (is_compound != is_inter_compound_mode(mbmi->mode)) { + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Prediction mode %d invalid with ref frame %d %d", + mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); + } + + if (!is_compound && mbmi->mode != GLOBALMV) { + av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[0]], &nearestmv[0], + &nearmv[0], features->cur_frame_force_integer_mv); + } + + if (is_compound && mbmi->mode != GLOBAL_GLOBALMV) { + const int ref_mv_idx = mbmi->ref_mv_idx + 1; + nearestmv[0] = xd->ref_mv_stack[ref_frame][0].this_mv; + nearestmv[1] = xd->ref_mv_stack[ref_frame][0].comp_mv; + nearmv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv; + nearmv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv; + lower_mv_precision(&nearestmv[0].as_mv, allow_hp, + features->cur_frame_force_integer_mv); + lower_mv_precision(&nearestmv[1].as_mv, allow_hp, + features->cur_frame_force_integer_mv); + lower_mv_precision(&nearmv[0].as_mv, allow_hp, + features->cur_frame_force_integer_mv); + lower_mv_precision(&nearmv[1].as_mv, allow_hp, + features->cur_frame_force_integer_mv); + } else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) { + nearmv[0] = + xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv; + } + + int_mv ref_mv[2] = { nearestmv[0], nearestmv[1] }; + + if (is_compound) { + int ref_mv_idx = mbmi->ref_mv_idx; + // Special case: NEAR_NEWMV and NEW_NEARMV modes use + // 1 + mbmi->ref_mv_idx (like NEARMV) instead of + // mbmi->ref_mv_idx (like NEWMV) + if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) + ref_mv_idx = 1 + mbmi->ref_mv_idx; + + // TODO(jingning, yunqing): Do we need a lower_mv_precision() call here? + if (compound_ref0_mode(mbmi->mode) == NEWMV) + ref_mv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv; + + if (compound_ref1_mode(mbmi->mode) == NEWMV) + ref_mv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv; + } else { + if (mbmi->mode == NEWMV) { + if (dcb->ref_mv_count[ref_frame] > 1) + ref_mv[0] = xd->ref_mv_stack[ref_frame][mbmi->ref_mv_idx].this_mv; + } + } + + if (mbmi->skip_mode) assert(mbmi->mode == NEAREST_NEARESTMV); + + const int mv_corrupted_flag = + !assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, mbmi->mv, ref_mv, + nearestmv, nearmv, is_compound, allow_hp, r); + aom_merge_corrupted_flag(&dcb->corrupted, mv_corrupted_flag); + + mbmi->use_wedge_interintra = 0; + if (cm->seq_params->enable_interintra_compound && !mbmi->skip_mode && + is_interintra_allowed(mbmi)) { + const int bsize_group = size_group_lookup[bsize]; + const int interintra = + aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR); + assert(mbmi->ref_frame[1] == NONE_FRAME); + if (interintra) { + const INTERINTRA_MODE interintra_mode = + read_interintra_mode(xd, r, bsize_group); + mbmi->ref_frame[1] = INTRA_FRAME; + mbmi->interintra_mode = interintra_mode; + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + mbmi->angle_delta[PLANE_TYPE_UV] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + if (av1_is_wedge_used(bsize)) { + mbmi->use_wedge_interintra = aom_read_symbol( + r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR); + if (mbmi->use_wedge_interintra) { + mbmi->interintra_wedge_index = (int8_t)aom_read_symbol( + r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR); + } + } + } + } + + for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { + const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; + xd->block_ref_scale_factors[ref] = get_ref_scale_factors_const(cm, frame); + } + + mbmi->motion_mode = SIMPLE_TRANSLATION; + if (is_motion_variation_allowed_bsize(mbmi->bsize) && !mbmi->skip_mode && + !has_second_ref(mbmi)) { + mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref); + } + av1_count_overlappable_neighbors(cm, xd); + + if (mbmi->ref_frame[1] != INTRA_FRAME) + mbmi->motion_mode = read_motion_mode(cm, xd, mbmi, r); + + // init + mbmi->comp_group_idx = 0; + mbmi->compound_idx = 1; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + + if (has_second_ref(mbmi) && !mbmi->skip_mode) { + // Read idx to indicate current compound inter prediction mode group + const int masked_compound_used = is_any_masked_compound_used(bsize) && + cm->seq_params->enable_masked_compound; + + if (masked_compound_used) { + const int ctx_comp_group_idx = get_comp_group_idx_context(xd); + mbmi->comp_group_idx = (uint8_t)aom_read_symbol( + r, ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2, ACCT_STR); + } + + if (mbmi->comp_group_idx == 0) { + if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) { + const int comp_index_ctx = get_comp_index_context(cm, xd); + mbmi->compound_idx = (uint8_t)aom_read_symbol( + r, ec_ctx->compound_index_cdf[comp_index_ctx], 2, ACCT_STR); + mbmi->interinter_comp.type = + mbmi->compound_idx ? COMPOUND_AVERAGE : COMPOUND_DISTWTD; + } else { + // Distance-weighted compound is disabled, so always use average + mbmi->compound_idx = 1; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + } + } else { + assert(cm->current_frame.reference_mode != SINGLE_REFERENCE && + is_inter_compound_mode(mbmi->mode) && + mbmi->motion_mode == SIMPLE_TRANSLATION); + assert(masked_compound_used); + + // compound_diffwtd, wedge + if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { + mbmi->interinter_comp.type = + COMPOUND_WEDGE + aom_read_symbol(r, + ec_ctx->compound_type_cdf[bsize], + MASKED_COMPOUND_TYPES, ACCT_STR); + } else { + mbmi->interinter_comp.type = COMPOUND_DIFFWTD; + } + + if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { + assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); + mbmi->interinter_comp.wedge_index = (int8_t)aom_read_symbol( + r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR); + mbmi->interinter_comp.wedge_sign = (int8_t)aom_read_bit(r, ACCT_STR); + } else { + assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); + mbmi->interinter_comp.mask_type = + aom_read_literal(r, MAX_DIFFWTD_MASK_BITS, ACCT_STR); + } + } + } + + read_mb_interp_filter(xd, features->interp_filter, + cm->seq_params->enable_dual_filter, mbmi, r); + + if (mbmi->motion_mode == WARPED_CAUSAL) { + const int mi_row = xd->mi_row; + const int mi_col = xd->mi_col; + mbmi->wm_params.wmtype = DEFAULT_WMTYPE; + mbmi->wm_params.invalid = 0; + + if (mbmi->num_proj_ref > 1) { + mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, + mbmi->num_proj_ref, bsize); + } + + if (av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, + mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, + &mbmi->wm_params, mi_row, mi_col)) { +#if WARPED_MOTION_DEBUG + printf("Warning: unexpected warped model from aomenc\n"); +#endif + mbmi->wm_params.invalid = 1; + } + } + + xd->cfl.store_y = store_cfl_required(cm, xd); + +#if DEC_MISMATCH_DEBUG + dec_dump_logs(cm, mi, mi_row, mi_col, mode_ctx); +#endif // DEC_MISMATCH_DEBUG +} + +static void read_inter_frame_mode_info(AV1Decoder *const pbi, + DecoderCodingBlock *dcb, aom_reader *r) { + AV1_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int inter_block = 1; + + mbmi->mv[0].as_int = 0; + mbmi->mv[1].as_int = 0; + mbmi->segment_id = read_inter_segment_id(cm, xd, 1, r); + + mbmi->skip_mode = read_skip_mode(cm, xd, mbmi->segment_id, r); + + if (mbmi->skip_mode) + mbmi->skip_txfm = 1; + else + mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r); + + if (!cm->seg.segid_preskip) + mbmi->segment_id = read_inter_segment_id(cm, xd, 0, r); + + read_cdef(cm, r, xd); + + read_delta_q_params(cm, xd, r); + + if (!mbmi->skip_mode) + inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r); + + mbmi->current_qindex = xd->current_base_qindex; + + xd->above_txfm_context = + cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); + + if (inter_block) + read_inter_block_mode_info(pbi, dcb, mbmi, r); + else + read_intra_block_mode_info(cm, xd, mbmi, r); +} + +static void intra_copy_frame_mvs(AV1_COMMON *const cm, int mi_row, int mi_col, + int x_mis, int y_mis) { + const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, 1); + MV_REF *frame_mvs = + cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1); + x_mis = ROUND_POWER_OF_TWO(x_mis, 1); + y_mis = ROUND_POWER_OF_TWO(y_mis, 1); + + for (int h = 0; h < y_mis; h++) { + MV_REF *mv = frame_mvs; + for (int w = 0; w < x_mis; w++) { + mv->ref_frame = NONE_FRAME; + mv++; + } + frame_mvs += frame_mvs_stride; + } +} + +void av1_read_mode_info(AV1Decoder *const pbi, DecoderCodingBlock *dcb, + aom_reader *r, int x_mis, int y_mis) { + AV1_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *const mi = xd->mi[0]; + mi->use_intrabc = 0; + + if (frame_is_intra_only(cm)) { + read_intra_frame_mode_info(cm, dcb, r); + if (cm->seq_params->order_hint_info.enable_ref_frame_mvs) + intra_copy_frame_mvs(cm, xd->mi_row, xd->mi_col, x_mis, y_mis); + } else { + read_inter_frame_mode_info(pbi, dcb, r); + if (cm->seq_params->order_hint_info.enable_ref_frame_mvs) + av1_copy_frame_mvs(cm, mi, xd->mi_row, xd->mi_col, x_mis, y_mis); + } +} diff --git a/third_party/aom/av1/decoder/decodemv.h b/third_party/aom/av1/decoder/decodemv.h new file mode 100644 index 0000000000..3d8629c9a5 --- /dev/null +++ b/third_party/aom/av1/decoder/decodemv.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_DECODEMV_H_ +#define AOM_AV1_DECODER_DECODEMV_H_ + +#include "aom_dsp/bitreader.h" + +#include "av1/decoder/decoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_read_mode_info(AV1Decoder *const pbi, DecoderCodingBlock *dcb, + aom_reader *r, int x_mis, int y_mis); + +#ifdef __cplusplus +} // extern "C" +#endif + +void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row, + int blk_col, TX_SIZE tx_size, aom_reader *r); + +#endif // AOM_AV1_DECODER_DECODEMV_H_ diff --git a/third_party/aom/av1/decoder/decoder.c b/third_party/aom/av1/decoder/decoder.c new file mode 100644 index 0000000000..32e94840be --- /dev/null +++ b/third_party/aom/av1/decoder/decoder.c @@ -0,0 +1,538 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <limits.h> +#include <stdio.h> + +#include "config/av1_rtcd.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_scale/aom_scale.h" +#include "aom_util/aom_thread.h" + +#include "av1/common/alloccommon.h" +#include "av1/common/av1_common_int.h" +#include "av1/common/av1_loopfilter.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" + +#include "av1/decoder/decodeframe.h" +#include "av1/decoder/decoder.h" +#include "av1/decoder/detokenize.h" +#include "av1/decoder/obu.h" + +static void initialize_dec(void) { + av1_rtcd(); + aom_dsp_rtcd(); + aom_scale_rtcd(); + av1_init_intra_predictors(); + av1_init_wedge_masks(); +} + +static void dec_set_mb_mi(CommonModeInfoParams *mi_params, int width, + int height, BLOCK_SIZE min_partition_size) { + (void)min_partition_size; + // Ensure that the decoded width and height are both multiples of + // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if + // subsampling is used). + // This simplifies the implementation of various experiments, + // eg. cdef, which operates on units of 8x8 luma pixels. + const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); + const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); + + mi_params->mi_cols = aligned_width >> MI_SIZE_LOG2; + mi_params->mi_rows = aligned_height >> MI_SIZE_LOG2; + mi_params->mi_stride = calc_mi_size(mi_params->mi_cols); + + mi_params->mb_cols = ROUND_POWER_OF_TWO(mi_params->mi_cols, 2); + mi_params->mb_rows = ROUND_POWER_OF_TWO(mi_params->mi_rows, 2); + mi_params->MBs = mi_params->mb_rows * mi_params->mb_cols; + + mi_params->mi_alloc_bsize = BLOCK_4X4; + mi_params->mi_alloc_stride = mi_params->mi_stride; + + assert(mi_size_wide[mi_params->mi_alloc_bsize] == + mi_size_high[mi_params->mi_alloc_bsize]); +} + +static void dec_setup_mi(CommonModeInfoParams *mi_params) { + const int mi_grid_size = + mi_params->mi_stride * calc_mi_size(mi_params->mi_rows); + memset(mi_params->mi_grid_base, 0, + mi_grid_size * sizeof(*mi_params->mi_grid_base)); +} + +static void dec_free_mi(CommonModeInfoParams *mi_params) { + aom_free(mi_params->mi_alloc); + mi_params->mi_alloc = NULL; + mi_params->mi_alloc_size = 0; + aom_free(mi_params->mi_grid_base); + mi_params->mi_grid_base = NULL; + mi_params->mi_grid_size = 0; + aom_free(mi_params->tx_type_map); + mi_params->tx_type_map = NULL; +} + +AV1Decoder *av1_decoder_create(BufferPool *const pool) { + AV1Decoder *volatile const pbi = aom_memalign(32, sizeof(*pbi)); + if (!pbi) return NULL; + av1_zero(*pbi); + + AV1_COMMON *volatile const cm = &pbi->common; + cm->seq_params = &pbi->seq_params; + cm->error = &pbi->error; + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(pbi->error.jmp)) { + pbi->error.setjmp = 0; + av1_decoder_remove(pbi); + return NULL; + } + + pbi->error.setjmp = 1; + + CHECK_MEM_ERROR(cm, cm->fc, + (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc))); + CHECK_MEM_ERROR( + cm, cm->default_frame_context, + (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->default_frame_context))); + memset(cm->fc, 0, sizeof(*cm->fc)); + memset(cm->default_frame_context, 0, sizeof(*cm->default_frame_context)); + + pbi->need_resync = 1; + initialize_dec(); + + // Initialize the references to not point to any frame buffers. + for (int i = 0; i < REF_FRAMES; i++) { + cm->ref_frame_map[i] = NULL; + } + + cm->current_frame.frame_number = 0; + pbi->decoding_first_frame = 1; + pbi->common.buffer_pool = pool; + + cm->seq_params->bit_depth = AOM_BITS_8; + + cm->mi_params.free_mi = dec_free_mi; + cm->mi_params.setup_mi = dec_setup_mi; + cm->mi_params.set_mb_mi = dec_set_mb_mi; + + av1_loop_filter_init(cm); + + av1_qm_init(&cm->quant_params, av1_num_planes(cm)); + av1_loop_restoration_precal(); + +#if CONFIG_ACCOUNTING + pbi->acct_enabled = 1; + aom_accounting_init(&pbi->accounting); +#endif + + pbi->error.setjmp = 0; + + aom_get_worker_interface()->init(&pbi->lf_worker); + pbi->lf_worker.thread_name = "aom lf worker"; + + return pbi; +} + +void av1_dealloc_dec_jobs(struct AV1DecTileMTData *tile_mt_info) { + if (tile_mt_info != NULL) { +#if CONFIG_MULTITHREAD + if (tile_mt_info->job_mutex != NULL) { + pthread_mutex_destroy(tile_mt_info->job_mutex); + aom_free(tile_mt_info->job_mutex); + } +#endif + aom_free(tile_mt_info->job_queue); + // clear the structure as the source of this call may be a resize in which + // case this call will be followed by an _alloc() which may fail. + av1_zero(*tile_mt_info); + } +} + +void av1_dec_free_cb_buf(AV1Decoder *pbi) { + aom_free(pbi->cb_buffer_base); + pbi->cb_buffer_base = NULL; + pbi->cb_buffer_alloc_size = 0; +} + +void av1_decoder_remove(AV1Decoder *pbi) { + int i; + + if (!pbi) return; + + // Free the tile list output buffer. + aom_free_frame_buffer(&pbi->tile_list_outbuf); + + aom_get_worker_interface()->end(&pbi->lf_worker); + aom_free(pbi->lf_worker.data1); + + if (pbi->thread_data) { + for (int worker_idx = 1; worker_idx < pbi->num_workers; worker_idx++) { + DecWorkerData *const thread_data = pbi->thread_data + worker_idx; + if (thread_data->td != NULL) { + av1_free_mc_tmp_buf(thread_data->td); + aom_free(thread_data->td); + } + } + aom_free(pbi->thread_data); + } + aom_free(pbi->dcb.xd.seg_mask); + + for (i = 0; i < pbi->num_workers; ++i) { + AVxWorker *const worker = &pbi->tile_workers[i]; + aom_get_worker_interface()->end(worker); + } +#if CONFIG_MULTITHREAD + if (pbi->row_mt_mutex_ != NULL) { + pthread_mutex_destroy(pbi->row_mt_mutex_); + aom_free(pbi->row_mt_mutex_); + } + if (pbi->row_mt_cond_ != NULL) { + pthread_cond_destroy(pbi->row_mt_cond_); + aom_free(pbi->row_mt_cond_); + } +#endif + for (i = 0; i < pbi->allocated_tiles; i++) { + TileDataDec *const tile_data = pbi->tile_data + i; + av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); + } + aom_free(pbi->tile_data); + aom_free(pbi->tile_workers); + + if (pbi->num_workers > 0) { + av1_loop_filter_dealloc(&pbi->lf_row_sync); + av1_loop_restoration_dealloc(&pbi->lr_row_sync); + av1_dealloc_dec_jobs(&pbi->tile_mt_info); + } + + av1_dec_free_cb_buf(pbi); +#if CONFIG_ACCOUNTING + aom_accounting_clear(&pbi->accounting); +#endif + av1_free_mc_tmp_buf(&pbi->td); + aom_img_metadata_array_free(pbi->metadata); + av1_remove_common(&pbi->common); + aom_free(pbi); +} + +void av1_visit_palette(AV1Decoder *const pbi, MACROBLOCKD *const xd, + aom_reader *r, palette_visitor_fn_t visit) { + if (!is_inter_block(xd->mi[0])) { + for (int plane = 0; plane < AOMMIN(2, av1_num_planes(&pbi->common)); + ++plane) { + if (plane == 0 || xd->is_chroma_ref) { + if (xd->mi[0]->palette_mode_info.palette_size[plane]) + visit(xd, plane, r); + } else { + assert(xd->mi[0]->palette_mode_info.palette_size[plane] == 0); + } + } + } +} + +static int equal_dimensions(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b) { + return a->y_height == b->y_height && a->y_width == b->y_width && + a->uv_height == b->uv_height && a->uv_width == b->uv_width; +} + +aom_codec_err_t av1_copy_reference_dec(AV1Decoder *pbi, int idx, + YV12_BUFFER_CONFIG *sd) { + AV1_COMMON *cm = &pbi->common; + const int num_planes = av1_num_planes(cm); + + const YV12_BUFFER_CONFIG *const cfg = get_ref_frame(cm, idx); + if (cfg == NULL) { + aom_internal_error(&pbi->error, AOM_CODEC_ERROR, "No reference frame"); + return AOM_CODEC_ERROR; + } + if (!equal_dimensions(cfg, sd)) + aom_internal_error(&pbi->error, AOM_CODEC_ERROR, + "Incorrect buffer dimensions"); + else + aom_yv12_copy_frame(cfg, sd, num_planes); + + return pbi->error.error_code; +} + +static int equal_dimensions_and_border(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b) { + return a->y_height == b->y_height && a->y_width == b->y_width && + a->uv_height == b->uv_height && a->uv_width == b->uv_width && + a->y_stride == b->y_stride && a->uv_stride == b->uv_stride && + a->border == b->border && + (a->flags & YV12_FLAG_HIGHBITDEPTH) == + (b->flags & YV12_FLAG_HIGHBITDEPTH); +} + +aom_codec_err_t av1_set_reference_dec(AV1_COMMON *cm, int idx, + int use_external_ref, + YV12_BUFFER_CONFIG *sd) { + const int num_planes = av1_num_planes(cm); + YV12_BUFFER_CONFIG *ref_buf = NULL; + + // Get the destination reference buffer. + ref_buf = get_ref_frame(cm, idx); + + if (ref_buf == NULL) { + aom_internal_error(cm->error, AOM_CODEC_ERROR, "No reference frame"); + return AOM_CODEC_ERROR; + } + + if (!use_external_ref) { + if (!equal_dimensions(ref_buf, sd)) { + aom_internal_error(cm->error, AOM_CODEC_ERROR, + "Incorrect buffer dimensions"); + } else { + // Overwrite the reference frame buffer. + aom_yv12_copy_frame(sd, ref_buf, num_planes); + } + } else { + if (!equal_dimensions_and_border(ref_buf, sd)) { + aom_internal_error(cm->error, AOM_CODEC_ERROR, + "Incorrect buffer dimensions"); + } else { + // Overwrite the reference frame buffer pointers. + // Once we no longer need the external reference buffer, these pointers + // are restored. + ref_buf->store_buf_adr[0] = ref_buf->y_buffer; + ref_buf->store_buf_adr[1] = ref_buf->u_buffer; + ref_buf->store_buf_adr[2] = ref_buf->v_buffer; + ref_buf->y_buffer = sd->y_buffer; + ref_buf->u_buffer = sd->u_buffer; + ref_buf->v_buffer = sd->v_buffer; + ref_buf->use_external_reference_buffers = 1; + } + } + + return cm->error->error_code; +} + +aom_codec_err_t av1_copy_new_frame_dec(AV1_COMMON *cm, + YV12_BUFFER_CONFIG *new_frame, + YV12_BUFFER_CONFIG *sd) { + const int num_planes = av1_num_planes(cm); + + if (!equal_dimensions_and_border(new_frame, sd)) + aom_internal_error(cm->error, AOM_CODEC_ERROR, + "Incorrect buffer dimensions"); + else + aom_yv12_copy_frame(new_frame, sd, num_planes); + + return cm->error->error_code; +} + +static void release_current_frame(AV1Decoder *pbi) { + AV1_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + + cm->cur_frame->buf.corrupted = 1; + lock_buffer_pool(pool); + decrease_ref_count(cm->cur_frame, pool); + unlock_buffer_pool(pool); + cm->cur_frame = NULL; +} + +// If any buffer updating is signaled it should be done here. +// Consumes a reference to cm->cur_frame. +// +// This functions returns void. It reports failure by setting +// pbi->error.error_code. +static void update_frame_buffers(AV1Decoder *pbi, int frame_decoded) { + int ref_index = 0, mask; + AV1_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + + if (frame_decoded) { + lock_buffer_pool(pool); + + // In ext-tile decoding, the camera frame header is only decoded once. So, + // we don't update the references here. + if (!pbi->camera_frame_header_ready) { + // The following for loop needs to release the reference stored in + // cm->ref_frame_map[ref_index] before storing a reference to + // cm->cur_frame in cm->ref_frame_map[ref_index]. + for (mask = cm->current_frame.refresh_frame_flags; mask; mask >>= 1) { + if (mask & 1) { + decrease_ref_count(cm->ref_frame_map[ref_index], pool); + cm->ref_frame_map[ref_index] = cm->cur_frame; + ++cm->cur_frame->ref_count; + } + ++ref_index; + } + } + + if (cm->show_existing_frame || cm->show_frame) { + if (pbi->output_all_layers) { + // Append this frame to the output queue + if (pbi->num_output_frames >= MAX_NUM_SPATIAL_LAYERS) { + // We can't store the new frame anywhere, so drop it and return an + // error + cm->cur_frame->buf.corrupted = 1; + decrease_ref_count(cm->cur_frame, pool); + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + } else { + pbi->output_frames[pbi->num_output_frames] = cm->cur_frame; + pbi->num_output_frames++; + } + } else { + // Replace any existing output frame + assert(pbi->num_output_frames == 0 || pbi->num_output_frames == 1); + if (pbi->num_output_frames > 0) { + decrease_ref_count(pbi->output_frames[0], pool); + } + pbi->output_frames[0] = cm->cur_frame; + pbi->num_output_frames = 1; + } + } else { + decrease_ref_count(cm->cur_frame, pool); + } + + unlock_buffer_pool(pool); + } else { + // Nothing was decoded, so just drop this frame buffer + lock_buffer_pool(pool); + decrease_ref_count(cm->cur_frame, pool); + unlock_buffer_pool(pool); + } + cm->cur_frame = NULL; + + if (!pbi->camera_frame_header_ready) { + // Invalidate these references until the next frame starts. + for (ref_index = 0; ref_index < INTER_REFS_PER_FRAME; ref_index++) { + cm->remapped_ref_idx[ref_index] = INVALID_IDX; + } + } +} + +int av1_receive_compressed_data(AV1Decoder *pbi, size_t size, + const uint8_t **psource) { + AV1_COMMON *volatile const cm = &pbi->common; + const uint8_t *source = *psource; + pbi->error.error_code = AOM_CODEC_OK; + pbi->error.has_detail = 0; + + if (size == 0) { + // This is used to signal that we are missing frames. + // We do not know if the missing frame(s) was supposed to update + // any of the reference buffers, but we act conservative and + // mark only the last buffer as corrupted. + // + // TODO(jkoleszar): Error concealment is undefined and non-normative + // at this point, but if it becomes so, [0] may not always be the correct + // thing to do here. + RefCntBuffer *ref_buf = get_ref_frame_buf(cm, LAST_FRAME); + if (ref_buf != NULL) ref_buf->buf.corrupted = 1; + } + + if (assign_cur_frame_new_fb(cm) == NULL) { + pbi->error.error_code = AOM_CODEC_MEM_ERROR; + return 1; + } + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(pbi->error.jmp)) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + int i; + + pbi->error.setjmp = 0; + + // Synchronize all threads immediately as a subsequent decode call may + // cause a resize invalidating some allocations. + winterface->sync(&pbi->lf_worker); + for (i = 0; i < pbi->num_workers; ++i) { + winterface->sync(&pbi->tile_workers[i]); + } + + release_current_frame(pbi); + return -1; + } + + pbi->error.setjmp = 1; + + int frame_decoded = + aom_decode_frame_from_obus(pbi, source, source + size, psource); + + if (frame_decoded < 0) { + assert(pbi->error.error_code != AOM_CODEC_OK); + release_current_frame(pbi); + pbi->error.setjmp = 0; + return 1; + } + +#if TXCOEFF_TIMER + cm->cum_txcoeff_timer += cm->txcoeff_timer; + fprintf(stderr, + "txb coeff block number: %d, frame time: %ld, cum time %ld in us\n", + cm->txb_count, cm->txcoeff_timer, cm->cum_txcoeff_timer); + cm->txcoeff_timer = 0; + cm->txb_count = 0; +#endif + + // Note: At this point, this function holds a reference to cm->cur_frame + // in the buffer pool. This reference is consumed by update_frame_buffers(). + update_frame_buffers(pbi, frame_decoded); + + if (frame_decoded) { + pbi->decoding_first_frame = 0; + } + + if (pbi->error.error_code != AOM_CODEC_OK) { + pbi->error.setjmp = 0; + return 1; + } + + if (!cm->show_existing_frame) { + if (cm->seg.enabled) { + if (cm->prev_frame && + (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) && + (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) { + cm->last_frame_seg_map = cm->prev_frame->seg_map; + } else { + cm->last_frame_seg_map = NULL; + } + } + } + + // Update progress in frame parallel decode. + pbi->error.setjmp = 0; + + return 0; +} + +// Get the frame at a particular index in the output queue +int av1_get_raw_frame(AV1Decoder *pbi, size_t index, YV12_BUFFER_CONFIG **sd, + aom_film_grain_t **grain_params) { + if (index >= pbi->num_output_frames) return -1; + *sd = &pbi->output_frames[index]->buf; + *grain_params = &pbi->output_frames[index]->film_grain_params; + return 0; +} + +// Get the highest-spatial-layer output +// TODO(rachelbarker): What should this do? +int av1_get_frame_to_show(AV1Decoder *pbi, YV12_BUFFER_CONFIG *frame) { + if (pbi->num_output_frames == 0) return -1; + + *frame = pbi->output_frames[pbi->num_output_frames - 1]->buf; + return 0; +} diff --git a/third_party/aom/av1/decoder/decoder.h b/third_party/aom/av1/decoder/decoder.h new file mode 100644 index 0000000000..560b1d9f24 --- /dev/null +++ b/third_party/aom/av1/decoder/decoder.h @@ -0,0 +1,452 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_DECODER_H_ +#define AOM_AV1_DECODER_DECODER_H_ + +#include "config/aom_config.h" + +#include "aom/aom_codec.h" +#include "aom_dsp/bitreader.h" +#include "aom_scale/yv12config.h" +#include "aom_util/aom_thread.h" + +#include "av1/common/av1_common_int.h" +#include "av1/common/thread_common.h" +#include "av1/decoder/dthread.h" +#if CONFIG_ACCOUNTING +#include "av1/decoder/accounting.h" +#endif +#if CONFIG_INSPECTION +#include "av1/decoder/inspection.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/*! + * \brief Contains coding block data required by the decoder. + * + * This includes: + * - Coding block info that is common between encoder and decoder. + * - Other coding block info only needed by the decoder. + * Contrast this with a similar struct MACROBLOCK on encoder side. + * This data is also common between ThreadData and AV1Decoder structs. + */ +typedef struct DecoderCodingBlock { + /*! + * Coding block info that is common between encoder and decoder. + */ + DECLARE_ALIGNED(32, MACROBLOCKD, xd); + /*! + * True if the at least one of the coding blocks decoded was corrupted. + */ + int corrupted; + /*! + * Pointer to 'mc_buf' inside 'pbi->td' (single-threaded decoding) or + * 'pbi->thread_data[i].td' (multi-threaded decoding). + */ + uint8_t *mc_buf[2]; + /*! + * Pointer to 'dqcoeff' inside 'td->cb_buffer_base' or 'pbi->cb_buffer_base' + * with appropriate offset for the current superblock, for each plane. + */ + tran_low_t *dqcoeff_block[MAX_MB_PLANE]; + /*! + * cb_offset[p] is the offset into the dqcoeff_block[p] for the current coding + * block, for each plane 'p'. + */ + uint16_t cb_offset[MAX_MB_PLANE]; + /*! + * Pointer to 'eob_data' inside 'td->cb_buffer_base' or 'pbi->cb_buffer_base' + * with appropriate offset for the current superblock, for each plane. + */ + eob_info *eob_data[MAX_MB_PLANE]; + /*! + * txb_offset[p] is the offset into the eob_data[p] for the current coding + * block, for each plane 'p'. + */ + uint16_t txb_offset[MAX_MB_PLANE]; + /*! + * ref_mv_count[i] specifies the number of number of motion vector candidates + * in xd->ref_mv_stack[i]. + */ + uint8_t ref_mv_count[MODE_CTX_REF_FRAMES]; +} DecoderCodingBlock; + +/*!\cond */ + +typedef void (*decode_block_visitor_fn_t)(const AV1_COMMON *const cm, + DecoderCodingBlock *dcb, + aom_reader *const r, const int plane, + const int row, const int col, + const TX_SIZE tx_size); + +typedef void (*predict_inter_block_visitor_fn_t)(AV1_COMMON *const cm, + DecoderCodingBlock *dcb, + BLOCK_SIZE bsize); + +typedef void (*cfl_store_inter_block_visitor_fn_t)(AV1_COMMON *const cm, + MACROBLOCKD *const xd); + +typedef struct ThreadData { + DecoderCodingBlock dcb; + + // Coding block buffer for the current superblock. + // Used only for single-threaded decoding and multi-threaded decoding with + // row_mt == 1 cases. + // See also: similar buffer in 'AV1Decoder'. + CB_BUFFER cb_buffer_base; + + aom_reader *bit_reader; + + // Motion compensation buffer used to get a prediction buffer with extended + // borders. One buffer for each of the two possible references. + uint8_t *mc_buf[2]; + // Mask for this block used for compound prediction. + uint8_t *seg_mask; + // Allocated size of 'mc_buf'. + int32_t mc_buf_size; + // If true, the pointers in 'mc_buf' were converted from highbd pointers. + int mc_buf_use_highbd; // Boolean: whether the byte pointers stored in + // mc_buf were converted from highbd pointers. + + CONV_BUF_TYPE *tmp_conv_dst; + uint8_t *tmp_obmc_bufs[2]; + + decode_block_visitor_fn_t read_coeffs_tx_intra_block_visit; + decode_block_visitor_fn_t predict_and_recon_intra_block_visit; + decode_block_visitor_fn_t read_coeffs_tx_inter_block_visit; + decode_block_visitor_fn_t inverse_tx_inter_block_visit; + predict_inter_block_visitor_fn_t predict_inter_block_visit; + cfl_store_inter_block_visitor_fn_t cfl_store_inter_block_visit; +} ThreadData; + +typedef struct AV1DecRowMTJobInfo { + int tile_row; + int tile_col; + int mi_row; +} AV1DecRowMTJobInfo; + +typedef struct AV1DecRowMTSyncData { +#if CONFIG_MULTITHREAD + pthread_mutex_t *mutex_; + pthread_cond_t *cond_; +#endif + int allocated_sb_rows; + int *cur_sb_col; + // Denotes the superblock interval at which conditional signalling should + // happen. Also denotes the minimum number of extra superblocks of the top row + // to be complete to start decoding the current superblock. A value of 1 + // indicates top-right dependency. + int sync_range; + // Denotes the additional number of superblocks in the previous row to be + // complete to start decoding the current superblock when intraBC tool is + // enabled. This additional top-right delay is required to satisfy the + // hardware constraints for intraBC tool when row multithreading is enabled. + int intrabc_extra_top_right_sb_delay; + int mi_rows; + int mi_cols; + int mi_rows_parse_done; + int mi_rows_decode_started; + int num_threads_working; +} AV1DecRowMTSync; + +typedef struct AV1DecRowMTInfo { + int tile_rows_start; + int tile_rows_end; + int tile_cols_start; + int tile_cols_end; + int start_tile; + int end_tile; + int mi_rows_to_decode; + + // Invariant: + // mi_rows_parse_done >= mi_rows_decode_started. + // mi_rows_parse_done and mi_rows_decode_started are both initialized to 0. + // mi_rows_parse_done is incremented freely. mi_rows_decode_started may only + // be incremented to catch up with mi_rows_parse_done but is not allowed to + // surpass mi_rows_parse_done. + // + // When mi_rows_decode_started reaches mi_rows_to_decode, there are no more + // decode jobs. + + // Indicates the progress of the bit-stream parsing of superblocks. + // Initialized to 0. Incremented by sb_mi_size when parse sb row is done. + int mi_rows_parse_done; + // Indicates the progress of the decoding of superblocks. + // Initialized to 0. Incremented by sb_mi_size when decode sb row is started. + int mi_rows_decode_started; + // Boolean: Initialized to 0 (false). Set to 1 (true) on error to abort + // decoding. + int row_mt_exit; +} AV1DecRowMTInfo; + +typedef struct TileDataDec { + TileInfo tile_info; + aom_reader bit_reader; + DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx); + AV1DecRowMTSync dec_row_mt_sync; +} TileDataDec; + +typedef struct TileBufferDec { + const uint8_t *data; + size_t size; +} TileBufferDec; + +typedef struct DataBuffer { + const uint8_t *data; + size_t size; +} DataBuffer; + +typedef struct EXTERNAL_REFERENCES { + YV12_BUFFER_CONFIG refs[MAX_EXTERNAL_REFERENCES]; + int num; +} EXTERNAL_REFERENCES; + +typedef struct TileJobsDec { + TileBufferDec *tile_buffer; + TileDataDec *tile_data; +} TileJobsDec; + +typedef struct AV1DecTileMTData { +#if CONFIG_MULTITHREAD + pthread_mutex_t *job_mutex; +#endif + TileJobsDec *job_queue; + int jobs_enqueued; + int jobs_dequeued; + int alloc_tile_rows; + int alloc_tile_cols; +} AV1DecTileMT; + +typedef struct AV1Decoder { + DecoderCodingBlock dcb; + + DECLARE_ALIGNED(32, AV1_COMMON, common); + + AVxWorker lf_worker; + AV1LfSync lf_row_sync; + AV1LrSync lr_row_sync; + AV1LrStruct lr_ctxt; + AV1CdefSync cdef_sync; + AV1CdefWorkerData *cdef_worker; + AVxWorker *tile_workers; + int num_workers; + DecWorkerData *thread_data; + ThreadData td; + TileDataDec *tile_data; + int allocated_tiles; + + TileBufferDec tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS]; + AV1DecTileMT tile_mt_info; + + // Each time the decoder is called, we expect to receive a full temporal unit. + // This can contain up to one shown frame per spatial layer in the current + // operating point (note that some layers may be entirely omitted). + // If the 'output_all_layers' option is true, we save all of these shown + // frames so that they can be returned to the application. If the + // 'output_all_layers' option is false, then we only output one image per + // temporal unit. + // + // Note: The saved buffers are released at the start of the next time the + // application calls aom_codec_decode(). + int output_all_layers; + RefCntBuffer *output_frames[MAX_NUM_SPATIAL_LAYERS]; + size_t num_output_frames; // How many frames are queued up so far? + + // In order to properly support random-access decoding, we need + // to behave slightly differently for the very first frame we decode. + // So we track whether this is the first frame or not. + int decoding_first_frame; + + int allow_lowbitdepth; + int max_threads; + int inv_tile_order; + int need_resync; // wait for key/intra-only frame. + int reset_decoder_state; + + int tile_size_bytes; + int tile_col_size_bytes; + int dec_tile_row, dec_tile_col; // always -1 for non-VR tile encoding +#if CONFIG_ACCOUNTING + int acct_enabled; + Accounting accounting; +#endif + int sequence_header_ready; + int sequence_header_changed; +#if CONFIG_INSPECTION + aom_inspect_cb inspect_cb; + void *inspect_ctx; +#endif + int operating_point; + int current_operating_point; + int seen_frame_header; + // The expected start_tile (tg_start syntax element) of the next tile group. + int next_start_tile; + + // State if the camera frame header is already decoded while + // large_scale_tile = 1. + int camera_frame_header_ready; + size_t frame_header_size; + DataBuffer obu_size_hdr; + int output_frame_width_in_tiles_minus_1; + int output_frame_height_in_tiles_minus_1; + int tile_count_minus_1; + uint32_t coded_tile_data_size; + unsigned int ext_tile_debug; // for ext-tile software debug & testing + + // Decoder has 3 modes of operation: + // (1) Single-threaded decoding. + // (2) Multi-threaded decoding with each tile decoded in parallel. + // (3) In addition to (2), each thread decodes 1 superblock row in parallel. + // row_mt = 1 triggers mode (3) above, while row_mt = 0, will trigger mode (1) + // or (2) depending on 'max_threads'. + unsigned int row_mt; + + EXTERNAL_REFERENCES ext_refs; + YV12_BUFFER_CONFIG tile_list_outbuf; + + // Coding block buffer for the current frame. + // Allocated and used only for multi-threaded decoding with 'row_mt == 0'. + // See also: similar buffer in 'ThreadData' struct. + CB_BUFFER *cb_buffer_base; + // Allocated size of 'cb_buffer_base'. Currently same as the number of + // superblocks in the coded frame. + int cb_buffer_alloc_size; + + int allocated_row_mt_sync_rows; + +#if CONFIG_MULTITHREAD + pthread_mutex_t *row_mt_mutex_; + pthread_cond_t *row_mt_cond_; +#endif + + AV1DecRowMTInfo frame_row_mt_info; + aom_metadata_array_t *metadata; + + int context_update_tile_id; + int skip_loop_filter; + int skip_film_grain; + int is_annexb; + int valid_for_referencing[REF_FRAMES]; + int is_fwd_kf_present; + int is_arf_frame_present; + int num_tile_groups; + aom_s_frame_info sframe_info; + + /*! + * Elements part of the sequence header, that are applicable for all the + * frames in the video. + */ + SequenceHeader seq_params; + + /*! + * If true, buffer removal times are present. + */ + bool buffer_removal_time_present; + + /*! + * Code and details about current error status. + */ + struct aom_internal_error_info error; + + /*! + * Number of temporal layers: may be > 1 for SVC (scalable vector coding). + */ + unsigned int number_temporal_layers; + + /*! + * Number of spatial layers: may be > 1 for SVC (scalable vector coding). + */ + unsigned int number_spatial_layers; +} AV1Decoder; + +// Returns 0 on success. Sets pbi->common.error.error_code to a nonzero error +// code and returns a nonzero value on failure. +int av1_receive_compressed_data(struct AV1Decoder *pbi, size_t size, + const uint8_t **psource); + +// Get the frame at a particular index in the output queue +int av1_get_raw_frame(AV1Decoder *pbi, size_t index, YV12_BUFFER_CONFIG **sd, + aom_film_grain_t **grain_params); + +int av1_get_frame_to_show(struct AV1Decoder *pbi, YV12_BUFFER_CONFIG *frame); + +aom_codec_err_t av1_copy_reference_dec(struct AV1Decoder *pbi, int idx, + YV12_BUFFER_CONFIG *sd); + +aom_codec_err_t av1_set_reference_dec(AV1_COMMON *cm, int idx, + int use_external_ref, + YV12_BUFFER_CONFIG *sd); +aom_codec_err_t av1_copy_new_frame_dec(AV1_COMMON *cm, + YV12_BUFFER_CONFIG *new_frame, + YV12_BUFFER_CONFIG *sd); + +struct AV1Decoder *av1_decoder_create(BufferPool *const pool); + +void av1_decoder_remove(struct AV1Decoder *pbi); +void av1_dealloc_dec_jobs(struct AV1DecTileMTData *tile_mt_info); + +void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync); + +void av1_dec_free_cb_buf(AV1Decoder *pbi); + +static INLINE void decrease_ref_count(RefCntBuffer *const buf, + BufferPool *const pool) { + if (buf != NULL) { + --buf->ref_count; + // Reference counts should never become negative. If this assertion fails, + // there is a bug in our reference count management. + assert(buf->ref_count >= 0); + // A worker may only get a free framebuffer index when calling get_free_fb. + // But the raw frame buffer is not set up until we finish decoding header. + // So if any error happens during decoding header, frame_bufs[idx] will not + // have a valid raw frame buffer. + if (buf->ref_count == 0 && buf->raw_frame_buffer.data) { + pool->release_fb_cb(pool->cb_priv, &buf->raw_frame_buffer); + buf->raw_frame_buffer.data = NULL; + buf->raw_frame_buffer.size = 0; + buf->raw_frame_buffer.priv = NULL; + } + } +} + +#define ACCT_STR __func__ +static INLINE int av1_read_uniform(aom_reader *r, int n) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + const int v = aom_read_literal(r, l - 1, ACCT_STR); + assert(l != 0); + if (v < m) + return v; + else + return (v << 1) - m + aom_read_literal(r, 1, ACCT_STR); +} + +typedef void (*palette_visitor_fn_t)(MACROBLOCKD *const xd, int plane, + aom_reader *r); + +void av1_visit_palette(AV1Decoder *const pbi, MACROBLOCKD *const xd, + aom_reader *r, palette_visitor_fn_t visit); + +typedef void (*block_visitor_fn_t)(AV1Decoder *const pbi, ThreadData *const td, + int mi_row, int mi_col, aom_reader *r, + PARTITION_TYPE partition, BLOCK_SIZE bsize); + +/*!\endcond */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_DECODER_DECODER_H_ diff --git a/third_party/aom/av1/decoder/decodetxb.c b/third_party/aom/av1/decoder/decodetxb.c new file mode 100644 index 0000000000..dd5aa62001 --- /dev/null +++ b/third_party/aom/av1/decoder/decodetxb.c @@ -0,0 +1,381 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/decoder/decodetxb.h" + +#include "aom_ports/mem.h" +#include "av1/common/idct.h" +#include "av1/common/scan.h" +#include "av1/common/txb_common.h" +#include "av1/decoder/decodemv.h" + +#define ACCT_STR __func__ + +static int read_golomb(MACROBLOCKD *xd, aom_reader *r) { + int x = 1; + int length = 0; + int i = 0; + + while (!i) { + i = aom_read_bit(r, ACCT_STR); + ++length; + if (length > 20) { + aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, + "Invalid length in read_golomb"); + break; + } + } + + for (i = 0; i < length - 1; ++i) { + x <<= 1; + x += aom_read_bit(r, ACCT_STR); + } + + return x - 1; +} + +static INLINE int rec_eob_pos(const int eob_token, const int extra) { + int eob = av1_eob_group_start[eob_token]; + if (eob > 2) { + eob += extra; + } + return eob; +} + +static INLINE int get_dqv(const int16_t *dequant, int coeff_idx, + const qm_val_t *iqmatrix) { + int dqv = dequant[!!coeff_idx]; + if (iqmatrix != NULL) + dqv = + ((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; + return dqv; +} + +static INLINE void read_coeffs_reverse_2d(aom_reader *r, TX_SIZE tx_size, + int start_si, int end_si, + const int16_t *scan, int bhl, + uint8_t *levels, + base_cdf_arr base_cdf, + br_cdf_arr br_cdf) { + for (int c = end_si; c >= start_si; --c) { + const int pos = scan[c]; + const int coeff_ctx = get_lower_levels_ctx_2d(levels, pos, bhl, tx_size); + const int nsymbs = 4; + int level = aom_read_symbol(r, base_cdf[coeff_ctx], nsymbs, ACCT_STR); + if (level > NUM_BASE_LEVELS) { + const int br_ctx = get_br_ctx_2d(levels, pos, bhl); + aom_cdf_prob *cdf = br_cdf[br_ctx]; + for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { + const int k = aom_read_symbol(r, cdf, BR_CDF_SIZE, ACCT_STR); + level += k; + if (k < BR_CDF_SIZE - 1) break; + } + } + levels[get_padded_idx(pos, bhl)] = level; + } +} + +static INLINE void read_coeffs_reverse(aom_reader *r, TX_SIZE tx_size, + TX_CLASS tx_class, int start_si, + int end_si, const int16_t *scan, int bhl, + uint8_t *levels, base_cdf_arr base_cdf, + br_cdf_arr br_cdf) { + for (int c = end_si; c >= start_si; --c) { + const int pos = scan[c]; + const int coeff_ctx = + get_lower_levels_ctx(levels, pos, bhl, tx_size, tx_class); + const int nsymbs = 4; + int level = aom_read_symbol(r, base_cdf[coeff_ctx], nsymbs, ACCT_STR); + if (level > NUM_BASE_LEVELS) { + const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class); + aom_cdf_prob *cdf = br_cdf[br_ctx]; + for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { + const int k = aom_read_symbol(r, cdf, BR_CDF_SIZE, ACCT_STR); + level += k; + if (k < BR_CDF_SIZE - 1) break; + } + } + levels[get_padded_idx(pos, bhl)] = level; + } +} + +uint8_t av1_read_coeffs_txb(const AV1_COMMON *const cm, DecoderCodingBlock *dcb, + aom_reader *const r, const int blk_row, + const int blk_col, const int plane, + const TXB_CTX *const txb_ctx, + const TX_SIZE tx_size) { + MACROBLOCKD *const xd = &dcb->xd; + FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; + const int32_t max_value = (1 << (7 + xd->bd)) - 1; + const int32_t min_value = -(1 << (7 + xd->bd)); + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const PLANE_TYPE plane_type = get_plane_type(plane); + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int16_t *const dequant = pd->seg_dequant_QTX[mbmi->segment_id]; + tran_low_t *const tcoeffs = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane]; + const int shift = av1_get_tx_scale(tx_size); + const int bhl = get_txb_bhl(tx_size); + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + int cul_level = 0; + int dc_val = 0; + uint8_t levels_buf[TX_PAD_2D]; + uint8_t *const levels = set_levels(levels_buf, height); + const int all_zero = aom_read_symbol( + r, ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2, ACCT_STR); + eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; + uint16_t *const eob = &(eob_data->eob); + uint16_t *const max_scan_line = &(eob_data->max_scan_line); + *max_scan_line = 0; + *eob = 0; + +#if CONFIG_INSPECTION + if (plane == 0) { + const int txk_type_idx = + av1_get_txk_type_index(mbmi->bsize, blk_row, blk_col); + mbmi->tx_skip[txk_type_idx] = all_zero; + } +#endif + + if (all_zero) { + *max_scan_line = 0; + if (plane == 0) { + xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col] = DCT_DCT; + } + return 0; + } + + if (plane == AOM_PLANE_Y) { + // only y plane's tx_type is transmitted + av1_read_tx_type(cm, xd, blk_row, blk_col, tx_size, r); + } + const TX_TYPE tx_type = + av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, + cm->features.reduced_tx_set_used); + const TX_CLASS tx_class = tx_type_to_class[tx_type]; + const qm_val_t *iqmatrix = + av1_get_iqmatrix(&cm->quant_params, xd, plane, tx_size, tx_type); + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + const int16_t *const scan = scan_order->scan; + int eob_extra = 0; + int eob_pt = 1; + + const int eob_multi_size = txsize_log2_minus4[tx_size]; + const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; + switch (eob_multi_size) { + case 0: + eob_pt = + aom_read_symbol(r, ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], + 5, ACCT_STR) + + 1; + break; + case 1: + eob_pt = + aom_read_symbol(r, ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], + 6, ACCT_STR) + + 1; + break; + case 2: + eob_pt = + aom_read_symbol(r, ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], + 7, ACCT_STR) + + 1; + break; + case 3: + eob_pt = + aom_read_symbol(r, ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], + 8, ACCT_STR) + + 1; + break; + case 4: + eob_pt = + aom_read_symbol(r, ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], + 9, ACCT_STR) + + 1; + break; + case 5: + eob_pt = + aom_read_symbol(r, ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], + 10, ACCT_STR) + + 1; + break; + case 6: + default: + eob_pt = aom_read_symbol( + r, ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11, + ACCT_STR) + + 1; + break; + } + + const int eob_offset_bits = av1_eob_offset_bits[eob_pt]; + if (eob_offset_bits > 0) { + const int eob_ctx = eob_pt - 3; + int bit = aom_read_symbol( + r, ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_ctx], 2, ACCT_STR); + if (bit) { + eob_extra += (1 << (eob_offset_bits - 1)); + } + + for (int i = 1; i < eob_offset_bits; i++) { + bit = aom_read_bit(r, ACCT_STR); + if (bit) { + eob_extra += (1 << (eob_offset_bits - 1 - i)); + } + } + } + *eob = rec_eob_pos(eob_pt, eob_extra); + + if (*eob > 1) { + memset(levels_buf, 0, + sizeof(*levels_buf) * + ((height + TX_PAD_HOR) * (width + TX_PAD_VER) + TX_PAD_END)); + } + + { + // Read the non-zero coefficient with scan index eob-1 + // TODO(angiebird): Put this into a function + const int c = *eob - 1; + const int pos = scan[c]; + const int coeff_ctx = get_lower_levels_ctx_eob(bhl, width, c); + const int nsymbs = 3; + aom_cdf_prob *cdf = + ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx]; + int level = aom_read_symbol(r, cdf, nsymbs, ACCT_STR) + 1; + if (level > NUM_BASE_LEVELS) { + const int br_ctx = get_br_ctx_eob(pos, bhl, tx_class); + cdf = ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type][br_ctx]; + for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { + const int k = aom_read_symbol(r, cdf, BR_CDF_SIZE, ACCT_STR); + level += k; + if (k < BR_CDF_SIZE - 1) break; + } + } + levels[get_padded_idx(pos, bhl)] = level; + } + if (*eob > 1) { + base_cdf_arr base_cdf = ec_ctx->coeff_base_cdf[txs_ctx][plane_type]; + br_cdf_arr br_cdf = + ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type]; + if (tx_class == TX_CLASS_2D) { + read_coeffs_reverse_2d(r, tx_size, 1, *eob - 1 - 1, scan, bhl, levels, + base_cdf, br_cdf); + read_coeffs_reverse(r, tx_size, tx_class, 0, 0, scan, bhl, levels, + base_cdf, br_cdf); + } else { + read_coeffs_reverse(r, tx_size, tx_class, 0, *eob - 1 - 1, scan, bhl, + levels, base_cdf, br_cdf); + } + } + + for (int c = 0; c < *eob; ++c) { + const int pos = scan[c]; + uint8_t sign; + tran_low_t level = levels[get_padded_idx(pos, bhl)]; + if (level) { + *max_scan_line = AOMMAX(*max_scan_line, pos); + if (c == 0) { + const int dc_sign_ctx = txb_ctx->dc_sign_ctx; + sign = aom_read_symbol(r, ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], + 2, ACCT_STR); + } else { + sign = aom_read_bit(r, ACCT_STR); + } + if (level >= MAX_BASE_BR_RANGE) { + level += read_golomb(xd, r); + } + + if (c == 0) dc_val = sign ? -level : level; + + // Bitmasking to clamp level to valid range: + // The valid range for 8/10/12 bit vdieo is at most 14/16/18 bit + level &= 0xfffff; + cul_level += level; + tran_low_t dq_coeff; + // Bitmasking to clamp dq_coeff to valid range: + // The valid range for 8/10/12 bit video is at most 17/19/21 bit + dq_coeff = (tran_low_t)( + (int64_t)level * get_dqv(dequant, scan[c], iqmatrix) & 0xffffff); + dq_coeff = dq_coeff >> shift; + if (sign) { + dq_coeff = -dq_coeff; + } + tcoeffs[pos] = clamp(dq_coeff, min_value, max_value); + } + } + + cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); + + // DC value + set_dc_sign(&cul_level, dc_val); + + return cul_level; +} + +void av1_read_coeffs_txb_facade(const AV1_COMMON *const cm, + DecoderCodingBlock *dcb, aom_reader *const r, + const int plane, const int row, const int col, + const TX_SIZE tx_size) { +#if TXCOEFF_TIMER + struct aom_usec_timer timer; + aom_usec_timer_start(&timer); +#endif + MACROBLOCKD *const xd = &dcb->xd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + + const BLOCK_SIZE bsize = mbmi->bsize; + assert(bsize < BLOCK_SIZES_ALL); + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, pd->above_entropy_context + col, + pd->left_entropy_context + row, &txb_ctx); + const uint8_t cul_level = + av1_read_coeffs_txb(cm, dcb, r, row, col, plane, &txb_ctx, tx_size); + av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, col, + row); + + if (is_inter_block(mbmi)) { + const PLANE_TYPE plane_type = get_plane_type(plane); + // tx_type will be read out in av1_read_coeffs_txb_facade + const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size, + cm->features.reduced_tx_set_used); + + if (plane == 0) { + const int txw = tx_size_wide_unit[tx_size]; + const int txh = tx_size_high_unit[tx_size]; + // The 16x16 unit is due to the constraint from tx_64x64 which sets the + // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block + // size, the constraint takes effect in 32x16 / 16x32 size too. To solve + // the intricacy, cover all the 16x16 units inside a 64 level transform. + if (txw == tx_size_wide_unit[TX_64X64] || + txh == tx_size_high_unit[TX_64X64]) { + const int tx_unit = tx_size_wide_unit[TX_16X16]; + const int stride = xd->tx_type_map_stride; + for (int idy = 0; idy < txh; idy += tx_unit) { + for (int idx = 0; idx < txw; idx += tx_unit) { + xd->tx_type_map[(row + idy) * stride + col + idx] = tx_type; + } + } + } + } + } + +#if TXCOEFF_TIMER + aom_usec_timer_mark(&timer); + const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); + cm->txcoeff_timer += elapsed_time; + ++cm->txb_count; +#endif +} diff --git a/third_party/aom/av1/decoder/decodetxb.h b/third_party/aom/av1/decoder/decodetxb.h new file mode 100644 index 0000000000..fd34d40341 --- /dev/null +++ b/third_party/aom/av1/decoder/decodetxb.h @@ -0,0 +1,34 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_DECODETXB_H_ +#define AOM_AV1_DECODER_DECODETXB_H_ + +#include "av1/common/enums.h" + +struct aom_reader; +struct AV1Common; +struct DecoderCodingBlock; +struct txb_ctx; + +uint8_t av1_read_coeffs_txb(const struct AV1Common *const cm, + struct DecoderCodingBlock *dcb, + struct aom_reader *const r, const int blk_row, + const int blk_col, const int plane, + const struct txb_ctx *const txb_ctx, + const TX_SIZE tx_size); + +void av1_read_coeffs_txb_facade(const struct AV1Common *const cm, + struct DecoderCodingBlock *dcb, + struct aom_reader *const r, const int plane, + const int row, const int col, + const TX_SIZE tx_size); +#endif // AOM_AV1_DECODER_DECODETXB_H_ diff --git a/third_party/aom/av1/decoder/detokenize.c b/third_party/aom/av1/decoder/detokenize.c new file mode 100644 index 0000000000..3c6a006eaf --- /dev/null +++ b/third_party/aom/av1/decoder/detokenize.c @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/aom_config.h" + +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" +#include "av1/common/blockd.h" +#include "av1/decoder/detokenize.h" + +#define ACCT_STR __func__ + +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/idct.h" + +static void decode_color_map_tokens(Av1ColorMapParam *param, aom_reader *r) { + uint8_t color_order[PALETTE_MAX_SIZE]; + const int n = param->n_colors; + uint8_t *const color_map = param->color_map; + MapCdf color_map_cdf = param->map_cdf; + int plane_block_width = param->plane_width; + int plane_block_height = param->plane_height; + int rows = param->rows; + int cols = param->cols; + + // The first color index. + color_map[0] = av1_read_uniform(r, n); + assert(color_map[0] < n); + + // Run wavefront on the palette map index decoding. + for (int i = 1; i < rows + cols - 1; ++i) { + for (int j = AOMMIN(i, cols - 1); j >= AOMMAX(0, i - rows + 1); --j) { + const int color_ctx = av1_get_palette_color_index_context( + color_map, plane_block_width, (i - j), j, n, color_order, NULL); + const int color_idx = aom_read_symbol( + r, color_map_cdf[n - PALETTE_MIN_SIZE][color_ctx], n, ACCT_STR); + assert(color_idx >= 0 && color_idx < n); + color_map[(i - j) * plane_block_width + j] = color_order[color_idx]; + } + } + // Copy last column to extra columns. + if (cols < plane_block_width) { + for (int i = 0; i < rows; ++i) { + memset(color_map + i * plane_block_width + cols, + color_map[i * plane_block_width + cols - 1], + (plane_block_width - cols)); + } + } + // Copy last row to extra rows. + for (int i = rows; i < plane_block_height; ++i) { + memcpy(color_map + i * plane_block_width, + color_map + (rows - 1) * plane_block_width, plane_block_width); + } +} + +void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane, + aom_reader *r) { + assert(plane == 0 || plane == 1); + Av1ColorMapParam params; + params.color_map = + xd->plane[plane].color_index_map + xd->color_index_map_offset[plane]; + params.map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf + : xd->tile_ctx->palette_y_color_index_cdf; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + params.n_colors = mbmi->palette_mode_info.palette_size[plane]; + av1_get_block_dimensions(mbmi->bsize, plane, xd, ¶ms.plane_width, + ¶ms.plane_height, ¶ms.rows, ¶ms.cols); + decode_color_map_tokens(¶ms, r); +} diff --git a/third_party/aom/av1/decoder/detokenize.h b/third_party/aom/av1/decoder/detokenize.h new file mode 100644 index 0000000000..173b437a94 --- /dev/null +++ b/third_party/aom/av1/decoder/detokenize.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_DETOKENIZE_H_ +#define AOM_AV1_DECODER_DETOKENIZE_H_ + +#include "config/aom_config.h" + +#include "av1/common/scan.h" +#include "av1/decoder/decoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane, aom_reader *r); + +#ifdef __cplusplus +} // extern "C" +#endif +#endif // AOM_AV1_DECODER_DETOKENIZE_H_ diff --git a/third_party/aom/av1/decoder/dthread.h b/third_party/aom/av1/decoder/dthread.h new file mode 100644 index 0000000000..f82b9d8ccf --- /dev/null +++ b/third_party/aom/av1/decoder/dthread.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_DTHREAD_H_ +#define AOM_AV1_DECODER_DTHREAD_H_ + +#include "config/aom_config.h" + +#include "aom_util/aom_thread.h" +#include "aom/internal/aom_codec_internal.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct AV1Common; +struct AV1Decoder; +struct ThreadData; + +typedef struct DecWorkerData { + struct ThreadData *td; + const uint8_t *data_end; + struct aom_internal_error_info error_info; +} DecWorkerData; + +// WorkerData for the FrameWorker thread. It contains all the information of +// the worker and decode structures for decoding a frame. +typedef struct FrameWorkerData { + struct AV1Decoder *pbi; + const uint8_t *data; + const uint8_t *data_end; + size_t data_size; + void *user_priv; + int received_frame; + int frame_context_ready; // Current frame's context is ready to read. + int frame_decoded; // Finished decoding current frame. +} FrameWorkerData; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_DECODER_DTHREAD_H_ diff --git a/third_party/aom/av1/decoder/grain_synthesis.c b/third_party/aom/av1/decoder/grain_synthesis.c new file mode 100644 index 0000000000..d276f6f90e --- /dev/null +++ b/third_party/aom/av1/decoder/grain_synthesis.c @@ -0,0 +1,1461 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +/*!\file + * \brief Describes film grain parameters and film grain synthesis + * + */ + +#include <stdbool.h> +#include <stdio.h> +#include <string.h> +#include <stdlib.h> +#include <assert.h> +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "av1/decoder/grain_synthesis.h" + +// Samples with Gaussian distribution in the range of [-2048, 2047] (12 bits) +// with zero mean and standard deviation of about 512. +// should be divided by 4 for 10-bit range and 16 for 8-bit range. +static const int gaussian_sequence[2048] = { + 56, 568, -180, 172, 124, -84, 172, -64, -900, 24, 820, + 224, 1248, 996, 272, -8, -916, -388, -732, -104, -188, 800, + 112, -652, -320, -376, 140, -252, 492, -168, 44, -788, 588, + -584, 500, -228, 12, 680, 272, -476, 972, -100, 652, 368, + 432, -196, -720, -192, 1000, -332, 652, -136, -552, -604, -4, + 192, -220, -136, 1000, -52, 372, -96, -624, 124, -24, 396, + 540, -12, -104, 640, 464, 244, -208, -84, 368, -528, -740, + 248, -968, -848, 608, 376, -60, -292, -40, -156, 252, -292, + 248, 224, -280, 400, -244, 244, -60, 76, -80, 212, 532, + 340, 128, -36, 824, -352, -60, -264, -96, -612, 416, -704, + 220, -204, 640, -160, 1220, -408, 900, 336, 20, -336, -96, + -792, 304, 48, -28, -1232, -1172, -448, 104, -292, -520, 244, + 60, -948, 0, -708, 268, 108, 356, -548, 488, -344, -136, + 488, -196, -224, 656, -236, -1128, 60, 4, 140, 276, -676, + -376, 168, -108, 464, 8, 564, 64, 240, 308, -300, -400, + -456, -136, 56, 120, -408, -116, 436, 504, -232, 328, 844, + -164, -84, 784, -168, 232, -224, 348, -376, 128, 568, 96, + -1244, -288, 276, 848, 832, -360, 656, 464, -384, -332, -356, + 728, -388, 160, -192, 468, 296, 224, 140, -776, -100, 280, + 4, 196, 44, -36, -648, 932, 16, 1428, 28, 528, 808, + 772, 20, 268, 88, -332, -284, 124, -384, -448, 208, -228, + -1044, -328, 660, 380, -148, -300, 588, 240, 540, 28, 136, + -88, -436, 256, 296, -1000, 1400, 0, -48, 1056, -136, 264, + -528, -1108, 632, -484, -592, -344, 796, 124, -668, -768, 388, + 1296, -232, -188, -200, -288, -4, 308, 100, -168, 256, -500, + 204, -508, 648, -136, 372, -272, -120, -1004, -552, -548, -384, + 548, -296, 428, -108, -8, -912, -324, -224, -88, -112, -220, + -100, 996, -796, 548, 360, -216, 180, 428, -200, -212, 148, + 96, 148, 284, 216, -412, -320, 120, -300, -384, -604, -572, + -332, -8, -180, -176, 696, 116, -88, 628, 76, 44, -516, + 240, -208, -40, 100, -592, 344, -308, -452, -228, 20, 916, + -1752, -136, -340, -804, 140, 40, 512, 340, 248, 184, -492, + 896, -156, 932, -628, 328, -688, -448, -616, -752, -100, 560, + -1020, 180, -800, -64, 76, 576, 1068, 396, 660, 552, -108, + -28, 320, -628, 312, -92, -92, -472, 268, 16, 560, 516, + -672, -52, 492, -100, 260, 384, 284, 292, 304, -148, 88, + -152, 1012, 1064, -228, 164, -376, -684, 592, -392, 156, 196, + -524, -64, -884, 160, -176, 636, 648, 404, -396, -436, 864, + 424, -728, 988, -604, 904, -592, 296, -224, 536, -176, -920, + 436, -48, 1176, -884, 416, -776, -824, -884, 524, -548, -564, + -68, -164, -96, 692, 364, -692, -1012, -68, 260, -480, 876, + -1116, 452, -332, -352, 892, -1088, 1220, -676, 12, -292, 244, + 496, 372, -32, 280, 200, 112, -440, -96, 24, -644, -184, + 56, -432, 224, -980, 272, -260, 144, -436, 420, 356, 364, + -528, 76, 172, -744, -368, 404, -752, -416, 684, -688, 72, + 540, 416, 92, 444, 480, -72, -1416, 164, -1172, -68, 24, + 424, 264, 1040, 128, -912, -524, -356, 64, 876, -12, 4, + -88, 532, 272, -524, 320, 276, -508, 940, 24, -400, -120, + 756, 60, 236, -412, 100, 376, -484, 400, -100, -740, -108, + -260, 328, -268, 224, -200, -416, 184, -604, -564, -20, 296, + 60, 892, -888, 60, 164, 68, -760, 216, -296, 904, -336, + -28, 404, -356, -568, -208, -1480, -512, 296, 328, -360, -164, + -1560, -776, 1156, -428, 164, -504, -112, 120, -216, -148, -264, + 308, 32, 64, -72, 72, 116, 176, -64, -272, 460, -536, + -784, -280, 348, 108, -752, -132, 524, -540, -776, 116, -296, + -1196, -288, -560, 1040, -472, 116, -848, -1116, 116, 636, 696, + 284, -176, 1016, 204, -864, -648, -248, 356, 972, -584, -204, + 264, 880, 528, -24, -184, 116, 448, -144, 828, 524, 212, + -212, 52, 12, 200, 268, -488, -404, -880, 824, -672, -40, + 908, -248, 500, 716, -576, 492, -576, 16, 720, -108, 384, + 124, 344, 280, 576, -500, 252, 104, -308, 196, -188, -8, + 1268, 296, 1032, -1196, 436, 316, 372, -432, -200, -660, 704, + -224, 596, -132, 268, 32, -452, 884, 104, -1008, 424, -1348, + -280, 4, -1168, 368, 476, 696, 300, -8, 24, 180, -592, + -196, 388, 304, 500, 724, -160, 244, -84, 272, -256, -420, + 320, 208, -144, -156, 156, 364, 452, 28, 540, 316, 220, + -644, -248, 464, 72, 360, 32, -388, 496, -680, -48, 208, + -116, -408, 60, -604, -392, 548, -840, 784, -460, 656, -544, + -388, -264, 908, -800, -628, -612, -568, 572, -220, 164, 288, + -16, -308, 308, -112, -636, -760, 280, -668, 432, 364, 240, + -196, 604, 340, 384, 196, 592, -44, -500, 432, -580, -132, + 636, -76, 392, 4, -412, 540, 508, 328, -356, -36, 16, + -220, -64, -248, -60, 24, -192, 368, 1040, 92, -24, -1044, + -32, 40, 104, 148, 192, -136, -520, 56, -816, -224, 732, + 392, 356, 212, -80, -424, -1008, -324, 588, -1496, 576, 460, + -816, -848, 56, -580, -92, -1372, -112, -496, 200, 364, 52, + -140, 48, -48, -60, 84, 72, 40, 132, -356, -268, -104, + -284, -404, 732, -520, 164, -304, -540, 120, 328, -76, -460, + 756, 388, 588, 236, -436, -72, -176, -404, -316, -148, 716, + -604, 404, -72, -88, -888, -68, 944, 88, -220, -344, 960, + 472, 460, -232, 704, 120, 832, -228, 692, -508, 132, -476, + 844, -748, -364, -44, 1116, -1104, -1056, 76, 428, 552, -692, + 60, 356, 96, -384, -188, -612, -576, 736, 508, 892, 352, + -1132, 504, -24, -352, 324, 332, -600, -312, 292, 508, -144, + -8, 484, 48, 284, -260, -240, 256, -100, -292, -204, -44, + 472, -204, 908, -188, -1000, -256, 92, 1164, -392, 564, 356, + 652, -28, -884, 256, 484, -192, 760, -176, 376, -524, -452, + -436, 860, -736, 212, 124, 504, -476, 468, 76, -472, 552, + -692, -944, -620, 740, -240, 400, 132, 20, 192, -196, 264, + -668, -1012, -60, 296, -316, -828, 76, -156, 284, -768, -448, + -832, 148, 248, 652, 616, 1236, 288, -328, -400, -124, 588, + 220, 520, -696, 1032, 768, -740, -92, -272, 296, 448, -464, + 412, -200, 392, 440, -200, 264, -152, -260, 320, 1032, 216, + 320, -8, -64, 156, -1016, 1084, 1172, 536, 484, -432, 132, + 372, -52, -256, 84, 116, -352, 48, 116, 304, -384, 412, + 924, -300, 528, 628, 180, 648, 44, -980, -220, 1320, 48, + 332, 748, 524, -268, -720, 540, -276, 564, -344, -208, -196, + 436, 896, 88, -392, 132, 80, -964, -288, 568, 56, -48, + -456, 888, 8, 552, -156, -292, 948, 288, 128, -716, -292, + 1192, -152, 876, 352, -600, -260, -812, -468, -28, -120, -32, + -44, 1284, 496, 192, 464, 312, -76, -516, -380, -456, -1012, + -48, 308, -156, 36, 492, -156, -808, 188, 1652, 68, -120, + -116, 316, 160, -140, 352, 808, -416, 592, 316, -480, 56, + 528, -204, -568, 372, -232, 752, -344, 744, -4, 324, -416, + -600, 768, 268, -248, -88, -132, -420, -432, 80, -288, 404, + -316, -1216, -588, 520, -108, 92, -320, 368, -480, -216, -92, + 1688, -300, 180, 1020, -176, 820, -68, -228, -260, 436, -904, + 20, 40, -508, 440, -736, 312, 332, 204, 760, -372, 728, + 96, -20, -632, -520, -560, 336, 1076, -64, -532, 776, 584, + 192, 396, -728, -520, 276, -188, 80, -52, -612, -252, -48, + 648, 212, -688, 228, -52, -260, 428, -412, -272, -404, 180, + 816, -796, 48, 152, 484, -88, -216, 988, 696, 188, -528, + 648, -116, -180, 316, 476, 12, -564, 96, 476, -252, -364, + -376, -392, 556, -256, -576, 260, -352, 120, -16, -136, -260, + -492, 72, 556, 660, 580, 616, 772, 436, 424, -32, -324, + -1268, 416, -324, -80, 920, 160, 228, 724, 32, -516, 64, + 384, 68, -128, 136, 240, 248, -204, -68, 252, -932, -120, + -480, -628, -84, 192, 852, -404, -288, -132, 204, 100, 168, + -68, -196, -868, 460, 1080, 380, -80, 244, 0, 484, -888, + 64, 184, 352, 600, 460, 164, 604, -196, 320, -64, 588, + -184, 228, 12, 372, 48, -848, -344, 224, 208, -200, 484, + 128, -20, 272, -468, -840, 384, 256, -720, -520, -464, -580, + 112, -120, 644, -356, -208, -608, -528, 704, 560, -424, 392, + 828, 40, 84, 200, -152, 0, -144, 584, 280, -120, 80, + -556, -972, -196, -472, 724, 80, 168, -32, 88, 160, -688, + 0, 160, 356, 372, -776, 740, -128, 676, -248, -480, 4, + -364, 96, 544, 232, -1032, 956, 236, 356, 20, -40, 300, + 24, -676, -596, 132, 1120, -104, 532, -1096, 568, 648, 444, + 508, 380, 188, -376, -604, 1488, 424, 24, 756, -220, -192, + 716, 120, 920, 688, 168, 44, -460, 568, 284, 1144, 1160, + 600, 424, 888, 656, -356, -320, 220, 316, -176, -724, -188, + -816, -628, -348, -228, -380, 1012, -452, -660, 736, 928, 404, + -696, -72, -268, -892, 128, 184, -344, -780, 360, 336, 400, + 344, 428, 548, -112, 136, -228, -216, -820, -516, 340, 92, + -136, 116, -300, 376, -244, 100, -316, -520, -284, -12, 824, + 164, -548, -180, -128, 116, -924, -828, 268, -368, -580, 620, + 192, 160, 0, -1676, 1068, 424, -56, -360, 468, -156, 720, + 288, -528, 556, -364, 548, -148, 504, 316, 152, -648, -620, + -684, -24, -376, -384, -108, -920, -1032, 768, 180, -264, -508, + -1268, -260, -60, 300, -240, 988, 724, -376, -576, -212, -736, + 556, 192, 1092, -620, -880, 376, -56, -4, -216, -32, 836, + 268, 396, 1332, 864, -600, 100, 56, -412, -92, 356, 180, + 884, -468, -436, 292, -388, -804, -704, -840, 368, -348, 140, + -724, 1536, 940, 372, 112, -372, 436, -480, 1136, 296, -32, + -228, 132, -48, -220, 868, -1016, -60, -1044, -464, 328, 916, + 244, 12, -736, -296, 360, 468, -376, -108, -92, 788, 368, + -56, 544, 400, -672, -420, 728, 16, 320, 44, -284, -380, + -796, 488, 132, 204, -596, -372, 88, -152, -908, -636, -572, + -624, -116, -692, -200, -56, 276, -88, 484, -324, 948, 864, + 1000, -456, -184, -276, 292, -296, 156, 676, 320, 160, 908, + -84, -1236, -288, -116, 260, -372, -644, 732, -756, -96, 84, + 344, -520, 348, -688, 240, -84, 216, -1044, -136, -676, -396, + -1500, 960, -40, 176, 168, 1516, 420, -504, -344, -364, -360, + 1216, -940, -380, -212, 252, -660, -708, 484, -444, -152, 928, + -120, 1112, 476, -260, 560, -148, -344, 108, -196, 228, -288, + 504, 560, -328, -88, 288, -1008, 460, -228, 468, -836, -196, + 76, 388, 232, 412, -1168, -716, -644, 756, -172, -356, -504, + 116, 432, 528, 48, 476, -168, -608, 448, 160, -532, -272, + 28, -676, -12, 828, 980, 456, 520, 104, -104, 256, -344, + -4, -28, -368, -52, -524, -572, -556, -200, 768, 1124, -208, + -512, 176, 232, 248, -148, -888, 604, -600, -304, 804, -156, + -212, 488, -192, -804, -256, 368, -360, -916, -328, 228, -240, + -448, -472, 856, -556, -364, 572, -12, -156, -368, -340, 432, + 252, -752, -152, 288, 268, -580, -848, -592, 108, -76, 244, + 312, -716, 592, -80, 436, 360, 4, -248, 160, 516, 584, + 732, 44, -468, -280, -292, -156, -588, 28, 308, 912, 24, + 124, 156, 180, -252, 944, -924, -772, -520, -428, -624, 300, + -212, -1144, 32, -724, 800, -1128, -212, -1288, -848, 180, -416, + 440, 192, -576, -792, -76, -1080, 80, -532, -352, -132, 380, + -820, 148, 1112, 128, 164, 456, 700, -924, 144, -668, -384, + 648, -832, 508, 552, -52, -100, -656, 208, -568, 748, -88, + 680, 232, 300, 192, -408, -1012, -152, -252, -268, 272, -876, + -664, -648, -332, -136, 16, 12, 1152, -28, 332, -536, 320, + -672, -460, -316, 532, -260, 228, -40, 1052, -816, 180, 88, + -496, -556, -672, -368, 428, 92, 356, 404, -408, 252, 196, + -176, -556, 792, 268, 32, 372, 40, 96, -332, 328, 120, + 372, -900, -40, 472, -264, -592, 952, 128, 656, 112, 664, + -232, 420, 4, -344, -464, 556, 244, -416, -32, 252, 0, + -412, 188, -696, 508, -476, 324, -1096, 656, -312, 560, 264, + -136, 304, 160, -64, -580, 248, 336, -720, 560, -348, -288, + -276, -196, -500, 852, -544, -236, -1128, -992, -776, 116, 56, + 52, 860, 884, 212, -12, 168, 1020, 512, -552, 924, -148, + 716, 188, 164, -340, -520, -184, 880, -152, -680, -208, -1156, + -300, -528, -472, 364, 100, -744, -1056, -32, 540, 280, 144, + -676, -32, -232, -280, -224, 96, 568, -76, 172, 148, 148, + 104, 32, -296, -32, 788, -80, 32, -16, 280, 288, 944, + 428, -484 +}; + +static const int gauss_bits = 11; + +static int luma_subblock_size_y = 32; +static int luma_subblock_size_x = 32; + +static int chroma_subblock_size_y = 16; +static int chroma_subblock_size_x = 16; + +static const int min_luma_legal_range = 16; +static const int max_luma_legal_range = 235; + +static const int min_chroma_legal_range = 16; +static const int max_chroma_legal_range = 240; + +static int scaling_lut_y[256]; +static int scaling_lut_cb[256]; +static int scaling_lut_cr[256]; + +static int grain_min; +static int grain_max; + +static uint16_t random_register = 0; // random number generator register + +static void dealloc_arrays(const aom_film_grain_t *params, int ***pred_pos_luma, + int ***pred_pos_chroma, int **luma_grain_block, + int **cb_grain_block, int **cr_grain_block, + int **y_line_buf, int **cb_line_buf, + int **cr_line_buf, int **y_col_buf, int **cb_col_buf, + int **cr_col_buf) { + int num_pos_luma = 2 * params->ar_coeff_lag * (params->ar_coeff_lag + 1); + int num_pos_chroma = num_pos_luma; + if (params->num_y_points > 0) ++num_pos_chroma; + + if (*pred_pos_luma) { + for (int row = 0; row < num_pos_luma; row++) { + aom_free((*pred_pos_luma)[row]); + } + aom_free(*pred_pos_luma); + *pred_pos_luma = NULL; + } + + if (*pred_pos_chroma) { + for (int row = 0; row < num_pos_chroma; row++) { + aom_free((*pred_pos_chroma)[row]); + } + aom_free(*pred_pos_chroma); + *pred_pos_chroma = NULL; + } + + aom_free(*y_line_buf); + *y_line_buf = NULL; + + aom_free(*cb_line_buf); + *cb_line_buf = NULL; + + aom_free(*cr_line_buf); + *cr_line_buf = NULL; + + aom_free(*y_col_buf); + *y_col_buf = NULL; + + aom_free(*cb_col_buf); + *cb_col_buf = NULL; + + aom_free(*cr_col_buf); + *cr_col_buf = NULL; + + aom_free(*luma_grain_block); + *luma_grain_block = NULL; + + aom_free(*cb_grain_block); + *cb_grain_block = NULL; + + aom_free(*cr_grain_block); + *cr_grain_block = NULL; +} + +static bool init_arrays(const aom_film_grain_t *params, int luma_stride, + int chroma_stride, int ***pred_pos_luma_p, + int ***pred_pos_chroma_p, int **luma_grain_block, + int **cb_grain_block, int **cr_grain_block, + int **y_line_buf, int **cb_line_buf, int **cr_line_buf, + int **y_col_buf, int **cb_col_buf, int **cr_col_buf, + int luma_grain_samples, int chroma_grain_samples, + int chroma_subsamp_y, int chroma_subsamp_x) { + *pred_pos_luma_p = NULL; + *pred_pos_chroma_p = NULL; + *luma_grain_block = NULL; + *cb_grain_block = NULL; + *cr_grain_block = NULL; + *y_line_buf = NULL; + *cb_line_buf = NULL; + *cr_line_buf = NULL; + *y_col_buf = NULL; + *cb_col_buf = NULL; + *cr_col_buf = NULL; + + memset(scaling_lut_y, 0, sizeof(*scaling_lut_y) * 256); + memset(scaling_lut_cb, 0, sizeof(*scaling_lut_cb) * 256); + memset(scaling_lut_cr, 0, sizeof(*scaling_lut_cr) * 256); + + int num_pos_luma = 2 * params->ar_coeff_lag * (params->ar_coeff_lag + 1); + int num_pos_chroma = num_pos_luma; + if (params->num_y_points > 0) ++num_pos_chroma; + + int **pred_pos_luma; + int **pred_pos_chroma; + + pred_pos_luma = (int **)aom_calloc(num_pos_luma, sizeof(*pred_pos_luma)); + if (!pred_pos_luma) return false; + + for (int row = 0; row < num_pos_luma; row++) { + pred_pos_luma[row] = (int *)aom_malloc(sizeof(**pred_pos_luma) * 3); + if (!pred_pos_luma[row]) { + dealloc_arrays(params, pred_pos_luma_p, pred_pos_chroma_p, + luma_grain_block, cb_grain_block, cr_grain_block, + y_line_buf, cb_line_buf, cr_line_buf, y_col_buf, + cb_col_buf, cr_col_buf); + return false; + } + } + + pred_pos_chroma = + (int **)aom_calloc(num_pos_chroma, sizeof(*pred_pos_chroma)); + if (!pred_pos_chroma) { + dealloc_arrays(params, pred_pos_luma_p, pred_pos_chroma_p, luma_grain_block, + cb_grain_block, cr_grain_block, y_line_buf, cb_line_buf, + cr_line_buf, y_col_buf, cb_col_buf, cr_col_buf); + return false; + } + + for (int row = 0; row < num_pos_chroma; row++) { + pred_pos_chroma[row] = (int *)aom_malloc(sizeof(**pred_pos_chroma) * 3); + if (!pred_pos_chroma[row]) { + dealloc_arrays(params, pred_pos_luma_p, pred_pos_chroma_p, + luma_grain_block, cb_grain_block, cr_grain_block, + y_line_buf, cb_line_buf, cr_line_buf, y_col_buf, + cb_col_buf, cr_col_buf); + return false; + } + } + + int pos_ar_index = 0; + + for (int row = -params->ar_coeff_lag; row < 0; row++) { + for (int col = -params->ar_coeff_lag; col < params->ar_coeff_lag + 1; + col++) { + pred_pos_luma[pos_ar_index][0] = row; + pred_pos_luma[pos_ar_index][1] = col; + pred_pos_luma[pos_ar_index][2] = 0; + + pred_pos_chroma[pos_ar_index][0] = row; + pred_pos_chroma[pos_ar_index][1] = col; + pred_pos_chroma[pos_ar_index][2] = 0; + ++pos_ar_index; + } + } + + for (int col = -params->ar_coeff_lag; col < 0; col++) { + pred_pos_luma[pos_ar_index][0] = 0; + pred_pos_luma[pos_ar_index][1] = col; + pred_pos_luma[pos_ar_index][2] = 0; + + pred_pos_chroma[pos_ar_index][0] = 0; + pred_pos_chroma[pos_ar_index][1] = col; + pred_pos_chroma[pos_ar_index][2] = 0; + + ++pos_ar_index; + } + + if (params->num_y_points > 0) { + pred_pos_chroma[pos_ar_index][0] = 0; + pred_pos_chroma[pos_ar_index][1] = 0; + pred_pos_chroma[pos_ar_index][2] = 1; + } + + *pred_pos_luma_p = pred_pos_luma; + *pred_pos_chroma_p = pred_pos_chroma; + + *y_line_buf = (int *)aom_malloc(sizeof(**y_line_buf) * luma_stride * 2); + *cb_line_buf = (int *)aom_malloc(sizeof(**cb_line_buf) * chroma_stride * + (2 >> chroma_subsamp_y)); + *cr_line_buf = (int *)aom_malloc(sizeof(**cr_line_buf) * chroma_stride * + (2 >> chroma_subsamp_y)); + + *y_col_buf = + (int *)aom_malloc(sizeof(**y_col_buf) * (luma_subblock_size_y + 2) * 2); + *cb_col_buf = + (int *)aom_malloc(sizeof(**cb_col_buf) * + (chroma_subblock_size_y + (2 >> chroma_subsamp_y)) * + (2 >> chroma_subsamp_x)); + *cr_col_buf = + (int *)aom_malloc(sizeof(**cr_col_buf) * + (chroma_subblock_size_y + (2 >> chroma_subsamp_y)) * + (2 >> chroma_subsamp_x)); + + *luma_grain_block = + (int *)aom_malloc(sizeof(**luma_grain_block) * luma_grain_samples); + *cb_grain_block = + (int *)aom_malloc(sizeof(**cb_grain_block) * chroma_grain_samples); + *cr_grain_block = + (int *)aom_malloc(sizeof(**cr_grain_block) * chroma_grain_samples); + if (!(*pred_pos_luma_p && *pred_pos_chroma_p && *y_line_buf && *cb_line_buf && + *cr_line_buf && *y_col_buf && *cb_col_buf && *cr_col_buf && + *luma_grain_block && *cb_grain_block && *cr_grain_block)) { + dealloc_arrays(params, pred_pos_luma_p, pred_pos_chroma_p, luma_grain_block, + cb_grain_block, cr_grain_block, y_line_buf, cb_line_buf, + cr_line_buf, y_col_buf, cb_col_buf, cr_col_buf); + return false; + } + return true; +} + +// get a number between 0 and 2^bits - 1 +static INLINE int get_random_number(int bits) { + uint16_t bit; + bit = ((random_register >> 0) ^ (random_register >> 1) ^ + (random_register >> 3) ^ (random_register >> 12)) & + 1; + random_register = (random_register >> 1) | (bit << 15); + return (random_register >> (16 - bits)) & ((1 << bits) - 1); +} + +static void init_random_generator(int luma_line, uint16_t seed) { + // same for the picture + + uint16_t msb = (seed >> 8) & 255; + uint16_t lsb = seed & 255; + + random_register = (msb << 8) + lsb; + + // changes for each row + int luma_num = luma_line >> 5; + + random_register ^= ((luma_num * 37 + 178) & 255) << 8; + random_register ^= ((luma_num * 173 + 105) & 255); +} + +static void generate_luma_grain_block( + const aom_film_grain_t *params, int **pred_pos_luma, int *luma_grain_block, + int luma_block_size_y, int luma_block_size_x, int luma_grain_stride, + int left_pad, int top_pad, int right_pad, int bottom_pad) { + if (params->num_y_points == 0) { + memset(luma_grain_block, 0, + sizeof(*luma_grain_block) * luma_block_size_y * luma_grain_stride); + return; + } + + int bit_depth = params->bit_depth; + int gauss_sec_shift = 12 - bit_depth + params->grain_scale_shift; + + int num_pos_luma = 2 * params->ar_coeff_lag * (params->ar_coeff_lag + 1); + int rounding_offset = (1 << (params->ar_coeff_shift - 1)); + + for (int i = 0; i < luma_block_size_y; i++) + for (int j = 0; j < luma_block_size_x; j++) + luma_grain_block[i * luma_grain_stride + j] = + (gaussian_sequence[get_random_number(gauss_bits)] + + ((1 << gauss_sec_shift) >> 1)) >> + gauss_sec_shift; + + for (int i = top_pad; i < luma_block_size_y - bottom_pad; i++) + for (int j = left_pad; j < luma_block_size_x - right_pad; j++) { + int wsum = 0; + for (int pos = 0; pos < num_pos_luma; pos++) { + wsum = wsum + params->ar_coeffs_y[pos] * + luma_grain_block[(i + pred_pos_luma[pos][0]) * + luma_grain_stride + + j + pred_pos_luma[pos][1]]; + } + luma_grain_block[i * luma_grain_stride + j] = + clamp(luma_grain_block[i * luma_grain_stride + j] + + ((wsum + rounding_offset) >> params->ar_coeff_shift), + grain_min, grain_max); + } +} + +static bool generate_chroma_grain_blocks( + const aom_film_grain_t *params, int **pred_pos_chroma, + int *luma_grain_block, int *cb_grain_block, int *cr_grain_block, + int luma_grain_stride, int chroma_block_size_y, int chroma_block_size_x, + int chroma_grain_stride, int left_pad, int top_pad, int right_pad, + int bottom_pad, int chroma_subsamp_y, int chroma_subsamp_x) { + int bit_depth = params->bit_depth; + int gauss_sec_shift = 12 - bit_depth + params->grain_scale_shift; + + int num_pos_chroma = 2 * params->ar_coeff_lag * (params->ar_coeff_lag + 1); + if (params->num_y_points > 0) ++num_pos_chroma; + int rounding_offset = (1 << (params->ar_coeff_shift - 1)); + int chroma_grain_block_size = chroma_block_size_y * chroma_grain_stride; + + if (params->num_cb_points || params->chroma_scaling_from_luma) { + init_random_generator(7 << 5, params->random_seed); + + for (int i = 0; i < chroma_block_size_y; i++) + for (int j = 0; j < chroma_block_size_x; j++) + cb_grain_block[i * chroma_grain_stride + j] = + (gaussian_sequence[get_random_number(gauss_bits)] + + ((1 << gauss_sec_shift) >> 1)) >> + gauss_sec_shift; + } else { + memset(cb_grain_block, 0, + sizeof(*cb_grain_block) * chroma_grain_block_size); + } + + if (params->num_cr_points || params->chroma_scaling_from_luma) { + init_random_generator(11 << 5, params->random_seed); + + for (int i = 0; i < chroma_block_size_y; i++) + for (int j = 0; j < chroma_block_size_x; j++) + cr_grain_block[i * chroma_grain_stride + j] = + (gaussian_sequence[get_random_number(gauss_bits)] + + ((1 << gauss_sec_shift) >> 1)) >> + gauss_sec_shift; + } else { + memset(cr_grain_block, 0, + sizeof(*cr_grain_block) * chroma_grain_block_size); + } + + for (int i = top_pad; i < chroma_block_size_y - bottom_pad; i++) + for (int j = left_pad; j < chroma_block_size_x - right_pad; j++) { + int wsum_cb = 0; + int wsum_cr = 0; + for (int pos = 0; pos < num_pos_chroma; pos++) { + if (pred_pos_chroma[pos][2] == 0) { + wsum_cb = wsum_cb + params->ar_coeffs_cb[pos] * + cb_grain_block[(i + pred_pos_chroma[pos][0]) * + chroma_grain_stride + + j + pred_pos_chroma[pos][1]]; + wsum_cr = wsum_cr + params->ar_coeffs_cr[pos] * + cr_grain_block[(i + pred_pos_chroma[pos][0]) * + chroma_grain_stride + + j + pred_pos_chroma[pos][1]]; + } else if (pred_pos_chroma[pos][2] == 1) { + int av_luma = 0; + int luma_coord_y = ((i - top_pad) << chroma_subsamp_y) + top_pad; + int luma_coord_x = ((j - left_pad) << chroma_subsamp_x) + left_pad; + + for (int k = luma_coord_y; k < luma_coord_y + chroma_subsamp_y + 1; + k++) + for (int l = luma_coord_x; l < luma_coord_x + chroma_subsamp_x + 1; + l++) + av_luma += luma_grain_block[k * luma_grain_stride + l]; + + av_luma = + (av_luma + ((1 << (chroma_subsamp_y + chroma_subsamp_x)) >> 1)) >> + (chroma_subsamp_y + chroma_subsamp_x); + + wsum_cb = wsum_cb + params->ar_coeffs_cb[pos] * av_luma; + wsum_cr = wsum_cr + params->ar_coeffs_cr[pos] * av_luma; + } else { + fprintf( + stderr, + "Grain synthesis: prediction between two chroma components is " + "not supported!"); + return false; + } + } + if (params->num_cb_points || params->chroma_scaling_from_luma) + cb_grain_block[i * chroma_grain_stride + j] = + clamp(cb_grain_block[i * chroma_grain_stride + j] + + ((wsum_cb + rounding_offset) >> params->ar_coeff_shift), + grain_min, grain_max); + if (params->num_cr_points || params->chroma_scaling_from_luma) + cr_grain_block[i * chroma_grain_stride + j] = + clamp(cr_grain_block[i * chroma_grain_stride + j] + + ((wsum_cr + rounding_offset) >> params->ar_coeff_shift), + grain_min, grain_max); + } + return true; +} + +static void init_scaling_function(const int scaling_points[][2], int num_points, + int scaling_lut[]) { + if (num_points == 0) return; + + for (int i = 0; i < scaling_points[0][0]; i++) + scaling_lut[i] = scaling_points[0][1]; + + for (int point = 0; point < num_points - 1; point++) { + int delta_y = scaling_points[point + 1][1] - scaling_points[point][1]; + int delta_x = scaling_points[point + 1][0] - scaling_points[point][0]; + + int64_t delta = delta_y * ((65536 + (delta_x >> 1)) / delta_x); + + for (int x = 0; x < delta_x; x++) { + scaling_lut[scaling_points[point][0] + x] = + scaling_points[point][1] + (int)((x * delta + 32768) >> 16); + } + } + + for (int i = scaling_points[num_points - 1][0]; i < 256; i++) + scaling_lut[i] = scaling_points[num_points - 1][1]; +} + +// function that extracts samples from a LUT (and interpolates intemediate +// frames for 10- and 12-bit video) +static int scale_LUT(int *scaling_lut, int index, int bit_depth) { + int x = index >> (bit_depth - 8); + + if (!(bit_depth - 8) || x == 255) + return scaling_lut[x]; + else + return scaling_lut[x] + (((scaling_lut[x + 1] - scaling_lut[x]) * + (index & ((1 << (bit_depth - 8)) - 1)) + + (1 << (bit_depth - 9))) >> + (bit_depth - 8)); +} + +static void add_noise_to_block(const aom_film_grain_t *params, uint8_t *luma, + uint8_t *cb, uint8_t *cr, int luma_stride, + int chroma_stride, int *luma_grain, + int *cb_grain, int *cr_grain, + int luma_grain_stride, int chroma_grain_stride, + int half_luma_height, int half_luma_width, + int bit_depth, int chroma_subsamp_y, + int chroma_subsamp_x, int mc_identity) { + int cb_mult = params->cb_mult - 128; // fixed scale + int cb_luma_mult = params->cb_luma_mult - 128; // fixed scale + int cb_offset = params->cb_offset - 256; + + int cr_mult = params->cr_mult - 128; // fixed scale + int cr_luma_mult = params->cr_luma_mult - 128; // fixed scale + int cr_offset = params->cr_offset - 256; + + int rounding_offset = (1 << (params->scaling_shift - 1)); + + int apply_y = params->num_y_points > 0 ? 1 : 0; + int apply_cb = + (params->num_cb_points > 0 || params->chroma_scaling_from_luma) ? 1 : 0; + int apply_cr = + (params->num_cr_points > 0 || params->chroma_scaling_from_luma) ? 1 : 0; + + if (params->chroma_scaling_from_luma) { + cb_mult = 0; // fixed scale + cb_luma_mult = 64; // fixed scale + cb_offset = 0; + + cr_mult = 0; // fixed scale + cr_luma_mult = 64; // fixed scale + cr_offset = 0; + } + + int min_luma, max_luma, min_chroma, max_chroma; + + if (params->clip_to_restricted_range) { + min_luma = min_luma_legal_range; + max_luma = max_luma_legal_range; + + if (mc_identity) { + min_chroma = min_luma_legal_range; + max_chroma = max_luma_legal_range; + } else { + min_chroma = min_chroma_legal_range; + max_chroma = max_chroma_legal_range; + } + } else { + min_luma = min_chroma = 0; + max_luma = max_chroma = 255; + } + + for (int i = 0; i < (half_luma_height << (1 - chroma_subsamp_y)); i++) { + for (int j = 0; j < (half_luma_width << (1 - chroma_subsamp_x)); j++) { + int average_luma = 0; + if (chroma_subsamp_x) { + average_luma = (luma[(i << chroma_subsamp_y) * luma_stride + + (j << chroma_subsamp_x)] + + luma[(i << chroma_subsamp_y) * luma_stride + + (j << chroma_subsamp_x) + 1] + + 1) >> + 1; + } else { + average_luma = luma[(i << chroma_subsamp_y) * luma_stride + j]; + } + + if (apply_cb) { + cb[i * chroma_stride + j] = clamp( + cb[i * chroma_stride + j] + + ((scale_LUT(scaling_lut_cb, + clamp(((average_luma * cb_luma_mult + + cb_mult * cb[i * chroma_stride + j]) >> + 6) + + cb_offset, + 0, (256 << (bit_depth - 8)) - 1), + 8) * + cb_grain[i * chroma_grain_stride + j] + + rounding_offset) >> + params->scaling_shift), + min_chroma, max_chroma); + } + + if (apply_cr) { + cr[i * chroma_stride + j] = clamp( + cr[i * chroma_stride + j] + + ((scale_LUT(scaling_lut_cr, + clamp(((average_luma * cr_luma_mult + + cr_mult * cr[i * chroma_stride + j]) >> + 6) + + cr_offset, + 0, (256 << (bit_depth - 8)) - 1), + 8) * + cr_grain[i * chroma_grain_stride + j] + + rounding_offset) >> + params->scaling_shift), + min_chroma, max_chroma); + } + } + } + + if (apply_y) { + for (int i = 0; i < (half_luma_height << 1); i++) { + for (int j = 0; j < (half_luma_width << 1); j++) { + luma[i * luma_stride + j] = + clamp(luma[i * luma_stride + j] + + ((scale_LUT(scaling_lut_y, luma[i * luma_stride + j], 8) * + luma_grain[i * luma_grain_stride + j] + + rounding_offset) >> + params->scaling_shift), + min_luma, max_luma); + } + } + } +} + +static void add_noise_to_block_hbd( + const aom_film_grain_t *params, uint16_t *luma, uint16_t *cb, uint16_t *cr, + int luma_stride, int chroma_stride, int *luma_grain, int *cb_grain, + int *cr_grain, int luma_grain_stride, int chroma_grain_stride, + int half_luma_height, int half_luma_width, int bit_depth, + int chroma_subsamp_y, int chroma_subsamp_x, int mc_identity) { + int cb_mult = params->cb_mult - 128; // fixed scale + int cb_luma_mult = params->cb_luma_mult - 128; // fixed scale + // offset value depends on the bit depth + int cb_offset = (params->cb_offset << (bit_depth - 8)) - (1 << bit_depth); + + int cr_mult = params->cr_mult - 128; // fixed scale + int cr_luma_mult = params->cr_luma_mult - 128; // fixed scale + // offset value depends on the bit depth + int cr_offset = (params->cr_offset << (bit_depth - 8)) - (1 << bit_depth); + + int rounding_offset = (1 << (params->scaling_shift - 1)); + + int apply_y = params->num_y_points > 0 ? 1 : 0; + int apply_cb = + (params->num_cb_points > 0 || params->chroma_scaling_from_luma) > 0 ? 1 + : 0; + int apply_cr = + (params->num_cr_points > 0 || params->chroma_scaling_from_luma) > 0 ? 1 + : 0; + + if (params->chroma_scaling_from_luma) { + cb_mult = 0; // fixed scale + cb_luma_mult = 64; // fixed scale + cb_offset = 0; + + cr_mult = 0; // fixed scale + cr_luma_mult = 64; // fixed scale + cr_offset = 0; + } + + int min_luma, max_luma, min_chroma, max_chroma; + + if (params->clip_to_restricted_range) { + min_luma = min_luma_legal_range << (bit_depth - 8); + max_luma = max_luma_legal_range << (bit_depth - 8); + + if (mc_identity) { + min_chroma = min_luma_legal_range << (bit_depth - 8); + max_chroma = max_luma_legal_range << (bit_depth - 8); + } else { + min_chroma = min_chroma_legal_range << (bit_depth - 8); + max_chroma = max_chroma_legal_range << (bit_depth - 8); + } + } else { + min_luma = min_chroma = 0; + max_luma = max_chroma = (256 << (bit_depth - 8)) - 1; + } + + for (int i = 0; i < (half_luma_height << (1 - chroma_subsamp_y)); i++) { + for (int j = 0; j < (half_luma_width << (1 - chroma_subsamp_x)); j++) { + int average_luma = 0; + if (chroma_subsamp_x) { + average_luma = (luma[(i << chroma_subsamp_y) * luma_stride + + (j << chroma_subsamp_x)] + + luma[(i << chroma_subsamp_y) * luma_stride + + (j << chroma_subsamp_x) + 1] + + 1) >> + 1; + } else { + average_luma = luma[(i << chroma_subsamp_y) * luma_stride + j]; + } + + if (apply_cb) { + cb[i * chroma_stride + j] = clamp( + cb[i * chroma_stride + j] + + ((scale_LUT(scaling_lut_cb, + clamp(((average_luma * cb_luma_mult + + cb_mult * cb[i * chroma_stride + j]) >> + 6) + + cb_offset, + 0, (256 << (bit_depth - 8)) - 1), + bit_depth) * + cb_grain[i * chroma_grain_stride + j] + + rounding_offset) >> + params->scaling_shift), + min_chroma, max_chroma); + } + if (apply_cr) { + cr[i * chroma_stride + j] = clamp( + cr[i * chroma_stride + j] + + ((scale_LUT(scaling_lut_cr, + clamp(((average_luma * cr_luma_mult + + cr_mult * cr[i * chroma_stride + j]) >> + 6) + + cr_offset, + 0, (256 << (bit_depth - 8)) - 1), + bit_depth) * + cr_grain[i * chroma_grain_stride + j] + + rounding_offset) >> + params->scaling_shift), + min_chroma, max_chroma); + } + } + } + + if (apply_y) { + for (int i = 0; i < (half_luma_height << 1); i++) { + for (int j = 0; j < (half_luma_width << 1); j++) { + luma[i * luma_stride + j] = + clamp(luma[i * luma_stride + j] + + ((scale_LUT(scaling_lut_y, luma[i * luma_stride + j], + bit_depth) * + luma_grain[i * luma_grain_stride + j] + + rounding_offset) >> + params->scaling_shift), + min_luma, max_luma); + } + } + } +} + +static void copy_rect(uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, int width, int height, + int use_high_bit_depth) { + int hbd_coeff = use_high_bit_depth ? 2 : 1; + while (height) { + memcpy(dst, src, width * sizeof(uint8_t) * hbd_coeff); + src += src_stride; + dst += dst_stride; + --height; + } + return; +} + +static void copy_area(int *src, int src_stride, int *dst, int dst_stride, + int width, int height) { + while (height) { + memcpy(dst, src, width * sizeof(*src)); + src += src_stride; + dst += dst_stride; + --height; + } + return; +} + +static void extend_even(uint8_t *dst, int dst_stride, int width, int height, + int use_high_bit_depth) { + if ((width & 1) == 0 && (height & 1) == 0) return; + if (use_high_bit_depth) { + uint16_t *dst16 = (uint16_t *)dst; + int dst16_stride = dst_stride / 2; + if (width & 1) { + for (int i = 0; i < height; ++i) + dst16[i * dst16_stride + width] = dst16[i * dst16_stride + width - 1]; + } + width = (width + 1) & (~1); + if (height & 1) { + memcpy(&dst16[height * dst16_stride], &dst16[(height - 1) * dst16_stride], + sizeof(*dst16) * width); + } + } else { + if (width & 1) { + for (int i = 0; i < height; ++i) + dst[i * dst_stride + width] = dst[i * dst_stride + width - 1]; + } + width = (width + 1) & (~1); + if (height & 1) { + memcpy(&dst[height * dst_stride], &dst[(height - 1) * dst_stride], + sizeof(*dst) * width); + } + } +} + +static void ver_boundary_overlap(int *left_block, int left_stride, + int *right_block, int right_stride, + int *dst_block, int dst_stride, int width, + int height) { + if (width == 1) { + while (height) { + *dst_block = clamp((*left_block * 23 + *right_block * 22 + 16) >> 5, + grain_min, grain_max); + left_block += left_stride; + right_block += right_stride; + dst_block += dst_stride; + --height; + } + return; + } else if (width == 2) { + while (height) { + dst_block[0] = clamp((27 * left_block[0] + 17 * right_block[0] + 16) >> 5, + grain_min, grain_max); + dst_block[1] = clamp((17 * left_block[1] + 27 * right_block[1] + 16) >> 5, + grain_min, grain_max); + left_block += left_stride; + right_block += right_stride; + dst_block += dst_stride; + --height; + } + return; + } +} + +static void hor_boundary_overlap(int *top_block, int top_stride, + int *bottom_block, int bottom_stride, + int *dst_block, int dst_stride, int width, + int height) { + if (height == 1) { + while (width) { + *dst_block = clamp((*top_block * 23 + *bottom_block * 22 + 16) >> 5, + grain_min, grain_max); + ++top_block; + ++bottom_block; + ++dst_block; + --width; + } + return; + } else if (height == 2) { + while (width) { + dst_block[0] = clamp((27 * top_block[0] + 17 * bottom_block[0] + 16) >> 5, + grain_min, grain_max); + dst_block[dst_stride] = clamp((17 * top_block[top_stride] + + 27 * bottom_block[bottom_stride] + 16) >> + 5, + grain_min, grain_max); + ++top_block; + ++bottom_block; + ++dst_block; + --width; + } + return; + } +} + +int av1_add_film_grain(const aom_film_grain_t *params, const aom_image_t *src, + aom_image_t *dst) { + uint8_t *luma, *cb, *cr; + int height, width, luma_stride, chroma_stride; + int use_high_bit_depth = 0; + int chroma_subsamp_x = 0; + int chroma_subsamp_y = 0; + int mc_identity = src->mc == AOM_CICP_MC_IDENTITY ? 1 : 0; + + switch (src->fmt) { + case AOM_IMG_FMT_AOMI420: + case AOM_IMG_FMT_I420: + use_high_bit_depth = 0; + chroma_subsamp_x = 1; + chroma_subsamp_y = 1; + break; + case AOM_IMG_FMT_I42016: + use_high_bit_depth = 1; + chroma_subsamp_x = 1; + chroma_subsamp_y = 1; + break; + // case AOM_IMG_FMT_444A: + case AOM_IMG_FMT_I444: + use_high_bit_depth = 0; + chroma_subsamp_x = 0; + chroma_subsamp_y = 0; + break; + case AOM_IMG_FMT_I44416: + use_high_bit_depth = 1; + chroma_subsamp_x = 0; + chroma_subsamp_y = 0; + break; + case AOM_IMG_FMT_I422: + use_high_bit_depth = 0; + chroma_subsamp_x = 1; + chroma_subsamp_y = 0; + break; + case AOM_IMG_FMT_I42216: + use_high_bit_depth = 1; + chroma_subsamp_x = 1; + chroma_subsamp_y = 0; + break; + default: // unknown input format + fprintf(stderr, "Film grain error: input format is not supported!"); + return -1; + } + + assert(params->bit_depth == src->bit_depth); + + dst->fmt = src->fmt; + dst->bit_depth = src->bit_depth; + + dst->r_w = src->r_w; + dst->r_h = src->r_h; + dst->d_w = src->d_w; + dst->d_h = src->d_h; + + dst->cp = src->cp; + dst->tc = src->tc; + dst->mc = src->mc; + + dst->monochrome = src->monochrome; + dst->csp = src->csp; + dst->range = src->range; + + dst->x_chroma_shift = src->x_chroma_shift; + dst->y_chroma_shift = src->y_chroma_shift; + + dst->temporal_id = src->temporal_id; + dst->spatial_id = src->spatial_id; + + width = src->d_w % 2 ? src->d_w + 1 : src->d_w; + height = src->d_h % 2 ? src->d_h + 1 : src->d_h; + + copy_rect(src->planes[AOM_PLANE_Y], src->stride[AOM_PLANE_Y], + dst->planes[AOM_PLANE_Y], dst->stride[AOM_PLANE_Y], src->d_w, + src->d_h, use_high_bit_depth); + // Note that dst is already assumed to be aligned to even. + extend_even(dst->planes[AOM_PLANE_Y], dst->stride[AOM_PLANE_Y], src->d_w, + src->d_h, use_high_bit_depth); + + if (!src->monochrome) { + copy_rect(src->planes[AOM_PLANE_U], src->stride[AOM_PLANE_U], + dst->planes[AOM_PLANE_U], dst->stride[AOM_PLANE_U], + width >> chroma_subsamp_x, height >> chroma_subsamp_y, + use_high_bit_depth); + + copy_rect(src->planes[AOM_PLANE_V], src->stride[AOM_PLANE_V], + dst->planes[AOM_PLANE_V], dst->stride[AOM_PLANE_V], + width >> chroma_subsamp_x, height >> chroma_subsamp_y, + use_high_bit_depth); + } + + luma = dst->planes[AOM_PLANE_Y]; + cb = dst->planes[AOM_PLANE_U]; + cr = dst->planes[AOM_PLANE_V]; + + // luma and chroma strides in samples + luma_stride = dst->stride[AOM_PLANE_Y] >> use_high_bit_depth; + chroma_stride = dst->stride[AOM_PLANE_U] >> use_high_bit_depth; + + return av1_add_film_grain_run( + params, luma, cb, cr, height, width, luma_stride, chroma_stride, + use_high_bit_depth, chroma_subsamp_y, chroma_subsamp_x, mc_identity); +} + +int av1_add_film_grain_run(const aom_film_grain_t *params, uint8_t *luma, + uint8_t *cb, uint8_t *cr, int height, int width, + int luma_stride, int chroma_stride, + int use_high_bit_depth, int chroma_subsamp_y, + int chroma_subsamp_x, int mc_identity) { + int **pred_pos_luma; + int **pred_pos_chroma; + int *luma_grain_block; + int *cb_grain_block; + int *cr_grain_block; + + int *y_line_buf; + int *cb_line_buf; + int *cr_line_buf; + + int *y_col_buf; + int *cb_col_buf; + int *cr_col_buf; + + random_register = params->random_seed; + + int left_pad = 3; + int right_pad = 3; // padding to offset for AR coefficients + int top_pad = 3; + int bottom_pad = 0; + + int ar_padding = 3; // maximum lag used for stabilization of AR coefficients + + luma_subblock_size_y = 32; + luma_subblock_size_x = 32; + + chroma_subblock_size_y = luma_subblock_size_y >> chroma_subsamp_y; + chroma_subblock_size_x = luma_subblock_size_x >> chroma_subsamp_x; + + // Initial padding is only needed for generation of + // film grain templates (to stabilize the AR process) + // Only a 64x64 luma and 32x32 chroma part of a template + // is used later for adding grain, padding can be discarded + + int luma_block_size_y = + top_pad + 2 * ar_padding + luma_subblock_size_y * 2 + bottom_pad; + int luma_block_size_x = left_pad + 2 * ar_padding + luma_subblock_size_x * 2 + + 2 * ar_padding + right_pad; + + int chroma_block_size_y = top_pad + (2 >> chroma_subsamp_y) * ar_padding + + chroma_subblock_size_y * 2 + bottom_pad; + int chroma_block_size_x = left_pad + (2 >> chroma_subsamp_x) * ar_padding + + chroma_subblock_size_x * 2 + + (2 >> chroma_subsamp_x) * ar_padding + right_pad; + + int luma_grain_stride = luma_block_size_x; + int chroma_grain_stride = chroma_block_size_x; + + int overlap = params->overlap_flag; + int bit_depth = params->bit_depth; + + const int grain_center = 128 << (bit_depth - 8); + grain_min = 0 - grain_center; + grain_max = grain_center - 1; + + if (!init_arrays(params, luma_stride, chroma_stride, &pred_pos_luma, + &pred_pos_chroma, &luma_grain_block, &cb_grain_block, + &cr_grain_block, &y_line_buf, &cb_line_buf, &cr_line_buf, + &y_col_buf, &cb_col_buf, &cr_col_buf, + luma_block_size_y * luma_block_size_x, + chroma_block_size_y * chroma_block_size_x, chroma_subsamp_y, + chroma_subsamp_x)) + return -1; + + generate_luma_grain_block(params, pred_pos_luma, luma_grain_block, + luma_block_size_y, luma_block_size_x, + luma_grain_stride, left_pad, top_pad, right_pad, + bottom_pad); + + if (!generate_chroma_grain_blocks( + params, pred_pos_chroma, luma_grain_block, cb_grain_block, + cr_grain_block, luma_grain_stride, chroma_block_size_y, + chroma_block_size_x, chroma_grain_stride, left_pad, top_pad, + right_pad, bottom_pad, chroma_subsamp_y, chroma_subsamp_x)) + return -1; + + init_scaling_function(params->scaling_points_y, params->num_y_points, + scaling_lut_y); + + if (params->chroma_scaling_from_luma) { + memcpy(scaling_lut_cb, scaling_lut_y, sizeof(*scaling_lut_y) * 256); + memcpy(scaling_lut_cr, scaling_lut_y, sizeof(*scaling_lut_y) * 256); + } else { + init_scaling_function(params->scaling_points_cb, params->num_cb_points, + scaling_lut_cb); + init_scaling_function(params->scaling_points_cr, params->num_cr_points, + scaling_lut_cr); + } + for (int y = 0; y < height / 2; y += (luma_subblock_size_y >> 1)) { + init_random_generator(y * 2, params->random_seed); + + for (int x = 0; x < width / 2; x += (luma_subblock_size_x >> 1)) { + int offset_y = get_random_number(8); + int offset_x = (offset_y >> 4) & 15; + offset_y &= 15; + + int luma_offset_y = left_pad + 2 * ar_padding + (offset_y << 1); + int luma_offset_x = top_pad + 2 * ar_padding + (offset_x << 1); + + int chroma_offset_y = top_pad + (2 >> chroma_subsamp_y) * ar_padding + + offset_y * (2 >> chroma_subsamp_y); + int chroma_offset_x = left_pad + (2 >> chroma_subsamp_x) * ar_padding + + offset_x * (2 >> chroma_subsamp_x); + + if (overlap && x) { + ver_boundary_overlap( + y_col_buf, 2, + luma_grain_block + luma_offset_y * luma_grain_stride + + luma_offset_x, + luma_grain_stride, y_col_buf, 2, 2, + AOMMIN(luma_subblock_size_y + 2, height - (y << 1))); + + ver_boundary_overlap( + cb_col_buf, 2 >> chroma_subsamp_x, + cb_grain_block + chroma_offset_y * chroma_grain_stride + + chroma_offset_x, + chroma_grain_stride, cb_col_buf, 2 >> chroma_subsamp_x, + 2 >> chroma_subsamp_x, + AOMMIN(chroma_subblock_size_y + (2 >> chroma_subsamp_y), + (height - (y << 1)) >> chroma_subsamp_y)); + + ver_boundary_overlap( + cr_col_buf, 2 >> chroma_subsamp_x, + cr_grain_block + chroma_offset_y * chroma_grain_stride + + chroma_offset_x, + chroma_grain_stride, cr_col_buf, 2 >> chroma_subsamp_x, + 2 >> chroma_subsamp_x, + AOMMIN(chroma_subblock_size_y + (2 >> chroma_subsamp_y), + (height - (y << 1)) >> chroma_subsamp_y)); + + int i = y ? 1 : 0; + + if (use_high_bit_depth) { + add_noise_to_block_hbd( + params, + (uint16_t *)luma + ((y + i) << 1) * luma_stride + (x << 1), + (uint16_t *)cb + + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + (x << (1 - chroma_subsamp_x)), + (uint16_t *)cr + + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + (x << (1 - chroma_subsamp_x)), + luma_stride, chroma_stride, y_col_buf + i * 4, + cb_col_buf + i * (2 - chroma_subsamp_y) * (2 - chroma_subsamp_x), + cr_col_buf + i * (2 - chroma_subsamp_y) * (2 - chroma_subsamp_x), + 2, (2 - chroma_subsamp_x), + AOMMIN(luma_subblock_size_y >> 1, height / 2 - y) - i, 1, + bit_depth, chroma_subsamp_y, chroma_subsamp_x, mc_identity); + } else { + add_noise_to_block( + params, luma + ((y + i) << 1) * luma_stride + (x << 1), + cb + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + (x << (1 - chroma_subsamp_x)), + cr + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + (x << (1 - chroma_subsamp_x)), + luma_stride, chroma_stride, y_col_buf + i * 4, + cb_col_buf + i * (2 - chroma_subsamp_y) * (2 - chroma_subsamp_x), + cr_col_buf + i * (2 - chroma_subsamp_y) * (2 - chroma_subsamp_x), + 2, (2 - chroma_subsamp_x), + AOMMIN(luma_subblock_size_y >> 1, height / 2 - y) - i, 1, + bit_depth, chroma_subsamp_y, chroma_subsamp_x, mc_identity); + } + } + + if (overlap && y) { + if (x) { + hor_boundary_overlap(y_line_buf + (x << 1), luma_stride, y_col_buf, 2, + y_line_buf + (x << 1), luma_stride, 2, 2); + + hor_boundary_overlap(cb_line_buf + x * (2 >> chroma_subsamp_x), + chroma_stride, cb_col_buf, 2 >> chroma_subsamp_x, + cb_line_buf + x * (2 >> chroma_subsamp_x), + chroma_stride, 2 >> chroma_subsamp_x, + 2 >> chroma_subsamp_y); + + hor_boundary_overlap(cr_line_buf + x * (2 >> chroma_subsamp_x), + chroma_stride, cr_col_buf, 2 >> chroma_subsamp_x, + cr_line_buf + x * (2 >> chroma_subsamp_x), + chroma_stride, 2 >> chroma_subsamp_x, + 2 >> chroma_subsamp_y); + } + + hor_boundary_overlap( + y_line_buf + ((x ? x + 1 : 0) << 1), luma_stride, + luma_grain_block + luma_offset_y * luma_grain_stride + + luma_offset_x + (x ? 2 : 0), + luma_grain_stride, y_line_buf + ((x ? x + 1 : 0) << 1), luma_stride, + AOMMIN(luma_subblock_size_x - ((x ? 1 : 0) << 1), + width - ((x ? x + 1 : 0) << 1)), + 2); + + hor_boundary_overlap( + cb_line_buf + ((x ? x + 1 : 0) << (1 - chroma_subsamp_x)), + chroma_stride, + cb_grain_block + chroma_offset_y * chroma_grain_stride + + chroma_offset_x + ((x ? 1 : 0) << (1 - chroma_subsamp_x)), + chroma_grain_stride, + cb_line_buf + ((x ? x + 1 : 0) << (1 - chroma_subsamp_x)), + chroma_stride, + AOMMIN(chroma_subblock_size_x - + ((x ? 1 : 0) << (1 - chroma_subsamp_x)), + (width - ((x ? x + 1 : 0) << 1)) >> chroma_subsamp_x), + 2 >> chroma_subsamp_y); + + hor_boundary_overlap( + cr_line_buf + ((x ? x + 1 : 0) << (1 - chroma_subsamp_x)), + chroma_stride, + cr_grain_block + chroma_offset_y * chroma_grain_stride + + chroma_offset_x + ((x ? 1 : 0) << (1 - chroma_subsamp_x)), + chroma_grain_stride, + cr_line_buf + ((x ? x + 1 : 0) << (1 - chroma_subsamp_x)), + chroma_stride, + AOMMIN(chroma_subblock_size_x - + ((x ? 1 : 0) << (1 - chroma_subsamp_x)), + (width - ((x ? x + 1 : 0) << 1)) >> chroma_subsamp_x), + 2 >> chroma_subsamp_y); + + if (use_high_bit_depth) { + add_noise_to_block_hbd( + params, (uint16_t *)luma + (y << 1) * luma_stride + (x << 1), + (uint16_t *)cb + (y << (1 - chroma_subsamp_y)) * chroma_stride + + (x << ((1 - chroma_subsamp_x))), + (uint16_t *)cr + (y << (1 - chroma_subsamp_y)) * chroma_stride + + (x << ((1 - chroma_subsamp_x))), + luma_stride, chroma_stride, y_line_buf + (x << 1), + cb_line_buf + (x << (1 - chroma_subsamp_x)), + cr_line_buf + (x << (1 - chroma_subsamp_x)), luma_stride, + chroma_stride, 1, + AOMMIN(luma_subblock_size_x >> 1, width / 2 - x), bit_depth, + chroma_subsamp_y, chroma_subsamp_x, mc_identity); + } else { + add_noise_to_block( + params, luma + (y << 1) * luma_stride + (x << 1), + cb + (y << (1 - chroma_subsamp_y)) * chroma_stride + + (x << ((1 - chroma_subsamp_x))), + cr + (y << (1 - chroma_subsamp_y)) * chroma_stride + + (x << ((1 - chroma_subsamp_x))), + luma_stride, chroma_stride, y_line_buf + (x << 1), + cb_line_buf + (x << (1 - chroma_subsamp_x)), + cr_line_buf + (x << (1 - chroma_subsamp_x)), luma_stride, + chroma_stride, 1, + AOMMIN(luma_subblock_size_x >> 1, width / 2 - x), bit_depth, + chroma_subsamp_y, chroma_subsamp_x, mc_identity); + } + } + + int i = overlap && y ? 1 : 0; + int j = overlap && x ? 1 : 0; + + if (use_high_bit_depth) { + add_noise_to_block_hbd( + params, + (uint16_t *)luma + ((y + i) << 1) * luma_stride + ((x + j) << 1), + (uint16_t *)cb + + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + ((x + j) << (1 - chroma_subsamp_x)), + (uint16_t *)cr + + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + ((x + j) << (1 - chroma_subsamp_x)), + luma_stride, chroma_stride, + luma_grain_block + (luma_offset_y + (i << 1)) * luma_grain_stride + + luma_offset_x + (j << 1), + cb_grain_block + + (chroma_offset_y + (i << (1 - chroma_subsamp_y))) * + chroma_grain_stride + + chroma_offset_x + (j << (1 - chroma_subsamp_x)), + cr_grain_block + + (chroma_offset_y + (i << (1 - chroma_subsamp_y))) * + chroma_grain_stride + + chroma_offset_x + (j << (1 - chroma_subsamp_x)), + luma_grain_stride, chroma_grain_stride, + AOMMIN(luma_subblock_size_y >> 1, height / 2 - y) - i, + AOMMIN(luma_subblock_size_x >> 1, width / 2 - x) - j, bit_depth, + chroma_subsamp_y, chroma_subsamp_x, mc_identity); + } else { + add_noise_to_block( + params, luma + ((y + i) << 1) * luma_stride + ((x + j) << 1), + cb + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + ((x + j) << (1 - chroma_subsamp_x)), + cr + ((y + i) << (1 - chroma_subsamp_y)) * chroma_stride + + ((x + j) << (1 - chroma_subsamp_x)), + luma_stride, chroma_stride, + luma_grain_block + (luma_offset_y + (i << 1)) * luma_grain_stride + + luma_offset_x + (j << 1), + cb_grain_block + + (chroma_offset_y + (i << (1 - chroma_subsamp_y))) * + chroma_grain_stride + + chroma_offset_x + (j << (1 - chroma_subsamp_x)), + cr_grain_block + + (chroma_offset_y + (i << (1 - chroma_subsamp_y))) * + chroma_grain_stride + + chroma_offset_x + (j << (1 - chroma_subsamp_x)), + luma_grain_stride, chroma_grain_stride, + AOMMIN(luma_subblock_size_y >> 1, height / 2 - y) - i, + AOMMIN(luma_subblock_size_x >> 1, width / 2 - x) - j, bit_depth, + chroma_subsamp_y, chroma_subsamp_x, mc_identity); + } + + if (overlap) { + if (x) { + // Copy overlapped column bufer to line buffer + copy_area(y_col_buf + (luma_subblock_size_y << 1), 2, + y_line_buf + (x << 1), luma_stride, 2, 2); + + copy_area( + cb_col_buf + (chroma_subblock_size_y << (1 - chroma_subsamp_x)), + 2 >> chroma_subsamp_x, + cb_line_buf + (x << (1 - chroma_subsamp_x)), chroma_stride, + 2 >> chroma_subsamp_x, 2 >> chroma_subsamp_y); + + copy_area( + cr_col_buf + (chroma_subblock_size_y << (1 - chroma_subsamp_x)), + 2 >> chroma_subsamp_x, + cr_line_buf + (x << (1 - chroma_subsamp_x)), chroma_stride, + 2 >> chroma_subsamp_x, 2 >> chroma_subsamp_y); + } + + // Copy grain to the line buffer for overlap with a bottom block + copy_area( + luma_grain_block + + (luma_offset_y + luma_subblock_size_y) * luma_grain_stride + + luma_offset_x + ((x ? 2 : 0)), + luma_grain_stride, y_line_buf + ((x ? x + 1 : 0) << 1), luma_stride, + AOMMIN(luma_subblock_size_x, width - (x << 1)) - (x ? 2 : 0), 2); + + copy_area(cb_grain_block + + (chroma_offset_y + chroma_subblock_size_y) * + chroma_grain_stride + + chroma_offset_x + (x ? 2 >> chroma_subsamp_x : 0), + chroma_grain_stride, + cb_line_buf + ((x ? x + 1 : 0) << (1 - chroma_subsamp_x)), + chroma_stride, + AOMMIN(chroma_subblock_size_x, + ((width - (x << 1)) >> chroma_subsamp_x)) - + (x ? 2 >> chroma_subsamp_x : 0), + 2 >> chroma_subsamp_y); + + copy_area(cr_grain_block + + (chroma_offset_y + chroma_subblock_size_y) * + chroma_grain_stride + + chroma_offset_x + (x ? 2 >> chroma_subsamp_x : 0), + chroma_grain_stride, + cr_line_buf + ((x ? x + 1 : 0) << (1 - chroma_subsamp_x)), + chroma_stride, + AOMMIN(chroma_subblock_size_x, + ((width - (x << 1)) >> chroma_subsamp_x)) - + (x ? 2 >> chroma_subsamp_x : 0), + 2 >> chroma_subsamp_y); + + // Copy grain to the column buffer for overlap with the next block to + // the right + + copy_area(luma_grain_block + luma_offset_y * luma_grain_stride + + luma_offset_x + luma_subblock_size_x, + luma_grain_stride, y_col_buf, 2, 2, + AOMMIN(luma_subblock_size_y + 2, height - (y << 1))); + + copy_area(cb_grain_block + chroma_offset_y * chroma_grain_stride + + chroma_offset_x + chroma_subblock_size_x, + chroma_grain_stride, cb_col_buf, 2 >> chroma_subsamp_x, + 2 >> chroma_subsamp_x, + AOMMIN(chroma_subblock_size_y + (2 >> chroma_subsamp_y), + (height - (y << 1)) >> chroma_subsamp_y)); + + copy_area(cr_grain_block + chroma_offset_y * chroma_grain_stride + + chroma_offset_x + chroma_subblock_size_x, + chroma_grain_stride, cr_col_buf, 2 >> chroma_subsamp_x, + 2 >> chroma_subsamp_x, + AOMMIN(chroma_subblock_size_y + (2 >> chroma_subsamp_y), + (height - (y << 1)) >> chroma_subsamp_y)); + } + } + } + + dealloc_arrays(params, &pred_pos_luma, &pred_pos_chroma, &luma_grain_block, + &cb_grain_block, &cr_grain_block, &y_line_buf, &cb_line_buf, + &cr_line_buf, &y_col_buf, &cb_col_buf, &cr_col_buf); + return 0; +} diff --git a/third_party/aom/av1/decoder/grain_synthesis.h b/third_party/aom/av1/decoder/grain_synthesis.h new file mode 100644 index 0000000000..9858ce0013 --- /dev/null +++ b/third_party/aom/av1/decoder/grain_synthesis.h @@ -0,0 +1,66 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +/*!\file + * \brief Describes film grain synthesis + * + */ +#ifndef AOM_AV1_DECODER_GRAIN_SYNTHESIS_H_ +#define AOM_AV1_DECODER_GRAIN_SYNTHESIS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include <stdint.h> + +#include "aom_dsp/grain_params.h" +#include "aom/aom_image.h" + +/*!\brief Add film grain + * + * Add film grain to an image + * + * Returns 0 for success, -1 for failure + * + * \param[in] grain_params Grain parameters + * \param[in] luma luma plane + * \param[in] cb cb plane + * \param[in] cr cr plane + * \param[in] height luma plane height + * \param[in] width luma plane width + * \param[in] luma_stride luma plane stride + * \param[in] chroma_stride chroma plane stride + */ +int av1_add_film_grain_run(const aom_film_grain_t *grain_params, uint8_t *luma, + uint8_t *cb, uint8_t *cr, int height, int width, + int luma_stride, int chroma_stride, + int use_high_bit_depth, int chroma_subsamp_y, + int chroma_subsamp_x, int mc_identity); + +/*!\brief Add film grain + * + * Add film grain to an image + * + * Returns 0 for success, -1 for failure + * + * \param[in] grain_params Grain parameters + * \param[in] src Source image + * \param[out] dst Resulting image with grain + */ +int av1_add_film_grain(const aom_film_grain_t *grain_params, + const aom_image_t *src, aom_image_t *dst); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_DECODER_GRAIN_SYNTHESIS_H_ diff --git a/third_party/aom/av1/decoder/inspection.c b/third_party/aom/av1/decoder/inspection.c new file mode 100644 index 0000000000..288d69a224 --- /dev/null +++ b/third_party/aom/av1/decoder/inspection.c @@ -0,0 +1,162 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdio.h> +#include <stdlib.h> + +#include "av1/decoder/decoder.h" +#include "av1/decoder/inspection.h" +#include "av1/common/enums.h" +#include "av1/common/cdef.h" + +static void ifd_init_mi_rc(insp_frame_data *fd, int mi_cols, int mi_rows) { + fd->mi_cols = mi_cols; + fd->mi_rows = mi_rows; + fd->mi_grid = (insp_mi_data *)aom_malloc(sizeof(insp_mi_data) * fd->mi_rows * + fd->mi_cols); + if (!fd->mi_grid) { + fprintf(stderr, "Error allocating inspection data\n"); + abort(); + } +} + +void ifd_init(insp_frame_data *fd, int frame_width, int frame_height) { + int mi_cols = ALIGN_POWER_OF_TWO(frame_width, 3) >> MI_SIZE_LOG2; + int mi_rows = ALIGN_POWER_OF_TWO(frame_height, 3) >> MI_SIZE_LOG2; + ifd_init_mi_rc(fd, mi_cols, mi_rows); +} + +void ifd_clear(insp_frame_data *fd) { + aom_free(fd->mi_grid); + fd->mi_grid = NULL; +} + +/* TODO(negge) This function may be called by more than one thread when using + a multi-threaded decoder and this may cause a data race. */ +int ifd_inspect(insp_frame_data *fd, void *decoder, int skip_not_transform) { + struct AV1Decoder *pbi = (struct AV1Decoder *)decoder; + AV1_COMMON *const cm = &pbi->common; + const CommonModeInfoParams *const mi_params = &cm->mi_params; + const CommonQuantParams *quant_params = &cm->quant_params; + + if (fd->mi_rows != mi_params->mi_rows || fd->mi_cols != mi_params->mi_cols) { + ifd_clear(fd); + ifd_init_mi_rc(fd, mi_params->mi_rows, mi_params->mi_cols); + } + fd->show_existing_frame = cm->show_existing_frame; + fd->frame_number = cm->current_frame.frame_number; + fd->show_frame = cm->show_frame; + fd->frame_type = cm->current_frame.frame_type; + fd->base_qindex = quant_params->base_qindex; + // Set width and height of the first tile until generic support can be added + TileInfo tile_info; + av1_tile_set_row(&tile_info, cm, 0); + av1_tile_set_col(&tile_info, cm, 0); + fd->tile_mi_cols = tile_info.mi_col_end - tile_info.mi_col_start; + fd->tile_mi_rows = tile_info.mi_row_end - tile_info.mi_row_start; + fd->delta_q_present_flag = cm->delta_q_info.delta_q_present_flag; + fd->delta_q_res = cm->delta_q_info.delta_q_res; +#if CONFIG_ACCOUNTING + fd->accounting = &pbi->accounting; +#endif + // TODO(negge): copy per frame CDEF data + int i, j; + for (i = 0; i < MAX_SEGMENTS; i++) { + for (j = 0; j < 2; j++) { + fd->y_dequant[i][j] = quant_params->y_dequant_QTX[i][j]; + fd->u_dequant[i][j] = quant_params->u_dequant_QTX[i][j]; + fd->v_dequant[i][j] = quant_params->v_dequant_QTX[i][j]; + } + } + for (j = 0; j < mi_params->mi_rows; j++) { + for (i = 0; i < mi_params->mi_cols; i++) { + const MB_MODE_INFO *mbmi = + mi_params->mi_grid_base[j * mi_params->mi_stride + i]; + insp_mi_data *mi = &fd->mi_grid[j * mi_params->mi_cols + i]; + // Segment + mi->segment_id = mbmi->segment_id; + // Motion Vectors + mi->mv[0].row = mbmi->mv[0].as_mv.row; + mi->mv[0].col = mbmi->mv[0].as_mv.col; + mi->mv[1].row = mbmi->mv[1].as_mv.row; + mi->mv[1].col = mbmi->mv[1].as_mv.col; + // Reference Frames + mi->ref_frame[0] = mbmi->ref_frame[0]; + mi->ref_frame[1] = mbmi->ref_frame[1]; + // Prediction Mode + mi->mode = mbmi->mode; + mi->intrabc = (int16_t)mbmi->use_intrabc; + mi->palette = (int16_t)mbmi->palette_mode_info.palette_size[0]; + mi->uv_palette = (int16_t)mbmi->palette_mode_info.palette_size[1]; + // Prediction Mode for Chromatic planes + if (mi->mode < INTRA_MODES) { + mi->uv_mode = mbmi->uv_mode; + } else { + mi->uv_mode = UV_MODE_INVALID; + } + + mi->motion_mode = mbmi->motion_mode; + mi->compound_type = mbmi->interinter_comp.type; + + // Block Size + mi->bsize = mbmi->bsize; + // Skip Flag + mi->skip = mbmi->skip_txfm; + mi->filter[0] = av1_extract_interp_filter(mbmi->interp_filters, 0); + mi->filter[1] = av1_extract_interp_filter(mbmi->interp_filters, 1); + mi->dual_filter_type = mi->filter[0] * 3 + mi->filter[1]; + + // Transform + // TODO(anyone): extract tx type info from mbmi->txk_type[]. + + const BLOCK_SIZE bsize = mbmi->bsize; + const int c = i % mi_size_wide[bsize]; + const int r = j % mi_size_high[bsize]; + if (is_inter_block(mbmi) || is_intrabc_block(mbmi)) + mi->tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(bsize, r, c)]; + else + mi->tx_size = mbmi->tx_size; + + if (skip_not_transform && mi->skip) mi->tx_size = -1; + + if (mi->skip) { + const int tx_type_row = j - j % tx_size_high_unit[mi->tx_size]; + const int tx_type_col = i - i % tx_size_wide_unit[mi->tx_size]; + const int tx_type_map_idx = + tx_type_row * mi_params->mi_stride + tx_type_col; + mi->tx_type = mi_params->tx_type_map[tx_type_map_idx]; + } else { + mi->tx_type = 0; + } + + if (skip_not_transform && + (mi->skip || mbmi->tx_skip[av1_get_txk_type_index(bsize, r, c)])) + mi->tx_type = -1; + + mi->cdef_level = cm->cdef_info.cdef_strengths[mbmi->cdef_strength] / + CDEF_SEC_STRENGTHS; + mi->cdef_strength = cm->cdef_info.cdef_strengths[mbmi->cdef_strength] % + CDEF_SEC_STRENGTHS; + + mi->cdef_strength += mi->cdef_strength == 3; + if (mbmi->uv_mode == UV_CFL_PRED) { + mi->cfl_alpha_idx = mbmi->cfl_alpha_idx; + mi->cfl_alpha_sign = mbmi->cfl_alpha_signs; + } else { + mi->cfl_alpha_idx = 0; + mi->cfl_alpha_sign = 0; + } + // delta_q + mi->current_qindex = mbmi->current_qindex; + } + } + return 1; +} diff --git a/third_party/aom/av1/decoder/inspection.h b/third_party/aom/av1/decoder/inspection.h new file mode 100644 index 0000000000..70b1c80fab --- /dev/null +++ b/third_party/aom/av1/decoder/inspection.h @@ -0,0 +1,91 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#ifndef AOM_AV1_DECODER_INSPECTION_H_ +#define AOM_AV1_DECODER_INSPECTION_H_ + +#ifdef __cplusplus +extern "C" { +#endif // __cplusplus + +#include "av1/common/seg_common.h" +#if CONFIG_ACCOUNTING +#include "av1/decoder/accounting.h" +#endif + +#ifndef AOM_AOM_AOMDX_H_ +typedef void (*aom_inspect_cb)(void *decoder, void *data); +#endif + +typedef struct insp_mv insp_mv; + +struct insp_mv { + int16_t row; + int16_t col; +}; + +typedef struct insp_mi_data insp_mi_data; + +struct insp_mi_data { + insp_mv mv[2]; + int16_t ref_frame[2]; + int16_t mode; + int16_t uv_mode; + int16_t bsize; + int16_t skip; + int16_t segment_id; + int16_t dual_filter_type; + int16_t filter[2]; + int16_t tx_type; + int16_t tx_size; + int16_t cdef_level; + int16_t cdef_strength; + int16_t cfl_alpha_idx; + int16_t cfl_alpha_sign; + int16_t current_qindex; + int16_t compound_type; + int16_t motion_mode; + int16_t intrabc; + int16_t palette; + int16_t uv_palette; +}; + +typedef struct insp_frame_data insp_frame_data; + +struct insp_frame_data { +#if CONFIG_ACCOUNTING + Accounting *accounting; +#endif + insp_mi_data *mi_grid; + int16_t frame_number; + int show_frame; + int frame_type; + int base_qindex; + int mi_rows; + int mi_cols; + int tile_mi_rows; + int tile_mi_cols; + int16_t y_dequant[MAX_SEGMENTS][2]; + int16_t u_dequant[MAX_SEGMENTS][2]; + int16_t v_dequant[MAX_SEGMENTS][2]; + // TODO(negge): add per frame CDEF data + int delta_q_present_flag; + int delta_q_res; + int show_existing_frame; +}; + +void ifd_init(insp_frame_data *fd, int frame_width, int frame_height); +void ifd_clear(insp_frame_data *fd); +int ifd_inspect(insp_frame_data *fd, void *decoder, int skip_not_transform); + +#ifdef __cplusplus +} // extern "C" +#endif // __cplusplus +#endif // AOM_AV1_DECODER_INSPECTION_H_ diff --git a/third_party/aom/av1/decoder/obu.c b/third_party/aom/av1/decoder/obu.c new file mode 100644 index 0000000000..0e31ce9404 --- /dev/null +++ b/third_party/aom/av1/decoder/obu.c @@ -0,0 +1,1101 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> + +#include "config/aom_config.h" +#include "config/aom_scale_rtcd.h" + +#include "aom/aom_codec.h" +#include "aom_dsp/bitreader_buffer.h" +#include "aom_ports/mem_ops.h" + +#include "av1/common/common.h" +#include "av1/common/obu_util.h" +#include "av1/common/timing.h" +#include "av1/decoder/decoder.h" +#include "av1/decoder/decodeframe.h" +#include "av1/decoder/obu.h" + +aom_codec_err_t aom_get_num_layers_from_operating_point_idc( + int operating_point_idc, unsigned int *number_spatial_layers, + unsigned int *number_temporal_layers) { + // derive number of spatial/temporal layers from operating_point_idc + + if (!number_spatial_layers || !number_temporal_layers) + return AOM_CODEC_INVALID_PARAM; + + if (operating_point_idc == 0) { + *number_temporal_layers = 1; + *number_spatial_layers = 1; + } else { + *number_spatial_layers = 0; + *number_temporal_layers = 0; + for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) { + *number_spatial_layers += + (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1; + } + for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) { + *number_temporal_layers += (operating_point_idc >> j) & 0x1; + } + } + + return AOM_CODEC_OK; +} + +static int is_obu_in_current_operating_point(AV1Decoder *pbi, + const ObuHeader *obu_header) { + if (!pbi->current_operating_point || !obu_header->has_extension) { + return 1; + } + + if ((pbi->current_operating_point >> obu_header->temporal_layer_id) & 0x1 && + (pbi->current_operating_point >> (obu_header->spatial_layer_id + 8)) & + 0x1) { + return 1; + } + return 0; +} + +static int byte_alignment(AV1_COMMON *const cm, + struct aom_read_bit_buffer *const rb) { + while (rb->bit_offset & 7) { + if (aom_rb_read_bit(rb)) { + cm->error->error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + } + return 0; +} + +static uint32_t read_temporal_delimiter_obu(void) { return 0; } + +// Returns a boolean that indicates success. +static int read_bitstream_level(AV1_LEVEL *seq_level_idx, + struct aom_read_bit_buffer *rb) { + *seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS); + if (!is_valid_seq_level_idx(*seq_level_idx)) return 0; + return 1; +} + +// Returns whether two sequence headers are consistent with each other. +// Note that the 'op_params' field is not compared per Section 7.5 in the spec: +// Within a particular coded video sequence, the contents of +// sequence_header_obu must be bit-identical each time the sequence header +// appears except for the contents of operating_parameters_info. +static int are_seq_headers_consistent(const SequenceHeader *seq_params_old, + const SequenceHeader *seq_params_new) { + return !memcmp(seq_params_old, seq_params_new, + offsetof(SequenceHeader, op_params)); +} + +// On success, sets pbi->sequence_header_ready to 1 and returns the number of +// bytes read from 'rb'. +// On failure, sets pbi->common.error.error_code and returns 0. +static uint32_t read_sequence_header_obu(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb) { + AV1_COMMON *const cm = &pbi->common; + const uint32_t saved_bit_offset = rb->bit_offset; + + // Verify rb has been configured to report errors. + assert(rb->error_handler); + + // Use a local variable to store the information as we decode. At the end, + // if no errors have occurred, cm->seq_params is updated. + SequenceHeader sh = *cm->seq_params; + SequenceHeader *const seq_params = &sh; + + seq_params->profile = av1_read_profile(rb); + if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) { + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + return 0; + } + + // Still picture or not + seq_params->still_picture = aom_rb_read_bit(rb); + seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb); + // Video must have reduced_still_picture_hdr = 0 + if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) { + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + return 0; + } + + if (seq_params->reduced_still_picture_hdr) { + seq_params->timing_info_present = 0; + seq_params->decoder_model_info_present_flag = 0; + seq_params->display_model_info_present_flag = 0; + seq_params->operating_points_cnt_minus_1 = 0; + seq_params->operating_point_idc[0] = 0; + if (!read_bitstream_level(&seq_params->seq_level_idx[0], rb)) { + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + return 0; + } + seq_params->tier[0] = 0; + seq_params->op_params[0].decoder_model_param_present_flag = 0; + seq_params->op_params[0].display_model_param_present_flag = 0; + } else { + seq_params->timing_info_present = aom_rb_read_bit(rb); + if (seq_params->timing_info_present) { + av1_read_timing_info_header(&seq_params->timing_info, &pbi->error, rb); + + seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb); + if (seq_params->decoder_model_info_present_flag) + av1_read_decoder_model_info(&seq_params->decoder_model_info, rb); + } else { + seq_params->decoder_model_info_present_flag = 0; + } + seq_params->display_model_info_present_flag = aom_rb_read_bit(rb); + seq_params->operating_points_cnt_minus_1 = + aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS); + for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { + seq_params->operating_point_idc[i] = + aom_rb_read_literal(rb, OP_POINTS_IDC_BITS); + if (!read_bitstream_level(&seq_params->seq_level_idx[i], rb)) { + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + return 0; + } + // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7 + // is equivalent to level 3.3. + if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0) + seq_params->tier[i] = aom_rb_read_bit(rb); + else + seq_params->tier[i] = 0; + if (seq_params->decoder_model_info_present_flag) { + seq_params->op_params[i].decoder_model_param_present_flag = + aom_rb_read_bit(rb); + if (seq_params->op_params[i].decoder_model_param_present_flag) + av1_read_op_parameters_info(&seq_params->op_params[i], + seq_params->decoder_model_info + .encoder_decoder_buffer_delay_length, + rb); + } else { + seq_params->op_params[i].decoder_model_param_present_flag = 0; + } + if (seq_params->timing_info_present && + (seq_params->timing_info.equal_picture_interval || + seq_params->op_params[i].decoder_model_param_present_flag)) { + seq_params->op_params[i].bitrate = av1_max_level_bitrate( + seq_params->profile, seq_params->seq_level_idx[i], + seq_params->tier[i]); + // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass + // the check + if (seq_params->op_params[i].bitrate == 0) + aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "AV1 does not support this combination of " + "profile, level, and tier."); + // Buffer size in bits/s is bitrate in bits/s * 1 s + seq_params->op_params[i].buffer_size = seq_params->op_params[i].bitrate; + } + if (seq_params->timing_info_present && + seq_params->timing_info.equal_picture_interval && + !seq_params->op_params[i].decoder_model_param_present_flag) { + // When the decoder_model_parameters are not sent for this op, set + // the default ones that can be used with the resource availability mode + seq_params->op_params[i].decoder_buffer_delay = 70000; + seq_params->op_params[i].encoder_buffer_delay = 20000; + seq_params->op_params[i].low_delay_mode_flag = 0; + } + + if (seq_params->display_model_info_present_flag) { + seq_params->op_params[i].display_model_param_present_flag = + aom_rb_read_bit(rb); + if (seq_params->op_params[i].display_model_param_present_flag) { + seq_params->op_params[i].initial_display_delay = + aom_rb_read_literal(rb, 4) + 1; + if (seq_params->op_params[i].initial_display_delay > 10) + aom_internal_error( + &pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "AV1 does not support more than 10 decoded frames delay"); + } else { + seq_params->op_params[i].initial_display_delay = 10; + } + } else { + seq_params->op_params[i].display_model_param_present_flag = 0; + seq_params->op_params[i].initial_display_delay = 10; + } + } + } + // This decoder supports all levels. Choose operating point provided by + // external means + int operating_point = pbi->operating_point; + if (operating_point < 0 || + operating_point > seq_params->operating_points_cnt_minus_1) + operating_point = 0; + pbi->current_operating_point = + seq_params->operating_point_idc[operating_point]; + if (aom_get_num_layers_from_operating_point_idc( + pbi->current_operating_point, &pbi->number_spatial_layers, + &pbi->number_temporal_layers) != AOM_CODEC_OK) { + pbi->error.error_code = AOM_CODEC_ERROR; + return 0; + } + + av1_read_sequence_header(cm, rb, seq_params); + + av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &pbi->error); + if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) && + !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) && + !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) { + aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, " + "%d %d subsampling is not supported.\n", + seq_params->subsampling_x, seq_params->subsampling_y); + } + + seq_params->film_grain_params_present = aom_rb_read_bit(rb); + + if (av1_check_trailing_bits(pbi, rb) != 0) { + // pbi->error.error_code is already set. + return 0; + } + + // If a sequence header has been decoded before, we check if the new + // one is consistent with the old one. + if (pbi->sequence_header_ready) { + if (!are_seq_headers_consistent(cm->seq_params, seq_params)) + pbi->sequence_header_changed = 1; + } + + *cm->seq_params = *seq_params; + pbi->sequence_header_ready = 1; + + return ((rb->bit_offset - saved_bit_offset + 7) >> 3); +} + +// On success, returns the frame header size. On failure, calls +// aom_internal_error and does not return. If show existing frame, +// also marks the data processing to end after the frame header. +static uint32_t read_frame_header_obu(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb, + const uint8_t *data, + const uint8_t **p_data_end, + int trailing_bits_present) { + const uint32_t hdr_size = + av1_decode_frame_headers_and_setup(pbi, rb, trailing_bits_present); + const AV1_COMMON *cm = &pbi->common; + if (cm->show_existing_frame) { + *p_data_end = data + hdr_size; + } + return hdr_size; +} + +// On success, returns the tile group header size. On failure, calls +// aom_internal_error() and returns -1. +static int32_t read_tile_group_header(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb, + int *start_tile, int *end_tile, + int tile_start_implicit) { + AV1_COMMON *const cm = &pbi->common; + CommonTileParams *const tiles = &cm->tiles; + uint32_t saved_bit_offset = rb->bit_offset; + int tile_start_and_end_present_flag = 0; + const int num_tiles = tiles->rows * tiles->cols; + + if (!tiles->large_scale && num_tiles > 1) { + tile_start_and_end_present_flag = aom_rb_read_bit(rb); + if (tile_start_implicit && tile_start_and_end_present_flag) { + aom_internal_error( + &pbi->error, AOM_CODEC_UNSUP_BITSTREAM, + "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0"); + return -1; + } + } + if (tiles->large_scale || num_tiles == 1 || + !tile_start_and_end_present_flag) { + *start_tile = 0; + *end_tile = num_tiles - 1; + } else { + int tile_bits = tiles->log2_rows + tiles->log2_cols; + *start_tile = aom_rb_read_literal(rb, tile_bits); + *end_tile = aom_rb_read_literal(rb, tile_bits); + } + if (*start_tile != pbi->next_start_tile) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "tg_start (%d) must be equal to %d", *start_tile, + pbi->next_start_tile); + return -1; + } + if (*start_tile > *end_tile) { + aom_internal_error( + &pbi->error, AOM_CODEC_CORRUPT_FRAME, + "tg_end (%d) must be greater than or equal to tg_start (%d)", *end_tile, + *start_tile); + return -1; + } + if (*end_tile >= num_tiles) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "tg_end (%d) must be less than NumTiles (%d)", *end_tile, + num_tiles); + return -1; + } + pbi->next_start_tile = (*end_tile == num_tiles - 1) ? 0 : *end_tile + 1; + + return ((rb->bit_offset - saved_bit_offset + 7) >> 3); +} + +// On success, returns the tile group OBU size. On failure, sets +// pbi->common.error.error_code and returns 0. +static uint32_t read_one_tile_group_obu( + AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg, + const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, + int *is_last_tg, int tile_start_implicit) { + AV1_COMMON *const cm = &pbi->common; + int start_tile, end_tile; + int32_t header_size, tg_payload_size; + + assert((rb->bit_offset & 7) == 0); + assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data); + + header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile, + tile_start_implicit); + if (header_size == -1 || byte_alignment(cm, rb)) return 0; + data += header_size; + av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile, + end_tile, is_first_tg); + + tg_payload_size = (uint32_t)(*p_data_end - data); + + *is_last_tg = end_tile == cm->tiles.rows * cm->tiles.cols - 1; + return header_size + tg_payload_size; +} + +static void alloc_tile_list_buffer(AV1Decoder *pbi) { + // The resolution of the output frame is read out from the bitstream. The data + // are stored in the order of Y plane, U plane and V plane. As an example, for + // image format 4:2:0, the output frame of U plane and V plane is 1/4 of the + // output frame. + AV1_COMMON *const cm = &pbi->common; + int tile_width, tile_height; + av1_get_uniform_tile_size(cm, &tile_width, &tile_height); + const int tile_width_in_pixels = tile_width * MI_SIZE; + const int tile_height_in_pixels = tile_height * MI_SIZE; + const int output_frame_width = + (pbi->output_frame_width_in_tiles_minus_1 + 1) * tile_width_in_pixels; + const int output_frame_height = + (pbi->output_frame_height_in_tiles_minus_1 + 1) * tile_height_in_pixels; + // The output frame is used to store the decoded tile list. The decoded tile + // list has to fit into 1 output frame. + assert((pbi->tile_count_minus_1 + 1) <= + (pbi->output_frame_width_in_tiles_minus_1 + 1) * + (pbi->output_frame_height_in_tiles_minus_1 + 1)); + + // Allocate the tile list output buffer. + // Note: if cm->seq_params->use_highbitdepth is 1 and + // cm->seq_params->bit_depth is 8, we could allocate less memory, namely, 8 + // bits/pixel. + if (aom_alloc_frame_buffer(&pbi->tile_list_outbuf, output_frame_width, + output_frame_height, cm->seq_params->subsampling_x, + cm->seq_params->subsampling_y, + (cm->seq_params->use_highbitdepth && + (cm->seq_params->bit_depth > AOM_BITS_8)), + 0, cm->features.byte_alignment, 0, 0)) + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate the tile list output buffer"); +} + +static void yv12_tile_copy(const YV12_BUFFER_CONFIG *src, int hstart1, + int hend1, int vstart1, int vend1, + YV12_BUFFER_CONFIG *dst, int hstart2, int vstart2, + int plane) { + const int src_stride = (plane > 0) ? src->strides[1] : src->strides[0]; + const int dst_stride = (plane > 0) ? dst->strides[1] : dst->strides[0]; + int row, col; + + assert(src->flags & YV12_FLAG_HIGHBITDEPTH); + assert(!(dst->flags & YV12_FLAG_HIGHBITDEPTH)); + + const uint16_t *src16 = + CONVERT_TO_SHORTPTR(src->buffers[plane] + vstart1 * src_stride + hstart1); + uint8_t *dst8 = dst->buffers[plane] + vstart2 * dst_stride + hstart2; + + for (row = vstart1; row < vend1; ++row) { + for (col = 0; col < (hend1 - hstart1); ++col) *dst8++ = (uint8_t)(*src16++); + src16 += src_stride - (hend1 - hstart1); + dst8 += dst_stride - (hend1 - hstart1); + } + return; +} + +static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi, + int tile_idx) { + AV1_COMMON *const cm = &pbi->common; + int tile_width, tile_height; + av1_get_uniform_tile_size(cm, &tile_width, &tile_height); + const int tile_width_in_pixels = tile_width * MI_SIZE; + const int tile_height_in_pixels = tile_height * MI_SIZE; + const int ssy = cm->seq_params->subsampling_y; + const int ssx = cm->seq_params->subsampling_x; + const int num_planes = av1_num_planes(cm); + + YV12_BUFFER_CONFIG *cur_frame = &cm->cur_frame->buf; + const int tr = tile_idx / (pbi->output_frame_width_in_tiles_minus_1 + 1); + const int tc = tile_idx % (pbi->output_frame_width_in_tiles_minus_1 + 1); + int plane; + + // Copy decoded tile to the tile list output buffer. + for (plane = 0; plane < num_planes; ++plane) { + const int shift_x = plane > 0 ? ssx : 0; + const int shift_y = plane > 0 ? ssy : 0; + const int h = tile_height_in_pixels >> shift_y; + const int w = tile_width_in_pixels >> shift_x; + + // src offset + int vstart1 = pbi->dec_tile_row * h; + int vend1 = vstart1 + h; + int hstart1 = pbi->dec_tile_col * w; + int hend1 = hstart1 + w; + // dst offset + int vstart2 = tr * h; + int hstart2 = tc * w; + + if (cm->seq_params->use_highbitdepth && + cm->seq_params->bit_depth == AOM_BITS_8) { + yv12_tile_copy(cur_frame, hstart1, hend1, vstart1, vend1, + &pbi->tile_list_outbuf, hstart2, vstart2, plane); + } else { + switch (plane) { + case 0: + aom_yv12_partial_copy_y(cur_frame, hstart1, hend1, vstart1, vend1, + &pbi->tile_list_outbuf, hstart2, vstart2); + break; + case 1: + aom_yv12_partial_copy_u(cur_frame, hstart1, hend1, vstart1, vend1, + &pbi->tile_list_outbuf, hstart2, vstart2); + break; + case 2: + aom_yv12_partial_copy_v(cur_frame, hstart1, hend1, vstart1, vend1, + &pbi->tile_list_outbuf, hstart2, vstart2); + break; + default: assert(0); + } + } + } +} + +// Only called while large_scale_tile = 1. +// +// On success, returns the tile list OBU size. On failure, sets +// pbi->common.error.error_code and returns 0. +static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi, + struct aom_read_bit_buffer *rb, + const uint8_t *data, + const uint8_t *data_end, + const uint8_t **p_data_end, + int *frame_decoding_finished) { + AV1_COMMON *const cm = &pbi->common; + uint32_t tile_list_payload_size = 0; + const int num_tiles = cm->tiles.cols * cm->tiles.rows; + const int start_tile = 0; + const int end_tile = num_tiles - 1; + int i = 0; + + // Process the tile list info. + pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); + pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); + pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16); + if (pbi->tile_count_minus_1 > MAX_TILES - 1) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + + // Allocate output frame buffer for the tile list. + alloc_tile_list_buffer(pbi); + + uint32_t tile_list_info_bytes = 4; + tile_list_payload_size += tile_list_info_bytes; + data += tile_list_info_bytes; + + int tile_idx = 0; + for (i = 0; i <= pbi->tile_count_minus_1; i++) { + // Process 1 tile. + // Reset the bit reader. + rb->bit_offset = 0; + rb->bit_buffer = data; + + // Read out the tile info. + uint32_t tile_info_bytes = 5; + // Set reference for each tile. + int ref_idx = aom_rb_read_literal(rb, 8); + if (ref_idx >= MAX_EXTERNAL_REFERENCES) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + av1_set_reference_dec(cm, cm->remapped_ref_idx[0], 1, + &pbi->ext_refs.refs[ref_idx]); + + pbi->dec_tile_row = aom_rb_read_literal(rb, 8); + pbi->dec_tile_col = aom_rb_read_literal(rb, 8); + if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 || + pbi->dec_tile_row >= cm->tiles.rows || + pbi->dec_tile_col >= cm->tiles.cols) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + + pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1; + data += tile_info_bytes; + if ((size_t)(data_end - data) < pbi->coded_tile_data_size) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + + av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size, + p_data_end, start_tile, end_tile, 0); + uint32_t tile_payload_size = (uint32_t)(*p_data_end - data); + + tile_list_payload_size += tile_info_bytes + tile_payload_size; + + // Update data ptr for next tile decoding. + data = *p_data_end; + assert(data <= data_end); + + // Copy the decoded tile to the tile list output buffer. + copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx); + tile_idx++; + } + + *frame_decoding_finished = 1; + return tile_list_payload_size; +} + +// Returns the last nonzero byte index in 'data'. If there is no nonzero byte in +// 'data', returns -1. +static int get_last_nonzero_byte_index(const uint8_t *data, size_t sz) { + // Scan backward and return on the first nonzero byte. + int i = (int)sz - 1; + while (i >= 0 && data[i] == 0) { + --i; + } + return i; +} + +// Allocates metadata that was read and adds it to the decoders metadata array. +static void alloc_read_metadata(AV1Decoder *const pbi, + OBU_METADATA_TYPE metadata_type, + const uint8_t *data, size_t sz, + aom_metadata_insert_flags_t insert_flag) { + if (!pbi->metadata) { + pbi->metadata = aom_img_metadata_array_alloc(0); + if (!pbi->metadata) { + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate metadata array"); + } + } + aom_metadata_t *metadata = + aom_img_metadata_alloc(metadata_type, data, sz, insert_flag); + if (!metadata) { + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Error allocating metadata"); + } + aom_metadata_t **metadata_array = + (aom_metadata_t **)realloc(pbi->metadata->metadata_array, + (pbi->metadata->sz + 1) * sizeof(metadata)); + if (!metadata_array) { + aom_img_metadata_free(metadata); + aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, + "Error growing metadata array"); + } + pbi->metadata->metadata_array = metadata_array; + pbi->metadata->metadata_array[pbi->metadata->sz] = metadata; + pbi->metadata->sz++; +} + +// On failure, calls aom_internal_error() and does not return. +static void read_metadata_itut_t35(AV1Decoder *const pbi, const uint8_t *data, + size_t sz) { + if (sz == 0) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "itu_t_t35_country_code is missing"); + } + int country_code_size = 1; + if (*data == 0xFF) { + if (sz == 1) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "itu_t_t35_country_code_extension_byte is missing"); + } + ++country_code_size; + } + int end_index = get_last_nonzero_byte_index(data, sz); + if (end_index < country_code_size) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "No trailing bits found in ITU-T T.35 metadata OBU"); + } + // itu_t_t35_payload_bytes is byte aligned. Section 6.7.2 of the spec says: + // itu_t_t35_payload_bytes shall be bytes containing data registered as + // specified in Recommendation ITU-T T.35. + // Therefore the first trailing byte should be 0x80. + if (data[end_index] != 0x80) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "The last nonzero byte of the ITU-T T.35 metadata OBU " + "is 0x%02x, should be 0x80.", + data[end_index]); + } + alloc_read_metadata(pbi, OBU_METADATA_TYPE_ITUT_T35, data, end_index, + AOM_MIF_ANY_FRAME); +} + +// On success, returns the number of bytes read from 'data'. On failure, calls +// aom_internal_error() and does not return. +static size_t read_metadata_hdr_cll(AV1Decoder *const pbi, const uint8_t *data, + size_t sz) { + const size_t kHdrCllPayloadSize = 4; + if (sz < kHdrCllPayloadSize) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Incorrect HDR CLL metadata payload size"); + } + alloc_read_metadata(pbi, OBU_METADATA_TYPE_HDR_CLL, data, kHdrCllPayloadSize, + AOM_MIF_ANY_FRAME); + return kHdrCllPayloadSize; +} + +// On success, returns the number of bytes read from 'data'. On failure, calls +// aom_internal_error() and does not return. +static size_t read_metadata_hdr_mdcv(AV1Decoder *const pbi, const uint8_t *data, + size_t sz) { + const size_t kMdcvPayloadSize = 24; + if (sz < kMdcvPayloadSize) { + aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, + "Incorrect HDR MDCV metadata payload size"); + } + alloc_read_metadata(pbi, OBU_METADATA_TYPE_HDR_MDCV, data, kMdcvPayloadSize, + AOM_MIF_ANY_FRAME); + return kMdcvPayloadSize; +} + +static void scalability_structure(struct aom_read_bit_buffer *rb) { + const int spatial_layers_cnt_minus_1 = aom_rb_read_literal(rb, 2); + const int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb); + const int spatial_layer_description_present_flag = aom_rb_read_bit(rb); + const int temporal_group_description_present_flag = aom_rb_read_bit(rb); + // scalability_structure_reserved_3bits must be set to zero and be ignored by + // decoders. + aom_rb_read_literal(rb, 3); + + if (spatial_layer_dimensions_present_flag) { + for (int i = 0; i <= spatial_layers_cnt_minus_1; i++) { + aom_rb_read_literal(rb, 16); + aom_rb_read_literal(rb, 16); + } + } + if (spatial_layer_description_present_flag) { + for (int i = 0; i <= spatial_layers_cnt_minus_1; i++) { + aom_rb_read_literal(rb, 8); + } + } + if (temporal_group_description_present_flag) { + const int temporal_group_size = aom_rb_read_literal(rb, 8); + for (int i = 0; i < temporal_group_size; i++) { + aom_rb_read_literal(rb, 3); + aom_rb_read_bit(rb); + aom_rb_read_bit(rb); + const int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3); + for (int j = 0; j < temporal_group_ref_cnt; j++) { + aom_rb_read_literal(rb, 8); + } + } + } +} + +static void read_metadata_scalability(struct aom_read_bit_buffer *rb) { + const int scalability_mode_idc = aom_rb_read_literal(rb, 8); + if (scalability_mode_idc == SCALABILITY_SS) { + scalability_structure(rb); + } +} + +static void read_metadata_timecode(struct aom_read_bit_buffer *rb) { + aom_rb_read_literal(rb, 5); // counting_type f(5) + const int full_timestamp_flag = + aom_rb_read_bit(rb); // full_timestamp_flag f(1) + aom_rb_read_bit(rb); // discontinuity_flag (f1) + aom_rb_read_bit(rb); // cnt_dropped_flag f(1) + aom_rb_read_literal(rb, 9); // n_frames f(9) + if (full_timestamp_flag) { + aom_rb_read_literal(rb, 6); // seconds_value f(6) + aom_rb_read_literal(rb, 6); // minutes_value f(6) + aom_rb_read_literal(rb, 5); // hours_value f(5) + } else { + const int seconds_flag = aom_rb_read_bit(rb); // seconds_flag f(1) + if (seconds_flag) { + aom_rb_read_literal(rb, 6); // seconds_value f(6) + const int minutes_flag = aom_rb_read_bit(rb); // minutes_flag f(1) + if (minutes_flag) { + aom_rb_read_literal(rb, 6); // minutes_value f(6) + const int hours_flag = aom_rb_read_bit(rb); // hours_flag f(1) + if (hours_flag) { + aom_rb_read_literal(rb, 5); // hours_value f(5) + } + } + } + } + // time_offset_length f(5) + const int time_offset_length = aom_rb_read_literal(rb, 5); + if (time_offset_length) { + // time_offset_value f(time_offset_length) + aom_rb_read_literal(rb, time_offset_length); + } +} + +// Returns the last nonzero byte in 'data'. If there is no nonzero byte in +// 'data', returns 0. +// +// Call this function to check the following requirement in the spec: +// This implies that when any payload data is present for this OBU type, at +// least one byte of the payload data (including the trailing bit) shall not +// be equal to 0. +static uint8_t get_last_nonzero_byte(const uint8_t *data, size_t sz) { + // Scan backward and return on the first nonzero byte. + size_t i = sz; + while (i != 0) { + --i; + if (data[i] != 0) return data[i]; + } + return 0; +} + +// Checks the metadata for correct syntax but ignores the parsed metadata. +// +// On success, returns the number of bytes read from 'data'. On failure, sets +// pbi->common.error.error_code and returns 0, or calls aom_internal_error() +// and does not return. +static size_t read_metadata(AV1Decoder *pbi, const uint8_t *data, size_t sz) { + size_t type_length; + uint64_t type_value; + if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + const OBU_METADATA_TYPE metadata_type = (OBU_METADATA_TYPE)type_value; + if (metadata_type == 0 || metadata_type >= 6) { + // If metadata_type is reserved for future use or a user private value, + // ignore the entire OBU and just check trailing bits. + if (get_last_nonzero_byte(data + type_length, sz - type_length) == 0) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + return sz; + } + if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) { + // read_metadata_itut_t35() checks trailing bits. + read_metadata_itut_t35(pbi, data + type_length, sz - type_length); + return sz; + } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) { + size_t bytes_read = + type_length + + read_metadata_hdr_cll(pbi, data + type_length, sz - type_length); + if (get_last_nonzero_byte(data + bytes_read, sz - bytes_read) != 0x80) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + return sz; + } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) { + size_t bytes_read = + type_length + + read_metadata_hdr_mdcv(pbi, data + type_length, sz - type_length); + if (get_last_nonzero_byte(data + bytes_read, sz - bytes_read) != 0x80) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + return sz; + } + + struct aom_read_bit_buffer rb; + av1_init_read_bit_buffer(pbi, &rb, data + type_length, data + sz); + if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) { + read_metadata_scalability(&rb); + } else { + assert(metadata_type == OBU_METADATA_TYPE_TIMECODE); + read_metadata_timecode(&rb); + } + if (av1_check_trailing_bits(pbi, &rb) != 0) { + // pbi->error.error_code is already set. + return 0; + } + assert((rb.bit_offset & 7) == 0); + return type_length + (rb.bit_offset >> 3); +} + +// On success, returns 'sz'. On failure, sets pbi->common.error.error_code and +// returns 0. +static size_t read_padding(AV1_COMMON *const cm, const uint8_t *data, + size_t sz) { + // The spec allows a padding OBU to be header-only (i.e., obu_size = 0). So + // check trailing bits only if sz > 0. + if (sz > 0) { + // The payload of a padding OBU is byte aligned. Therefore the first + // trailing byte should be 0x80. See https://crbug.com/aomedia/2393. + const uint8_t last_nonzero_byte = get_last_nonzero_byte(data, sz); + if (last_nonzero_byte != 0x80) { + cm->error->error_code = AOM_CODEC_CORRUPT_FRAME; + return 0; + } + } + return sz; +} + +// On success, returns a boolean that indicates whether the decoding of the +// current frame is finished. On failure, sets pbi->error.error_code and +// returns -1. +int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + const uint8_t **p_data_end) { + AV1_COMMON *const cm = &pbi->common; + int frame_decoding_finished = 0; + int is_first_tg_obu_received = 1; + // Whenever pbi->seen_frame_header is set to 1, frame_header is set to the + // beginning of the frame_header_obu and frame_header_size is set to its + // size. This allows us to check if a redundant frame_header_obu is a copy + // of the previous frame_header_obu. + // + // Initialize frame_header to a dummy nonnull pointer, otherwise the Clang + // Static Analyzer in clang 7.0.1 will falsely warn that a null pointer is + // passed as an argument to a 'nonnull' parameter of memcmp(). The initial + // value will not be used. + const uint8_t *frame_header = data; + uint32_t frame_header_size = 0; + ObuHeader obu_header; + memset(&obu_header, 0, sizeof(obu_header)); + pbi->seen_frame_header = 0; + pbi->next_start_tile = 0; + pbi->num_tile_groups = 0; + + if (data_end < data) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + + // Reset pbi->camera_frame_header_ready to 0 if cm->tiles.large_scale = 0. + if (!cm->tiles.large_scale) pbi->camera_frame_header_ready = 0; + + // decode frame as a series of OBUs + while (!frame_decoding_finished && pbi->error.error_code == AOM_CODEC_OK) { + struct aom_read_bit_buffer rb; + size_t payload_size = 0; + size_t decoded_payload_size = 0; + size_t obu_payload_offset = 0; + size_t bytes_read = 0; + const size_t bytes_available = data_end - data; + + if (bytes_available == 0 && !pbi->seen_frame_header) { + *p_data_end = data; + pbi->error.error_code = AOM_CODEC_OK; + break; + } + + aom_codec_err_t status = + aom_read_obu_header_and_size(data, bytes_available, pbi->is_annexb, + &obu_header, &payload_size, &bytes_read); + + if (status != AOM_CODEC_OK) { + pbi->error.error_code = status; + return -1; + } + + // Record obu size header information. + pbi->obu_size_hdr.data = data + obu_header.size; + pbi->obu_size_hdr.size = bytes_read - obu_header.size; + + // Note: aom_read_obu_header_and_size() takes care of checking that this + // doesn't cause 'data' to advance past 'data_end'. + data += bytes_read; + + if ((size_t)(data_end - data) < payload_size) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + + cm->temporal_layer_id = obu_header.temporal_layer_id; + cm->spatial_layer_id = obu_header.spatial_layer_id; + + if (obu_header.type != OBU_TEMPORAL_DELIMITER && + obu_header.type != OBU_SEQUENCE_HEADER) { + // don't decode obu if it's not in current operating mode + if (!is_obu_in_current_operating_point(pbi, &obu_header)) { + data += payload_size; + continue; + } + } + + av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size); + + switch (obu_header.type) { + case OBU_TEMPORAL_DELIMITER: + decoded_payload_size = read_temporal_delimiter_obu(); + if (pbi->seen_frame_header) { + // A new temporal unit has started, but the frame in the previous + // temporal unit is incomplete. + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + break; + case OBU_SEQUENCE_HEADER: + decoded_payload_size = read_sequence_header_obu(pbi, &rb); + if (pbi->error.error_code != AOM_CODEC_OK) return -1; + // The sequence header should not change in the middle of a frame. + if (pbi->sequence_header_changed && pbi->seen_frame_header) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + break; + case OBU_FRAME_HEADER: + case OBU_REDUNDANT_FRAME_HEADER: + case OBU_FRAME: + if (obu_header.type == OBU_REDUNDANT_FRAME_HEADER) { + if (!pbi->seen_frame_header) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + } else { + // OBU_FRAME_HEADER or OBU_FRAME. + if (pbi->seen_frame_header) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + } + // Only decode first frame header received + if (!pbi->seen_frame_header || + (cm->tiles.large_scale && !pbi->camera_frame_header_ready)) { + frame_header_size = read_frame_header_obu( + pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME); + frame_header = data; + pbi->seen_frame_header = 1; + if (!pbi->ext_tile_debug && cm->tiles.large_scale) + pbi->camera_frame_header_ready = 1; + } else { + // Verify that the frame_header_obu is identical to the original + // frame_header_obu. + if (frame_header_size > payload_size || + memcmp(data, frame_header, frame_header_size) != 0) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + assert(rb.bit_offset == 0); + rb.bit_offset = 8 * frame_header_size; + } + + decoded_payload_size = frame_header_size; + pbi->frame_header_size = frame_header_size; + cm->cur_frame->temporal_id = obu_header.temporal_layer_id; + cm->cur_frame->spatial_id = obu_header.spatial_layer_id; + + if (cm->show_existing_frame) { + if (obu_header.type == OBU_FRAME) { + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + return -1; + } + frame_decoding_finished = 1; + pbi->seen_frame_header = 0; + + if (cm->show_frame && + !cm->seq_params->order_hint_info.enable_order_hint) { + ++cm->current_frame.frame_number; + } + break; + } + + // In large scale tile coding, decode the common camera frame header + // before any tile list OBU. + if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) { + frame_decoding_finished = 1; + // Skip the rest of the frame data. + decoded_payload_size = payload_size; + // Update data_end. + *p_data_end = data_end; + break; + } + + if (obu_header.type != OBU_FRAME) break; + obu_payload_offset = frame_header_size; + // Byte align the reader before reading the tile group. + // byte_alignment() has set pbi->error.error_code if it returns -1. + if (byte_alignment(cm, &rb)) return -1; + AOM_FALLTHROUGH_INTENDED; // fall through to read tile group. + case OBU_TILE_GROUP: + if (!pbi->seen_frame_header) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + if (obu_payload_offset > payload_size) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + decoded_payload_size += read_one_tile_group_obu( + pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset, + data + payload_size, p_data_end, &frame_decoding_finished, + obu_header.type == OBU_FRAME); + if (pbi->error.error_code != AOM_CODEC_OK) return -1; + is_first_tg_obu_received = 0; + if (frame_decoding_finished) { + pbi->seen_frame_header = 0; + pbi->next_start_tile = 0; + } + pbi->num_tile_groups++; + break; + case OBU_METADATA: + decoded_payload_size = read_metadata(pbi, data, payload_size); + if (pbi->error.error_code != AOM_CODEC_OK) return -1; + break; + case OBU_TILE_LIST: + if (CONFIG_NORMAL_TILE_MODE) { + pbi->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; + return -1; + } + + // This OBU type is purely for the large scale tile coding mode. + // The common camera frame header has to be already decoded. + if (!pbi->camera_frame_header_ready) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + + cm->tiles.large_scale = 1; + av1_set_single_tile_decoding_mode(cm); + decoded_payload_size = + read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size, + p_data_end, &frame_decoding_finished); + if (pbi->error.error_code != AOM_CODEC_OK) return -1; + break; + case OBU_PADDING: + decoded_payload_size = read_padding(cm, data, payload_size); + if (pbi->error.error_code != AOM_CODEC_OK) return -1; + break; + default: + // Skip unrecognized OBUs + if (payload_size > 0 && + get_last_nonzero_byte(data, payload_size) == 0) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + decoded_payload_size = payload_size; + break; + } + + // Check that the signalled OBU size matches the actual amount of data read + if (decoded_payload_size > payload_size) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + + // If there are extra padding bytes, they should all be zero + while (decoded_payload_size < payload_size) { + uint8_t padding_byte = data[decoded_payload_size++]; + if (padding_byte != 0) { + pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; + return -1; + } + } + + data += payload_size; + } + + if (pbi->error.error_code != AOM_CODEC_OK) return -1; + return frame_decoding_finished; +} diff --git a/third_party/aom/av1/decoder/obu.h b/third_party/aom/av1/decoder/obu.h new file mode 100644 index 0000000000..d8ebe368e6 --- /dev/null +++ b/third_party/aom/av1/decoder/obu.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_DECODER_OBU_H_ +#define AOM_AV1_DECODER_OBU_H_ + +#include "aom/aom_codec.h" +#include "av1/decoder/decoder.h" + +// Try to decode one frame from a buffer. +// Returns 1 if we decoded a frame, +// 0 if we didn't decode a frame but that's okay +// (eg, if there was a frame but we skipped it), +// or -1 on error +int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, + const uint8_t **p_data_end); + +aom_codec_err_t aom_get_num_layers_from_operating_point_idc( + int operating_point_idc, unsigned int *number_spatial_layers, + unsigned int *number_temporal_layers); + +#endif // AOM_AV1_DECODER_OBU_H_ |