summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/ratectrl.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/aom/av1/encoder/ratectrl.c
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/encoder/ratectrl.c')
-rw-r--r--third_party/aom/av1/encoder/ratectrl.c3587
1 files changed, 3587 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/ratectrl.c b/third_party/aom/av1/encoder/ratectrl.c
new file mode 100644
index 0000000000..df86380272
--- /dev/null
+++ b/third_party/aom/av1/encoder/ratectrl.c
@@ -0,0 +1,3587 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/aom_once.h"
+
+#include "av1/common/alloccommon.h"
+#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/common/common.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/seg_common.h"
+
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encode_strategy.h"
+#include "av1/encoder/gop_structure.h"
+#include "av1/encoder/random.h"
+#include "av1/encoder/ratectrl.h"
+
+#include "config/aom_dsp_rtcd.h"
+
+#define USE_UNRESTRICTED_Q_IN_CQ_MODE 0
+
+// Max rate target for 1080P and below encodes under normal circumstances
+// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
+#define MAX_MB_RATE 250
+#define MAXRATE_1080P 2025000
+
+#define MIN_BPB_FACTOR 0.005
+#define MAX_BPB_FACTOR 50
+
+#define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0
+#define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2
+#define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0
+
+#define FRAME_OVERHEAD_BITS 200
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ switch (bit_depth) { \
+ case AOM_BITS_8: name = name##_8; break; \
+ case AOM_BITS_10: name = name##_10; break; \
+ case AOM_BITS_12: name = name##_12; break; \
+ default: \
+ assert(0 && \
+ "bit_depth should be AOM_BITS_8, AOM_BITS_10" \
+ " or AOM_BITS_12"); \
+ name = NULL; \
+ } \
+ } while (0)
+
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq_8[QINDEX_RANGE];
+static int kf_high_motion_minq_8[QINDEX_RANGE];
+static int arfgf_low_motion_minq_8[QINDEX_RANGE];
+static int arfgf_high_motion_minq_8[QINDEX_RANGE];
+static int inter_minq_8[QINDEX_RANGE];
+static int rtc_minq_8[QINDEX_RANGE];
+
+static int kf_low_motion_minq_10[QINDEX_RANGE];
+static int kf_high_motion_minq_10[QINDEX_RANGE];
+static int arfgf_low_motion_minq_10[QINDEX_RANGE];
+static int arfgf_high_motion_minq_10[QINDEX_RANGE];
+static int inter_minq_10[QINDEX_RANGE];
+static int rtc_minq_10[QINDEX_RANGE];
+static int kf_low_motion_minq_12[QINDEX_RANGE];
+static int kf_high_motion_minq_12[QINDEX_RANGE];
+static int arfgf_low_motion_minq_12[QINDEX_RANGE];
+static int arfgf_high_motion_minq_12[QINDEX_RANGE];
+static int inter_minq_12[QINDEX_RANGE];
+static int rtc_minq_12[QINDEX_RANGE];
+
+static int gf_high = 2400;
+static int gf_low = 300;
+#ifdef STRICT_RC
+static int kf_high = 3200;
+#else
+static int kf_high = 5000;
+#endif
+static int kf_low = 400;
+
+// How many times less pixels there are to encode given the current scaling.
+// Temporary replacement for rcf_mult and rate_thresh_mult.
+static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg,
+ int width, int height) {
+ return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height);
+}
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int get_minq_index(double maxq, double x3, double x2, double x1,
+ aom_bit_depth_t bit_depth) {
+ const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
+
+ // Special case handling to deal with the step from q2.0
+ // down to lossless mode represented by q 1.0.
+ if (minqtarget <= 2.0) return 0;
+
+ return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1);
+}
+
+static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
+ int *arfgf_high, int *inter, int *rtc,
+ aom_bit_depth_t bit_depth) {
+ int i;
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ const double maxq = av1_convert_qindex_to_q(i, bit_depth);
+ kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
+ kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
+ arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
+ arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+ inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
+ rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
+ }
+}
+
+static void rc_init_minq_luts(void) {
+ init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
+ arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
+ inter_minq_8, rtc_minq_8, AOM_BITS_8);
+ init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
+ arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
+ inter_minq_10, rtc_minq_10, AOM_BITS_10);
+ init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
+ arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
+ inter_minq_12, rtc_minq_12, AOM_BITS_12);
+}
+
+void av1_rc_init_minq_luts(void) { aom_once(rc_init_minq_luts); }
+
+// These functions use formulaic calculations to make playing with the
+// quantizer tables easier. If necessary they can be replaced by lookup
+// tables if and when things settle down in the experimental bitstream
+double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
+ // Convert the index to a real Q value (scaled down to match old Q values)
+ switch (bit_depth) {
+ case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0;
+ case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0;
+ case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0;
+ default:
+ assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
+ return -1.0;
+ }
+}
+
+int av1_get_bpmb_enumerator(FRAME_TYPE frame_type,
+ const int is_screen_content_type) {
+ int enumerator;
+
+ if (is_screen_content_type) {
+ enumerator = (frame_type == KEY_FRAME) ? 1000000 : 750000;
+ } else {
+ enumerator = (frame_type == KEY_FRAME) ? 2000000 : 1500000;
+ }
+
+ return enumerator;
+}
+
+static int get_init_ratio(double sse) { return (int)(300000 / sse); }
+
+int av1_rc_bits_per_mb(const AV1_COMP *cpi, FRAME_TYPE frame_type, int qindex,
+ double correction_factor, int accurate_estimate) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int is_screen_content_type = cpi->is_screen_content_type;
+ const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth;
+ const double q = av1_convert_qindex_to_q(qindex, bit_depth);
+ int enumerator = av1_get_bpmb_enumerator(frame_type, is_screen_content_type);
+
+ assert(correction_factor <= MAX_BPB_FACTOR &&
+ correction_factor >= MIN_BPB_FACTOR);
+
+ if (cpi->oxcf.rc_cfg.mode == AOM_CBR && frame_type != KEY_FRAME &&
+ accurate_estimate && cpi->rec_sse != UINT64_MAX) {
+ const int mbs = cm->mi_params.MBs;
+ const double sse_sqrt =
+ (double)((int)sqrt((double)(cpi->rec_sse)) << BPER_MB_NORMBITS) /
+ (double)mbs;
+ const int ratio = (cpi->rc.bit_est_ratio == 0) ? get_init_ratio(sse_sqrt)
+ : cpi->rc.bit_est_ratio;
+ // Clamp the enumerator to lower the q fluctuations.
+ enumerator = AOMMIN(AOMMAX((int)(ratio * sse_sqrt), 20000), 170000);
+ }
+
+ // q based adjustment to baseline enumerator
+ return (int)(enumerator * correction_factor / q);
+}
+
+int av1_estimate_bits_at_q(const AV1_COMP *cpi, int q,
+ double correction_factor) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const FRAME_TYPE frame_type = cm->current_frame.frame_type;
+ const int mbs = cm->mi_params.MBs;
+ const int bpm =
+ (int)(av1_rc_bits_per_mb(cpi, frame_type, q, correction_factor,
+ cpi->sf.hl_sf.accurate_bit_estimate));
+ return AOMMAX(FRAME_OVERHEAD_BITS,
+ (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
+}
+
+int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target,
+ FRAME_UPDATE_TYPE frame_update_type) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ const int min_frame_target =
+ AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
+ // Clip the frame target to the minimum setup value.
+ if (frame_update_type == OVERLAY_UPDATE ||
+ frame_update_type == INTNL_OVERLAY_UPDATE) {
+ // If there is an active ARF at this location use the minimum
+ // bits on this frame even if it is a constructed arf.
+ // The active maximum quantizer insures that an appropriate
+ // number of bits will be spent if needed for constructed ARFs.
+ target = min_frame_target;
+ } else if (target < min_frame_target) {
+ target = min_frame_target;
+ }
+
+ // Clip the frame target to the maximum allowed value.
+ if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+ if (oxcf->rc_cfg.max_inter_bitrate_pct) {
+ const int max_rate =
+ rc->avg_frame_bandwidth * oxcf->rc_cfg.max_inter_bitrate_pct / 100;
+ target = AOMMIN(target, max_rate);
+ }
+
+ return target;
+}
+
+int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int64_t target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg;
+ if (rc_cfg->max_intra_bitrate_pct) {
+ const int64_t max_rate =
+ (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100;
+ target = AOMMIN(target, max_rate);
+ }
+ if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+ return (int)target;
+}
+
+// Update the buffer level for higher temporal layers, given the encoded current
+// temporal layer.
+static void update_layer_buffer_level(SVC *svc, int encoded_frame_size,
+ bool is_screen) {
+ const int current_temporal_layer = svc->temporal_layer_id;
+ for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers;
+ ++i) {
+ const int layer =
+ LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc;
+ lp_rc->bits_off_target +=
+ (int)round(lc->target_bandwidth / lc->framerate) - encoded_frame_size;
+ // Clip buffer level to maximum buffer size for the layer.
+ lp_rc->bits_off_target =
+ AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size);
+ lp_rc->buffer_level = lp_rc->bits_off_target;
+
+ // For screen-content mode: don't let buffer level go below threshold,
+ // given here as -rc->maximum_ buffer_size, to allow buffer to come back
+ // up sooner after slide change with big oveshoot.
+ if (is_screen) {
+ lp_rc->bits_off_target =
+ AOMMAX(lp_rc->bits_off_target, -lp_rc->maximum_buffer_size);
+ lp_rc->buffer_level = lp_rc->bits_off_target;
+ }
+ }
+}
+// Update the buffer level: leaky bucket model.
+static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
+ const AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+
+ // Non-viewable frames are a special case and are treated as pure overhead.
+ if (!cm->show_frame)
+ p_rc->bits_off_target -= encoded_frame_size;
+ else
+ p_rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
+
+ // Clip the buffer level to the maximum specified buffer size.
+ p_rc->bits_off_target =
+ AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size);
+ // For screen-content mode: don't let buffel level go below threshold,
+ // given here as -rc->maximum_ buffer_size, to allow buffer to come back
+ // up sooner after slide change with big oveshoot.
+ if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)
+ p_rc->bits_off_target =
+ AOMMAX(p_rc->bits_off_target, -p_rc->maximum_buffer_size);
+ p_rc->buffer_level = p_rc->bits_off_target;
+
+ if (cpi->ppi->use_svc)
+ update_layer_buffer_level(&cpi->svc, encoded_frame_size,
+ cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN);
+
+#if CONFIG_FPMT_TEST
+ /* The variable temp_buffer_level is introduced for quality
+ * simulation purpose, it retains the value previous to the parallel
+ * encode frames. The variable is updated based on the update flag.
+ *
+ * If there exist show_existing_frames between parallel frames, then to
+ * retain the temp state do not update it. */
+ int show_existing_between_parallel_frames =
+ (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
+ INTNL_OVERLAY_UPDATE &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
+
+ if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
+ p_rc->temp_buffer_level = p_rc->buffer_level;
+ }
+#endif
+}
+
+int av1_rc_get_default_min_gf_interval(int width, int height,
+ double framerate) {
+ // Assume we do not need any constraint lower than 4K 20 fps
+ static const double factor_safe = 3840 * 2160 * 20.0;
+ const double factor = (double)width * height * framerate;
+ const int default_interval =
+ clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
+
+ if (factor <= factor_safe)
+ return default_interval;
+ else
+ return AOMMAX(default_interval,
+ (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
+ // Note this logic makes:
+ // 4K24: 5
+ // 4K30: 6
+ // 4K60: 12
+}
+
+int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
+ int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
+ interval += (interval & 0x01); // Round to even value
+ interval = AOMMAX(MAX_GF_INTERVAL, interval);
+ return AOMMAX(interval, min_gf_interval);
+}
+
+void av1_primary_rc_init(const AV1EncoderConfig *oxcf,
+ PRIMARY_RATE_CONTROL *p_rc) {
+ const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
+
+ int worst_allowed_q = rc_cfg->worst_allowed_q;
+
+ int min_gf_interval = oxcf->gf_cfg.min_gf_interval;
+ int max_gf_interval = oxcf->gf_cfg.max_gf_interval;
+ if (min_gf_interval == 0)
+ min_gf_interval = av1_rc_get_default_min_gf_interval(
+ oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height,
+ oxcf->input_cfg.init_framerate);
+ if (max_gf_interval == 0)
+ max_gf_interval = av1_rc_get_default_max_gf_interval(
+ oxcf->input_cfg.init_framerate, min_gf_interval);
+ p_rc->baseline_gf_interval = (min_gf_interval + max_gf_interval) / 2;
+ p_rc->this_key_frame_forced = 0;
+ p_rc->next_key_frame_forced = 0;
+ p_rc->ni_frames = 0;
+
+ p_rc->tot_q = 0.0;
+ p_rc->total_actual_bits = 0;
+ p_rc->total_target_bits = 0;
+ p_rc->buffer_level = p_rc->starting_buffer_level;
+
+ if (oxcf->target_seq_level_idx[0] < SEQ_LEVELS) {
+ worst_allowed_q = 255;
+ }
+ if (oxcf->pass == AOM_RC_ONE_PASS && rc_cfg->mode == AOM_CBR) {
+ p_rc->avg_frame_qindex[KEY_FRAME] = worst_allowed_q;
+ p_rc->avg_frame_qindex[INTER_FRAME] = worst_allowed_q;
+ } else {
+ p_rc->avg_frame_qindex[KEY_FRAME] =
+ (worst_allowed_q + rc_cfg->best_allowed_q) / 2;
+ p_rc->avg_frame_qindex[INTER_FRAME] =
+ (worst_allowed_q + rc_cfg->best_allowed_q) / 2;
+ }
+ p_rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q,
+ oxcf->tool_cfg.bit_depth);
+ p_rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q;
+ p_rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q;
+
+ for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) {
+ p_rc->rate_correction_factors[i] = 0.7;
+ }
+ p_rc->rate_correction_factors[KF_STD] = 1.0;
+ p_rc->bits_off_target = p_rc->starting_buffer_level;
+
+ p_rc->rolling_target_bits =
+ (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate);
+ p_rc->rolling_actual_bits =
+ (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate);
+}
+
+void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) {
+ const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
+
+ rc->frames_since_key = 8; // Sensible default for first frame.
+ rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist;
+
+ rc->frames_till_gf_update_due = 0;
+ rc->ni_av_qi = rc_cfg->worst_allowed_q;
+ rc->ni_tot_qi = 0;
+
+ rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval;
+ rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval;
+ if (rc->min_gf_interval == 0)
+ rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
+ oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height,
+ oxcf->input_cfg.init_framerate);
+ if (rc->max_gf_interval == 0)
+ rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
+ oxcf->input_cfg.init_framerate, rc->min_gf_interval);
+ rc->avg_frame_low_motion = 0;
+
+ rc->resize_state = ORIG;
+ rc->resize_avg_qp = 0;
+ rc->resize_buffer_underflow = 0;
+ rc->resize_count = 0;
+ rc->rtc_external_ratectrl = 0;
+ rc->frame_level_fast_extra_bits = 0;
+ rc->use_external_qp_one_pass = 0;
+}
+
+static bool check_buffer_below_thresh(AV1_COMP *cpi, int64_t buffer_level,
+ int drop_mark) {
+ SVC *svc = &cpi->svc;
+ if (!cpi->ppi->use_svc || cpi->svc.number_spatial_layers == 1 ||
+ cpi->svc.framedrop_mode == AOM_LAYER_DROP) {
+ return (buffer_level <= drop_mark);
+ } else {
+ // For SVC in the AOM_FULL_SUPERFRAME_DROP): the condition on
+ // buffer is checked on current and upper spatial layers.
+ for (int i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ PRIMARY_RATE_CONTROL *lrc = &lc->p_rc;
+ // Exclude check for layer whose bitrate is 0.
+ if (lc->target_bandwidth > 0) {
+ const int drop_thresh = cpi->oxcf.rc_cfg.drop_frames_water_mark;
+ const int drop_mark_layer =
+ (int)(drop_thresh * lrc->optimal_buffer_level / 100);
+ if (lrc->buffer_level <= drop_mark_layer) return true;
+ }
+ }
+ return false;
+ }
+}
+
+int av1_rc_drop_frame(AV1_COMP *cpi) {
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int64_t buffer_level =
+ simulate_parallel_frame ? p_rc->temp_buffer_level : p_rc->buffer_level;
+#else
+ int64_t buffer_level = p_rc->buffer_level;
+#endif
+ // Never drop on key frame, or for frame whose base layer is key.
+ // If drop_count_consec hits or exceeds max_consec_drop then don't drop.
+ if (cpi->common.current_frame.frame_type == KEY_FRAME ||
+ (cpi->ppi->use_svc &&
+ cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) ||
+ !oxcf->rc_cfg.drop_frames_water_mark ||
+ (rc->max_consec_drop > 0 &&
+ rc->drop_count_consec >= rc->max_consec_drop)) {
+ return 0;
+ } else {
+ SVC *svc = &cpi->svc;
+ // In the full_superframe framedrop mode for svc, if the previous spatial
+ // layer was dropped, drop the current spatial layer.
+ if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 &&
+ svc->drop_spatial_layer[svc->spatial_layer_id - 1] &&
+ svc->framedrop_mode == AOM_FULL_SUPERFRAME_DROP)
+ return 1;
+ // -1 is passed here for drop_mark since we are checking if
+ // buffer goes below 0 (<= -1).
+ if (check_buffer_below_thresh(cpi, buffer_level, -1)) {
+ // Always drop if buffer is below 0.
+ rc->drop_count_consec++;
+ return 1;
+ } else {
+ // If buffer is below drop_mark, for now just drop every other frame
+ // (starting with the next frame) until it increases back over drop_mark.
+ const int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark *
+ p_rc->optimal_buffer_level / 100);
+ const bool buffer_below_thresh =
+ check_buffer_below_thresh(cpi, buffer_level, drop_mark);
+ if (!buffer_below_thresh && rc->decimation_factor > 0) {
+ --rc->decimation_factor;
+ } else if (buffer_below_thresh && rc->decimation_factor == 0) {
+ rc->decimation_factor = 1;
+ }
+ if (rc->decimation_factor > 0) {
+ if (rc->decimation_count > 0) {
+ --rc->decimation_count;
+ rc->drop_count_consec++;
+ return 1;
+ } else {
+ rc->decimation_count = rc->decimation_factor;
+ return 0;
+ }
+ } else {
+ rc->decimation_count = 0;
+ return 0;
+ }
+ }
+ }
+}
+
+static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality,
+ int width, int height) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1_COMMON *const cm = &cpi->common;
+ const SVC *const svc = &cpi->svc;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ // Flag to indicate previous frame has overshoot, and buffer level
+ // for current frame is low (less than ~half of optimal). For such
+ // (inter) frames, if the source_sad is non-zero, relax the max_delta_up
+ // and clamp applied below.
+ const bool overshoot_buffer_low =
+ cpi->rc.rc_1_frame == -1 && rc->frame_source_sad > 1000 &&
+ p_rc->buffer_level < (p_rc->optimal_buffer_level >> 1) &&
+ rc->frames_since_key > 4;
+ int max_delta_down;
+ int max_delta_up = overshoot_buffer_low ? 60 : 20;
+ const int change_avg_frame_bandwidth =
+ abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) >
+ 0.1 * (rc->avg_frame_bandwidth);
+
+ // Set the maximum adjustment down for Q for this frame.
+ if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
+ cpi->cyclic_refresh->apply_cyclic_refresh) {
+ // For static screen type content limit the Q drop till the start of the
+ // next refresh cycle.
+ if (cpi->is_screen_content_type &&
+ (cpi->cyclic_refresh->sb_index > cpi->cyclic_refresh->last_sb_index)) {
+ max_delta_down = AOMMIN(8, AOMMAX(1, rc->q_1_frame / 32));
+ } else {
+ max_delta_down = AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8));
+ }
+ if (!cpi->ppi->use_svc && cpi->is_screen_content_type) {
+ // Link max_delta_up to max_delta_down and buffer status.
+ if (p_rc->buffer_level > p_rc->optimal_buffer_level) {
+ max_delta_up = AOMMAX(4, max_delta_down);
+ } else {
+ max_delta_up = AOMMAX(8, max_delta_down);
+ }
+ }
+ } else {
+ max_delta_down = (cpi->is_screen_content_type)
+ ? AOMMIN(8, AOMMAX(1, rc->q_1_frame / 16))
+ : AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8));
+ }
+ // If resolution changes or avg_frame_bandwidth significantly changed,
+ // then set this flag to indicate change in target bits per macroblock.
+ const int change_target_bits_mb =
+ cm->prev_frame &&
+ (width != cm->prev_frame->width || height != cm->prev_frame->height ||
+ change_avg_frame_bandwidth);
+ // Apply some control/clamp to QP under certain conditions.
+ // Delay the use of the clamping for svc until after num_temporal_layers,
+ // to make they have been set for each temporal layer.
+ if (!frame_is_intra_only(cm) && rc->frames_since_key > 1 &&
+ (!cpi->ppi->use_svc ||
+ svc->current_superframe > (unsigned int)svc->number_temporal_layers) &&
+ !change_target_bits_mb && !cpi->rc.rtc_external_ratectrl &&
+ (!cpi->oxcf.rc_cfg.gf_cbr_boost_pct ||
+ !(refresh_frame->alt_ref_frame || refresh_frame->golden_frame))) {
+ // If in the previous two frames we have seen both overshoot and undershoot
+ // clamp Q between the two. Check for rc->q_1/2_frame > 0 in case they have
+ // not been set due to dropped frames.
+ if (rc->rc_1_frame * rc->rc_2_frame == -1 &&
+ rc->q_1_frame != rc->q_2_frame && rc->q_1_frame > 0 &&
+ rc->q_2_frame > 0 && !overshoot_buffer_low) {
+ int qclamp = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame),
+ AOMMAX(rc->q_1_frame, rc->q_2_frame));
+ // If the previous frame had overshoot and the current q needs to
+ // increase above the clamped value, reduce the clamp for faster reaction
+ // to overshoot.
+ if (cpi->rc.rc_1_frame == -1 && q > qclamp && rc->frames_since_key > 10)
+ q = (q + qclamp) >> 1;
+ else
+ q = qclamp;
+ }
+ // Adjust Q base on source content change from scene detection.
+ if (cpi->sf.rt_sf.check_scene_detection && rc->prev_avg_source_sad > 0 &&
+ rc->frames_since_key > 10 && rc->frame_source_sad > 0 &&
+ !cpi->rc.rtc_external_ratectrl) {
+ const int bit_depth = cm->seq_params->bit_depth;
+ double delta =
+ (double)rc->avg_source_sad / (double)rc->prev_avg_source_sad - 1.0;
+ // Push Q downwards if content change is decreasing and buffer level
+ // is stable (at least 1/4-optimal level), so not overshooting. Do so
+ // only for high Q to avoid excess overshoot.
+ // Else reduce decrease in Q from previous frame if content change is
+ // increasing and buffer is below max (so not undershooting).
+ if (delta < 0.0 &&
+ p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) &&
+ q > (rc->worst_quality >> 1)) {
+ double q_adj_factor = 1.0 + 0.5 * tanh(4.0 * delta);
+ double q_val = av1_convert_qindex_to_q(q, bit_depth);
+ q += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
+ } else if (rc->q_1_frame - q > 0 && delta > 0.1 &&
+ p_rc->buffer_level < AOMMIN(p_rc->maximum_buffer_size,
+ p_rc->optimal_buffer_level << 1)) {
+ q = (3 * q + rc->q_1_frame) >> 2;
+ }
+ }
+ // Limit the decrease in Q from previous frame.
+ if (rc->q_1_frame - q > max_delta_down) q = rc->q_1_frame - max_delta_down;
+ // Limit the increase in Q from previous frame.
+ else if (q - rc->q_1_frame > max_delta_up)
+ q = rc->q_1_frame + max_delta_up;
+ }
+ // Adjustment for temporal layers.
+ if (svc->number_temporal_layers > 1 && svc->spatial_layer_id == 0 &&
+ !change_target_bits_mb && !cpi->rc.rtc_external_ratectrl &&
+ cpi->oxcf.resize_cfg.resize_mode != RESIZE_DYNAMIC) {
+ if (svc->temporal_layer_id > 0) {
+ // Constrain enhancement relative to the previous base TL0.
+ // Get base temporal layer TL0.
+ const int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ // lc->rc.avg_frame_bandwidth and lc->p_rc.last_q correspond to the
+ // last TL0 frame.
+ if (rc->avg_frame_bandwidth < lc->rc.avg_frame_bandwidth &&
+ q < lc->p_rc.last_q[INTER_FRAME] - 4)
+ q = lc->p_rc.last_q[INTER_FRAME] - 4;
+ } else if (cpi->svc.temporal_layer_id == 0 &&
+ p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) &&
+ rc->frame_source_sad < 100000) {
+ // Push base TL0 Q down if buffer is stable and frame_source_sad
+ // is below threshold.
+ int delta = (svc->number_temporal_layers == 2) ? 4 : 10;
+ q = q - delta;
+ }
+ }
+ // For non-svc (single layer): if resolution has increased push q closer
+ // to the active_worst to avoid excess overshoot.
+ if (!cpi->ppi->use_svc && cm->prev_frame &&
+ (width * height > 1.5 * cm->prev_frame->width * cm->prev_frame->height))
+ q = (q + active_worst_quality) >> 1;
+ // For single layer RPS: Bias Q based on distance of closest reference.
+ if (cpi->ppi->rtc_ref.bias_recovery_frame) {
+ const int min_dist = av1_svc_get_min_ref_dist(cpi);
+ q = q - AOMMIN(min_dist, 20);
+ }
+ return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
+}
+
+static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = {
+ KF_STD, // KF_UPDATE
+ INTER_NORMAL, // LF_UPDATE
+ GF_ARF_STD, // GF_UPDATE
+ GF_ARF_STD, // ARF_UPDATE
+ INTER_NORMAL, // OVERLAY_UPDATE
+ INTER_NORMAL, // INTNL_OVERLAY_UPDATE
+ GF_ARF_LOW, // INTNL_ARF_UPDATE
+};
+
+static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group,
+ int gf_frame_index) {
+ const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index];
+ assert(update_type < FRAME_UPDATE_TYPES);
+ return rate_factor_levels[update_type];
+}
+
+/*!\brief Gets a rate vs Q correction factor
+ *
+ * This function returns the current value of a correction factor used to
+ * dynamilcally adjust the relationship between Q and the expected number
+ * of bits for the frame.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder instance structure
+ * \param[in] width Frame width
+ * \param[in] height Frame height
+ *
+ * \return Returns a correction factor for the current frame
+ */
+static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
+ int height) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ double rcf;
+ double rate_correction_factors_kfstd;
+ double rate_correction_factors_gfarfstd;
+ double rate_correction_factors_internormal;
+
+ rate_correction_factors_kfstd =
+ (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
+ ? rc->frame_level_rate_correction_factors[KF_STD]
+ : p_rc->rate_correction_factors[KF_STD];
+ rate_correction_factors_gfarfstd =
+ (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
+ ? rc->frame_level_rate_correction_factors[GF_ARF_STD]
+ : p_rc->rate_correction_factors[GF_ARF_STD];
+ rate_correction_factors_internormal =
+ (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
+ ? rc->frame_level_rate_correction_factors[INTER_NORMAL]
+ : p_rc->rate_correction_factors[INTER_NORMAL];
+
+ if (cpi->common.current_frame.frame_type == KEY_FRAME) {
+ rcf = rate_correction_factors_kfstd;
+ } else if (is_stat_consumption_stage(cpi)) {
+ const RATE_FACTOR_LEVEL rf_lvl =
+ get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ double rate_correction_factors_rflvl =
+ (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
+ ? rc->frame_level_rate_correction_factors[rf_lvl]
+ : p_rc->rate_correction_factors[rf_lvl];
+ rcf = rate_correction_factors_rflvl;
+ } else {
+ if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) &&
+ !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc &&
+ (cpi->oxcf.rc_cfg.mode != AOM_CBR ||
+ cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20))
+ rcf = rate_correction_factors_gfarfstd;
+ else
+ rcf = rate_correction_factors_internormal;
+ }
+ rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height);
+ return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+}
+
+/*!\brief Sets a rate vs Q correction factor
+ *
+ * This function updates the current value of a correction factor used to
+ * dynamilcally adjust the relationship between Q and the expected number
+ * of bits for the frame.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder instance structure
+ * \param[in] is_encode_stage Indicates if recode loop or post-encode
+ * \param[in] factor New correction factor
+ * \param[in] width Frame width
+ * \param[in] height Frame height
+ *
+ * \remark Updates the rate correction factor for the
+ * current frame type in cpi->rc.
+ */
+static void set_rate_correction_factor(AV1_COMP *cpi, int is_encode_stage,
+ double factor, int width, int height) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ int update_default_rcf = 1;
+ // Normalize RCF to account for the size-dependent scaling factor.
+ factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height);
+
+ factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+
+ if (cpi->common.current_frame.frame_type == KEY_FRAME) {
+ p_rc->rate_correction_factors[KF_STD] = factor;
+ } else if (is_stat_consumption_stage(cpi)) {
+ const RATE_FACTOR_LEVEL rf_lvl =
+ get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index);
+ if (is_encode_stage &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
+ rc->frame_level_rate_correction_factors[rf_lvl] = factor;
+ update_default_rcf = 0;
+ }
+ if (update_default_rcf) p_rc->rate_correction_factors[rf_lvl] = factor;
+ } else {
+ if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) &&
+ !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc &&
+ (cpi->oxcf.rc_cfg.mode != AOM_CBR ||
+ cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) {
+ p_rc->rate_correction_factors[GF_ARF_STD] = factor;
+ } else {
+ if (is_encode_stage &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
+ rc->frame_level_rate_correction_factors[INTER_NORMAL] = factor;
+ update_default_rcf = 0;
+ }
+ if (update_default_rcf)
+ p_rc->rate_correction_factors[INTER_NORMAL] = factor;
+ }
+ }
+}
+
+void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int is_encode_stage,
+ int width, int height) {
+ const AV1_COMMON *const cm = &cpi->common;
+ double correction_factor = 1.0;
+ double rate_correction_factor =
+ get_rate_correction_factor(cpi, width, height);
+ double adjustment_limit;
+ int projected_size_based_on_q = 0;
+ int cyclic_refresh_active =
+ cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled;
+
+ // Do not update the rate factors for arf overlay frames.
+ if (cpi->rc.is_src_frame_alt_ref) return;
+
+ // Don't update rate correction factors here on scene changes as
+ // it is already reset in av1_encodedframe_overshoot_cbr(),
+ // but reset variables related to previous frame q and size.
+ // Note that the counter of frames since the last scene change
+ // is only valid when cyclic refresh mode is enabled and that
+ // this break out only applies to scene changes that are not
+ // recorded as INTRA only key frames.
+ if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) &&
+ (cpi->cyclic_refresh->counter_encode_maxq_scene_change == 0) &&
+ !frame_is_intra_only(cm) && !cpi->ppi->use_svc) {
+ cpi->rc.q_2_frame = cm->quant_params.base_qindex;
+ cpi->rc.q_1_frame = cm->quant_params.base_qindex;
+ cpi->rc.rc_2_frame = 0;
+ cpi->rc.rc_1_frame = 0;
+ return;
+ }
+
+ // Clear down mmx registers to allow floating point in what follows
+
+ // Work out how big we would have expected the frame to be at this Q given
+ // the current correction factor.
+ // Stay in double to avoid int overflow when values are large
+ if (cyclic_refresh_active) {
+ projected_size_based_on_q =
+ av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
+ } else {
+ projected_size_based_on_q = av1_estimate_bits_at_q(
+ cpi, cm->quant_params.base_qindex, rate_correction_factor);
+ }
+ // Work out a size correction factor.
+ if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
+ correction_factor = (double)cpi->rc.projected_frame_size /
+ (double)projected_size_based_on_q;
+
+ // Clamp correction factor to prevent anything too extreme
+ correction_factor = AOMMAX(correction_factor, 0.25);
+
+ cpi->rc.q_2_frame = cpi->rc.q_1_frame;
+ cpi->rc.q_1_frame = cm->quant_params.base_qindex;
+ cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
+ if (correction_factor > 1.1)
+ cpi->rc.rc_1_frame = -1;
+ else if (correction_factor < 0.9)
+ cpi->rc.rc_1_frame = 1;
+ else
+ cpi->rc.rc_1_frame = 0;
+
+ // Decide how heavily to dampen the adjustment
+ if (correction_factor > 0.0) {
+ if (cpi->is_screen_content_type) {
+ adjustment_limit =
+ 0.25 + 0.5 * AOMMIN(0.5, fabs(log10(correction_factor)));
+ } else {
+ adjustment_limit =
+ 0.25 + 0.75 * AOMMIN(0.5, fabs(log10(correction_factor)));
+ }
+ } else {
+ adjustment_limit = 0.75;
+ }
+
+ // Adjustment to delta Q and number of blocks updated in cyclic refressh
+ // based on over or under shoot of target in current frame.
+ if (cyclic_refresh_active && cpi->rc.this_frame_target > 0) {
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ if (correction_factor > 1.25) {
+ cr->percent_refresh_adjustment =
+ AOMMAX(cr->percent_refresh_adjustment - 1, -5);
+ cr->rate_ratio_qdelta_adjustment =
+ AOMMAX(cr->rate_ratio_qdelta_adjustment - 0.05, -0.0);
+ } else if (correction_factor < 0.5) {
+ cr->percent_refresh_adjustment =
+ AOMMIN(cr->percent_refresh_adjustment + 1, 5);
+ cr->rate_ratio_qdelta_adjustment =
+ AOMMIN(cr->rate_ratio_qdelta_adjustment + 0.05, 0.25);
+ }
+ }
+
+ if (correction_factor > 1.01) {
+ // We are not already at the worst allowable quality
+ correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit));
+ rate_correction_factor = rate_correction_factor * correction_factor;
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor > MAX_BPB_FACTOR)
+ rate_correction_factor = MAX_BPB_FACTOR;
+ } else if (correction_factor < 0.99) {
+ // We are not already at the best allowable quality
+ correction_factor = 1.0 / correction_factor;
+ correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit));
+ correction_factor = 1.0 / correction_factor;
+
+ rate_correction_factor = rate_correction_factor * correction_factor;
+
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor < MIN_BPB_FACTOR)
+ rate_correction_factor = MIN_BPB_FACTOR;
+ }
+
+ set_rate_correction_factor(cpi, is_encode_stage, rate_correction_factor,
+ width, height);
+}
+
+// Calculate rate for the given 'q'.
+static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh,
+ double correction_factor, int q) {
+ const AV1_COMMON *const cm = &cpi->common;
+ return use_cyclic_refresh
+ ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor)
+ : av1_rc_bits_per_mb(cpi, cm->current_frame.frame_type, q,
+ correction_factor,
+ cpi->sf.hl_sf.accurate_bit_estimate);
+}
+
+/*!\brief Searches for a Q index value predicted to give an average macro
+ * block rate closest to the target value.
+ *
+ * Similar to find_qindex_by_rate() function, but returns a q index with a
+ * rate just above or below the desired rate, depending on which of the two
+ * rates is closer to the desired rate.
+ * Also, respects the selected aq_mode when computing the rate.
+ *
+ * \ingroup rate_control
+ * \param[in] desired_bits_per_mb Target bits per mb
+ * \param[in] cpi Top level encoder instance structure
+ * \param[in] correction_factor Current Q to rate correction factor
+ * \param[in] best_qindex Min allowed Q value.
+ * \param[in] worst_qindex Max allowed Q value.
+ *
+ * \return Returns a correction factor for the current frame
+ */
+static int find_closest_qindex_by_rate(int desired_bits_per_mb,
+ const AV1_COMP *cpi,
+ double correction_factor,
+ int best_qindex, int worst_qindex) {
+ const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
+ cpi->cyclic_refresh->apply_cyclic_refresh;
+
+ // Find 'qindex' based on 'desired_bits_per_mb'.
+ assert(best_qindex <= worst_qindex);
+ int low = best_qindex;
+ int high = worst_qindex;
+ while (low < high) {
+ const int mid = (low + high) >> 1;
+ const int mid_bits_per_mb =
+ get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid);
+ if (mid_bits_per_mb > desired_bits_per_mb) {
+ low = mid + 1;
+ } else {
+ high = mid;
+ }
+ }
+ assert(low == high);
+
+ // Calculate rate difference of this q index from the desired rate.
+ const int curr_q = low;
+ const int curr_bits_per_mb =
+ get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q);
+ const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb)
+ ? desired_bits_per_mb - curr_bits_per_mb
+ : INT_MAX;
+ assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) ||
+ curr_q == worst_qindex);
+
+ // Calculate rate difference for previous q index too.
+ const int prev_q = curr_q - 1;
+ int prev_bit_diff;
+ if (curr_bit_diff == INT_MAX || curr_q == best_qindex) {
+ prev_bit_diff = INT_MAX;
+ } else {
+ const int prev_bits_per_mb =
+ get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q);
+ assert(prev_bits_per_mb > desired_bits_per_mb);
+ prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb;
+ }
+
+ // Pick one of the two q indices, depending on which one has rate closer to
+ // the desired rate.
+ return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q;
+}
+
+int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality,
+ int width, int height) {
+ const int MBs = av1_get_MBs(width, height);
+ const double correction_factor =
+ get_rate_correction_factor(cpi, width, height);
+ const int target_bits_per_mb =
+ (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs);
+
+ int q =
+ find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor,
+ active_best_quality, active_worst_quality);
+ if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi))
+ return adjust_q_cbr(cpi, q, active_worst_quality, width, height);
+
+ return q;
+}
+
+static int get_active_quality(int q, int gfu_boost, int low, int high,
+ int *low_motion_minq, int *high_motion_minq) {
+ if (gfu_boost > high) {
+ return low_motion_minq[q];
+ } else if (gfu_boost < low) {
+ return high_motion_minq[q];
+ } else {
+ const int gap = high - low;
+ const int offset = high - gfu_boost;
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+ return low_motion_minq[q] + adjustment;
+ }
+}
+
+static int get_kf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q,
+ aom_bit_depth_t bit_depth) {
+ int *kf_low_motion_minq;
+ int *kf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
+ return get_active_quality(q, p_rc->kf_boost, kf_low, kf_high,
+ kf_low_motion_minq, kf_high_motion_minq);
+}
+
+static int get_gf_active_quality_no_rc(int gfu_boost, int q,
+ aom_bit_depth_t bit_depth) {
+ int *arfgf_low_motion_minq;
+ int *arfgf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
+ return get_active_quality(q, gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
+}
+
+static int get_gf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q,
+ aom_bit_depth_t bit_depth) {
+ return get_gf_active_quality_no_rc(p_rc->gfu_boost, q, bit_depth);
+}
+
+static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) {
+ int *arfgf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
+ return arfgf_high_motion_minq[q];
+}
+
+static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ const unsigned int curr_frame = cpi->common.current_frame.frame_number;
+ int active_worst_quality;
+ int last_q_key_frame;
+ int last_q_inter_frame;
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ last_q_key_frame = simulate_parallel_frame ? p_rc->temp_last_q[KEY_FRAME]
+ : p_rc->last_q[KEY_FRAME];
+ last_q_inter_frame = simulate_parallel_frame ? p_rc->temp_last_q[INTER_FRAME]
+ : p_rc->last_q[INTER_FRAME];
+#else
+ last_q_key_frame = p_rc->last_q[KEY_FRAME];
+ last_q_inter_frame = p_rc->last_q[INTER_FRAME];
+#endif
+
+ if (cpi->common.current_frame.frame_type == KEY_FRAME) {
+ active_worst_quality =
+ curr_frame == 0 ? rc->worst_quality : last_q_key_frame * 2;
+ } else {
+ if (!rc->is_src_frame_alt_ref &&
+ (refresh_frame->golden_frame || refresh_frame->bwd_ref_frame ||
+ refresh_frame->alt_ref_frame)) {
+ active_worst_quality =
+ curr_frame == 1 ? last_q_key_frame * 5 / 4 : last_q_inter_frame;
+ } else {
+ active_worst_quality =
+ curr_frame == 1 ? last_q_key_frame * 2 : last_q_inter_frame * 2;
+ }
+ }
+ return AOMMIN(active_worst_quality, rc->worst_quality);
+}
+
+// Adjust active_worst_quality level based on buffer level.
+static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) {
+ // Adjust active_worst_quality: If buffer is above the optimal/target level,
+ // bring active_worst_quality down depending on fullness of buffer.
+ // If buffer is below the optimal level, let the active_worst_quality go from
+ // ambient Q (at buffer = optimal level) to worst_quality level
+ // (at buffer = critical level).
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
+ const SVC *const svc = &cpi->svc;
+ unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
+ // Buffer level below which we push active_worst to worst_quality.
+ int64_t critical_level = p_rc->optimal_buffer_level >> 3;
+ int64_t buff_lvl_step = 0;
+ int adjustment = 0;
+ int active_worst_quality;
+ int ambient_qp;
+ if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality;
+ // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
+ // for the first few frames following key frame. These are both initialized
+ // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
+ // So for first few frames following key, the qp of that key frame is weighted
+ // into the active_worst_quality setting. For SVC the key frame should
+ // correspond to layer (0, 0), so use that for layer context.
+ int avg_qindex_key = p_rc->avg_frame_qindex[KEY_FRAME];
+ if (svc->number_temporal_layers > 1) {
+ int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers);
+ const LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ const PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc;
+ avg_qindex_key =
+ AOMMIN(lp_rc->avg_frame_qindex[KEY_FRAME], lp_rc->last_q[KEY_FRAME]);
+ }
+ ambient_qp = (cm->current_frame.frame_number < num_frames_weight_key)
+ ? AOMMIN(p_rc->avg_frame_qindex[INTER_FRAME], avg_qindex_key)
+ : p_rc->avg_frame_qindex[INTER_FRAME];
+ ambient_qp = AOMMIN(rc->worst_quality, ambient_qp);
+
+ if (p_rc->buffer_level > p_rc->optimal_buffer_level) {
+ // Adjust down.
+ int max_adjustment_down; // Maximum adjustment down for Q
+
+ if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && !cpi->ppi->use_svc &&
+ (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)) {
+ active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp);
+ max_adjustment_down = AOMMIN(4, active_worst_quality / 16);
+ } else {
+ active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
+ max_adjustment_down = active_worst_quality / 3;
+ }
+
+ if (max_adjustment_down) {
+ buff_lvl_step =
+ ((p_rc->maximum_buffer_size - p_rc->optimal_buffer_level) /
+ max_adjustment_down);
+ if (buff_lvl_step)
+ adjustment = (int)((p_rc->buffer_level - p_rc->optimal_buffer_level) /
+ buff_lvl_step);
+ active_worst_quality -= adjustment;
+ }
+ } else if (p_rc->buffer_level > critical_level) {
+ // Adjust up from ambient Q.
+ active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp);
+ if (critical_level) {
+ buff_lvl_step = (p_rc->optimal_buffer_level - critical_level);
+ if (buff_lvl_step) {
+ adjustment = (int)((rc->worst_quality - ambient_qp) *
+ (p_rc->optimal_buffer_level - p_rc->buffer_level) /
+ buff_lvl_step);
+ }
+ active_worst_quality += adjustment;
+ }
+ } else {
+ // Set to worst_quality if buffer is below critical level.
+ active_worst_quality = rc->worst_quality;
+ }
+ return active_worst_quality;
+}
+
+// Calculate the active_best_quality level.
+static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi,
+ int active_worst_quality,
+ int width, int height) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ int *rtc_minq;
+ const int bit_depth = cm->seq_params->bit_depth;
+ int active_best_quality = rc->best_quality;
+ ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
+
+ if (frame_is_intra_only(cm)) {
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (p_rc->this_key_frame_forced) {
+ int qindex = p_rc->last_boosted_qindex;
+ double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
+ int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
+ (last_boosted_q * 0.75), bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else if (current_frame->frame_number > 0) {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+ active_best_quality = get_kf_active_quality(
+ p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth);
+ // Allow somewhat lower kf minq with small image formats.
+ if ((width * height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
+ active_best_quality +=
+ av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc &&
+ cpi->oxcf.rc_cfg.gf_cbr_boost_pct &&
+ (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ int q = active_worst_quality;
+ if (rc->frames_since_key > 1 &&
+ p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = p_rc->avg_frame_qindex[INTER_FRAME];
+ }
+ active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ FRAME_TYPE frame_type =
+ (current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME;
+ if (p_rc->avg_frame_qindex[frame_type] < active_worst_quality)
+ active_best_quality = rtc_minq[p_rc->avg_frame_qindex[frame_type]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ }
+ return active_best_quality;
+}
+
+#if RT_PASSIVE_STRATEGY
+static int get_q_passive_strategy(const AV1_COMP *const cpi,
+ const int q_candidate, const int threshold) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ int sum = 0;
+ int count = 0;
+ int i = 1;
+ while (i < MAX_Q_HISTORY) {
+ int frame_id = current_frame->frame_number - i;
+ if (frame_id <= 0) break;
+ sum += p_rc->q_history[frame_id % MAX_Q_HISTORY];
+ ++count;
+ ++i;
+ }
+ if (count > 0) {
+ const int avg_q = sum / count;
+ if (abs(avg_q - q_candidate) <= threshold) return avg_q;
+ }
+ return q_candidate;
+}
+#endif // RT_PASSIVE_STRATEGY
+
+/*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc.
+ *
+ * Handles the special case when using:
+ * - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and
+ * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are
+ * NOT available.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ * \param[in] width Coded frame width
+ * \param[in] height Coded frame height
+ * \param[out] bottom_index Bottom bound for q index (best quality)
+ * \param[out] top_index Top bound for q index (worst quality)
+ * \return Returns selected q index to be used for encoding this frame.
+ */
+static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width,
+ int height, int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ int q;
+ int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi);
+ int active_best_quality = calc_active_best_quality_no_stats_cbr(
+ cpi, active_worst_quality, width, height);
+ assert(has_no_stats_stage(cpi));
+ assert(cpi->oxcf.rc_cfg.mode == AOM_CBR);
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ // Limit Q range for the adaptive loop.
+ if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced &&
+ current_frame->frame_number != 0) {
+ int qdelta = 0;
+ qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type,
+ active_worst_quality, 2.0);
+ *top_index = active_worst_quality + qdelta;
+ *top_index = AOMMAX(*top_index, *bottom_index);
+ }
+
+ q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality, width, height);
+#if RT_PASSIVE_STRATEGY
+ if (current_frame->frame_type != KEY_FRAME &&
+ cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
+ q = get_q_passive_strategy(cpi, q, 50);
+ }
+#endif // RT_PASSIVE_STRATEGY
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) {
+ return gf_group->layer_depth[gf_index];
+}
+
+static int get_active_cq_level(const RATE_CONTROL *rc,
+ const PRIMARY_RATE_CONTROL *p_rc,
+ const AV1EncoderConfig *const oxcf,
+ int intra_only, aom_superres_mode superres_mode,
+ int superres_denom) {
+ const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
+ static const double cq_adjust_threshold = 0.1;
+ int active_cq_level = rc_cfg->cq_level;
+ if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) {
+ // printf("Superres %d %d %d = %d\n", superres_denom, intra_only,
+ // rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1));
+ if ((superres_mode == AOM_SUPERRES_QTHRESH ||
+ superres_mode == AOM_SUPERRES_AUTO) &&
+ superres_denom != SCALE_NUMERATOR) {
+ int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO;
+ if (intra_only && rc->frames_to_key <= 1) {
+ mult = 0;
+ } else if (intra_only) {
+ mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME;
+ } else {
+ mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME;
+ }
+ active_cq_level = AOMMAX(
+ active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0);
+ }
+ }
+ if (rc_cfg->mode == AOM_CQ && p_rc->total_target_bits > 0) {
+ const double x = (double)p_rc->total_actual_bits / p_rc->total_target_bits;
+ if (x < cq_adjust_threshold) {
+ active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
+ }
+ }
+ return active_cq_level;
+}
+
+/*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc.
+ *
+ * Handles the special case when using:
+ * - Any rate control other than constant bit-rate mode:
+ * \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and
+ * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are
+ * NOT available.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ * \param[in] width Coded frame width
+ * \param[in] height Coded frame height
+ * \param[out] bottom_index Bottom bound for q index (best quality)
+ * \param[out] top_index Top bound for q index (worst quality)
+ * \return Returns selected q index to be used for encoding this frame.
+ */
+static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width,
+ int height, int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode;
+
+ assert(has_no_stats_stage(cpi));
+ assert(rc_mode == AOM_VBR ||
+ (!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) ||
+ rc_mode == AOM_Q);
+
+ const int cq_level =
+ get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm),
+ cpi->superres_mode, cm->superres_scale_denominator);
+ const int bit_depth = cm->seq_params->bit_depth;
+
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi);
+ int q;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
+
+ if (frame_is_intra_only(cm)) {
+ if (rc_mode == AOM_Q) {
+ const int qindex = cq_level;
+ const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
+ const int delta_qindex =
+ av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else if (p_rc->this_key_frame_forced) {
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex
+ : p_rc->last_boosted_qindex;
+#else
+ int qindex = p_rc->last_boosted_qindex;
+#endif
+ const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
+ const int delta_qindex = av1_compute_qdelta(
+ rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else { // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+
+ active_best_quality = get_kf_active_quality(
+ p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((width * height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta on active_best_quality.
+ {
+ const double q_val =
+ av1_convert_qindex_to_q(active_best_quality, bit_depth);
+ active_best_quality +=
+ av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
+ }
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ q = (rc->frames_since_key > 1 &&
+ p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+ ? p_rc->avg_frame_qindex[INTER_FRAME]
+ : p_rc->avg_frame_qindex[KEY_FRAME];
+ // For constrained quality dont allow Q less than the cq level
+ if (rc_mode == AOM_CQ) {
+ if (q < cq_level) q = cq_level;
+ active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+ } else if (rc_mode == AOM_Q) {
+ const int qindex = cq_level;
+ const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
+ const int delta_qindex =
+ (refresh_frame->alt_ref_frame)
+ ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
+ : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
+ }
+ } else {
+ if (rc_mode == AOM_Q) {
+ const int qindex = cq_level;
+ const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
+ const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
+ 0.70, 1.0, 0.85, 1.0 };
+ const int delta_qindex = av1_compute_qdelta(
+ rc, q_val,
+ q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL],
+ bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ active_best_quality =
+ (current_frame->frame_number > 1)
+ ? inter_minq[p_rc->avg_frame_qindex[INTER_FRAME]]
+ : inter_minq[p_rc->avg_frame_qindex[KEY_FRAME]];
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ // Limit Q range for the adaptive loop.
+ {
+ int qdelta = 0;
+ if (current_frame->frame_type == KEY_FRAME &&
+ !p_rc->this_key_frame_forced && current_frame->frame_number != 0) {
+ qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type,
+ active_worst_quality, 2.0);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) {
+ qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type,
+ active_worst_quality, 1.75);
+ }
+ *top_index = active_worst_quality + qdelta;
+ *top_index = AOMMAX(*top_index, *bottom_index);
+ }
+
+ if (rc_mode == AOM_Q) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames
+ } else if ((current_frame->frame_type == KEY_FRAME) &&
+ p_rc->this_key_frame_forced) {
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ q = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex
+ : p_rc->last_boosted_qindex;
+#else
+ q = p_rc->last_boosted_qindex;
+#endif
+ } else {
+ q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality, width, height);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+static const double arf_layer_deltas[MAX_ARF_LAYERS + 1] = { 2.50, 2.00, 1.75,
+ 1.50, 1.25, 1.15,
+ 1.0 };
+int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) {
+ const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ const RATE_FACTOR_LEVEL rf_lvl =
+ get_rate_factor_level(gf_group, cpi->gf_frame_index);
+ const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index];
+ const int arf_layer = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
+ const double rate_factor =
+ (rf_lvl == INTER_NORMAL) ? 1.0 : arf_layer_deltas[arf_layer];
+
+ return av1_compute_qdelta_by_rate(cpi, frame_type, q, rate_factor);
+}
+
+// This unrestricted Q selection on CQ mode is useful when testing new features,
+// but may lead to Q being out of range on current RC restrictions
+#if USE_UNRESTRICTED_Q_IN_CQ_MODE
+static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width,
+ int height, int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level =
+ get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode,
+ cm->superres_scale_denominator);
+ const int bit_depth = cm->seq_params->bit_depth;
+ const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth);
+ (void)width;
+ (void)height;
+ assert(has_no_stats_stage(cpi));
+ assert(cpi->oxcf.rc_cfg.mode == AOM_CQ);
+
+ *top_index = q;
+ *bottom_index = q;
+
+ return q;
+}
+#endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
+
+#define STATIC_MOTION_THRESH 95
+static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height,
+ int *active_best, int *active_worst,
+ int cq_level) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ int active_best_quality;
+ int active_worst_quality = *active_worst;
+ const int bit_depth = cm->seq_params->bit_depth;
+
+ if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) {
+ // If the next frame is also a key frame or the current frame is the
+ // only frame in the sequence in AOM_Q mode, just use the cq_level
+ // as q.
+ active_best_quality = cq_level;
+ active_worst_quality = cq_level;
+ } else if (p_rc->this_key_frame_forced) {
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ double last_boosted_q;
+ int delta_qindex;
+ int qindex;
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int last_boosted_qindex = simulate_parallel_frame
+ ? p_rc->temp_last_boosted_qindex
+ : p_rc->last_boosted_qindex;
+#else
+ int last_boosted_qindex = p_rc->last_boosted_qindex;
+#endif
+ if (is_stat_consumption_stage_twopass(cpi) &&
+ cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ qindex = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex);
+ active_best_quality = qindex;
+ last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
+ delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 1.25, bit_depth);
+ active_worst_quality =
+ AOMMIN(qindex + delta_qindex, active_worst_quality);
+ } else {
+ qindex = last_boosted_qindex;
+ last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
+ delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.50, bit_depth);
+ active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
+ }
+ } else {
+ // Not forced keyframe.
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ // Baseline value derived from active_worst_quality and kf boost.
+ active_best_quality =
+ get_kf_active_quality(p_rc, active_worst_quality, bit_depth);
+ if (cpi->is_screen_content_type) {
+ active_best_quality /= 2;
+ }
+
+ if (is_stat_consumption_stage_twopass(cpi) &&
+ cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
+ active_best_quality /= 3;
+ }
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((width * height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Make a further adjustment based on the kf zero motion measure.
+ if (is_stat_consumption_stage_twopass(cpi))
+ q_adj_factor +=
+ 0.05 - (0.001 * (double)cpi->ppi->twopass.kf_zeromotion_pct);
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
+ active_best_quality +=
+ av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
+
+ // Tweak active_best_quality for AOM_Q mode when superres is on, as this
+ // will be used directly as 'q' later.
+ if (oxcf->rc_cfg.mode == AOM_Q &&
+ (cpi->superres_mode == AOM_SUPERRES_QTHRESH ||
+ cpi->superres_mode == AOM_SUPERRES_AUTO) &&
+ cm->superres_scale_denominator != SCALE_NUMERATOR) {
+ active_best_quality =
+ AOMMAX(active_best_quality -
+ ((cm->superres_scale_denominator - SCALE_NUMERATOR) *
+ SUPERRES_QADJ_PER_DENOM_KEYFRAME),
+ 0);
+ }
+ }
+ *active_best = active_best_quality;
+ *active_worst = active_worst_quality;
+}
+
+static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi,
+ const int is_intrl_arf_boost,
+ int *active_worst,
+ int *active_best) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ int active_best_quality = *active_best;
+ int active_worst_quality = *active_worst;
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int extend_minq = simulate_parallel_frame ? p_rc->temp_extend_minq
+ : cpi->ppi->twopass.extend_minq;
+ int extend_maxq = simulate_parallel_frame ? p_rc->temp_extend_maxq
+ : cpi->ppi->twopass.extend_maxq;
+#endif
+ // Extension to max or min Q if undershoot or overshoot is outside
+ // the permitted range.
+ if (cpi->oxcf.rc_cfg.mode != AOM_Q) {
+ if (frame_is_intra_only(cm) ||
+ (!rc->is_src_frame_alt_ref &&
+ (refresh_frame->golden_frame || is_intrl_arf_boost ||
+ refresh_frame->alt_ref_frame))) {
+#if CONFIG_FPMT_TEST
+ active_best_quality -= extend_minq;
+ active_worst_quality += (extend_maxq / 2);
+#else
+ active_best_quality -= cpi->ppi->twopass.extend_minq / 4;
+ active_worst_quality += (cpi->ppi->twopass.extend_maxq / 2);
+#endif
+ } else {
+#if CONFIG_FPMT_TEST
+ active_best_quality -= extend_minq / 2;
+ active_worst_quality += extend_maxq;
+#else
+ active_best_quality -= cpi->ppi->twopass.extend_minq / 4;
+ active_worst_quality += cpi->ppi->twopass.extend_maxq;
+#endif
+ }
+ }
+
+#ifndef STRICT_RC
+ // Static forced key frames Q restrictions dealt with elsewhere.
+ if (!(frame_is_intra_only(cm)) || !p_rc->this_key_frame_forced ||
+ (cpi->ppi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
+ const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality);
+ active_worst_quality =
+ AOMMAX(active_worst_quality + qdelta, active_best_quality);
+ }
+#endif
+
+ // Modify active_best_quality for downscaled normal frames.
+ if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
+ int qdelta = av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type,
+ active_best_quality, 2.0);
+ active_best_quality =
+ AOMMAX(active_best_quality + qdelta, rc->best_quality);
+ }
+
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *active_best = active_best_quality;
+ *active_worst = active_worst_quality;
+}
+
+/*!\brief Gets a Q value to use for the current frame
+ *
+ *
+ * Selects a Q value from a permitted range that we estimate
+ * will result in approximately the target number of bits.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder instance structure
+ * \param[in] width Width of frame
+ * \param[in] height Height of frame
+ * \param[in] active_worst_quality Max Q allowed
+ * \param[in] active_best_quality Min Q allowed
+ *
+ * \return The suggested Q for this frame.
+ */
+static int get_q(const AV1_COMP *cpi, const int width, const int height,
+ const int active_worst_quality,
+ const int active_best_quality) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ int q;
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg;
+ int last_boosted_qindex = simulate_parallel_frame
+ ? p_rc->temp_last_boosted_qindex
+ : p_rc->last_boosted_qindex;
+#else
+ int last_boosted_qindex = p_rc->last_boosted_qindex;
+#endif
+
+ if (cpi->oxcf.rc_cfg.mode == AOM_Q ||
+ (frame_is_intra_only(cm) && !p_rc->this_key_frame_forced &&
+ cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH &&
+ rc->frames_to_key > 1)) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames.
+ } else if (frame_is_intra_only(cm) && p_rc->this_key_frame_forced) {
+ // If static since last kf use better of last boosted and last kf q.
+ if (cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ q = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex);
+ } else {
+ q = AOMMIN(last_boosted_qindex,
+ (active_best_quality + active_worst_quality) / 2);
+ }
+ q = clamp(q, active_best_quality, active_worst_quality);
+ } else {
+ q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality, width, height);
+ if (q > active_worst_quality) {
+ // Special case when we are targeting the max allowed rate.
+ if (rc->this_frame_target < rc->max_frame_bandwidth) {
+ q = active_worst_quality;
+ }
+ }
+ q = AOMMAX(q, active_best_quality);
+ }
+ return q;
+}
+
+// Returns |active_best_quality| for an inter frame.
+// The |active_best_quality| depends on different rate control modes:
+// VBR, Q, CQ, CBR.
+// The returning active_best_quality could further be adjusted in
+// adjust_active_best_and_worst_quality().
+static int get_active_best_quality(const AV1_COMP *const cpi,
+ const int active_worst_quality,
+ const int cq_level, const int gf_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int bit_depth = cm->seq_params->bit_depth;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ const GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
+ int active_best_quality = 0;
+ const int is_intrl_arf_boost =
+ gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
+ int is_leaf_frame =
+ !(gf_group->update_type[gf_index] == ARF_UPDATE ||
+ gf_group->update_type[gf_index] == GF_UPDATE || is_intrl_arf_boost);
+
+ // TODO(jingning): Consider to rework this hack that covers issues incurred
+ // in lightfield setting.
+ if (cm->tiles.large_scale) {
+ is_leaf_frame = !(refresh_frame->golden_frame ||
+ refresh_frame->alt_ref_frame || is_intrl_arf_boost);
+ }
+ const int is_overlay_frame = rc->is_src_frame_alt_ref;
+
+ if (is_leaf_frame || is_overlay_frame) {
+ if (rc_mode == AOM_Q) return cq_level;
+
+ active_best_quality = inter_minq[active_worst_quality];
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ return active_best_quality;
+ }
+
+ // Determine active_best_quality for frames that are not leaf or overlay.
+ int q = active_worst_quality;
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = p_rc->avg_frame_qindex[INTER_FRAME];
+ }
+ if (rc_mode == AOM_CQ && q < cq_level) q = cq_level;
+ active_best_quality = get_gf_active_quality(p_rc, q, bit_depth);
+ // Constrained quality use slightly lower active best.
+ if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16;
+ const int min_boost = get_gf_high_motion_quality(q, bit_depth);
+ const int boost = min_boost - active_best_quality;
+ active_best_quality = min_boost - (int)(boost * p_rc->arf_boost_factor);
+ if (!is_intrl_arf_boost) return active_best_quality;
+
+ if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = p_rc->arf_q;
+ int this_height = gf_group_pyramid_level(gf_group, gf_index);
+ while (this_height > 1) {
+ active_best_quality = (active_best_quality + active_worst_quality + 1) / 2;
+ --this_height;
+ }
+ return active_best_quality;
+}
+
+// Returns the q_index for a single frame in the GOP.
+// This function assumes that rc_mode == AOM_Q mode.
+int av1_q_mode_get_q_index(int base_q_index, int gf_update_type,
+ int gf_pyramid_level, int arf_q) {
+ const int is_intrl_arf_boost = gf_update_type == INTNL_ARF_UPDATE;
+ int is_leaf_or_overlay_frame = gf_update_type == LF_UPDATE ||
+ gf_update_type == OVERLAY_UPDATE ||
+ gf_update_type == INTNL_OVERLAY_UPDATE;
+
+ if (is_leaf_or_overlay_frame) return base_q_index;
+
+ if (!is_intrl_arf_boost) return arf_q;
+
+ int active_best_quality = arf_q;
+ int active_worst_quality = base_q_index;
+
+ while (gf_pyramid_level > 1) {
+ active_best_quality = (active_best_quality + active_worst_quality + 1) / 2;
+ --gf_pyramid_level;
+ }
+ return active_best_quality;
+}
+
+// Returns the q_index for the ARF in the GOP.
+int av1_get_arf_q_index(int base_q_index, int gfu_boost, int bit_depth,
+ double arf_boost_factor) {
+ int active_best_quality =
+ get_gf_active_quality_no_rc(gfu_boost, base_q_index, bit_depth);
+ const int min_boost = get_gf_high_motion_quality(base_q_index, bit_depth);
+ const int boost = min_boost - active_best_quality;
+ return min_boost - (int)(boost * arf_boost_factor);
+}
+
+static int rc_pick_q_and_bounds_q_mode(const AV1_COMP *cpi, int width,
+ int height, int gf_index,
+ int *bottom_index, int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level =
+ get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm),
+ cpi->superres_mode, cm->superres_scale_denominator);
+ int active_best_quality = 0;
+ int active_worst_quality = rc->active_worst_quality;
+ int q;
+
+ if (frame_is_intra_only(cm)) {
+ get_intra_q_and_bounds(cpi, width, height, &active_best_quality,
+ &active_worst_quality, cq_level);
+ } else {
+ // Active best quality limited by previous layer.
+ active_best_quality =
+ get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index);
+ }
+
+ if (cq_level > 0) active_best_quality = AOMMAX(1, active_best_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ *top_index = AOMMAX(*top_index, rc->best_quality);
+ *top_index = AOMMIN(*top_index, rc->worst_quality);
+
+ *bottom_index = AOMMAX(*bottom_index, rc->best_quality);
+ *bottom_index = AOMMIN(*bottom_index, rc->worst_quality);
+
+ q = active_best_quality;
+
+ q = AOMMAX(q, rc->best_quality);
+ q = AOMMIN(q, rc->worst_quality);
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+
+ return q;
+}
+
+/*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc.
+ *
+ * Handles the the general cases not covered by
+ * \ref rc_pick_q_and_bounds_no_stats_cbr() and
+ * \ref rc_pick_q_and_bounds_no_stats()
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ * \param[in] width Coded frame width
+ * \param[in] height Coded frame height
+ * \param[in] gf_index Index of this frame in the golden frame group
+ * \param[out] bottom_index Bottom bound for q index (best quality)
+ * \param[out] top_index Top bound for q index (worst quality)
+ * \return Returns selected q index to be used for encoding this frame.
+ */
+static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height,
+ int gf_index, int *bottom_index,
+ int *top_index) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+ const GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ assert(IMPLIES(has_no_stats_stage(cpi),
+ cpi->oxcf.rc_cfg.mode == AOM_Q &&
+ gf_group->update_type[gf_index] != ARF_UPDATE));
+ const int cq_level =
+ get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm),
+ cpi->superres_mode, cm->superres_scale_denominator);
+
+ if (oxcf->rc_cfg.mode == AOM_Q) {
+ return rc_pick_q_and_bounds_q_mode(cpi, width, height, gf_index,
+ bottom_index, top_index);
+ }
+
+ int active_best_quality = 0;
+ int active_worst_quality = rc->active_worst_quality;
+ int q;
+
+ const int is_intrl_arf_boost =
+ gf_group->update_type[gf_index] == INTNL_ARF_UPDATE;
+
+ if (frame_is_intra_only(cm)) {
+ get_intra_q_and_bounds(cpi, width, height, &active_best_quality,
+ &active_worst_quality, cq_level);
+#ifdef STRICT_RC
+ active_best_quality = 0;
+#endif
+ } else {
+ // Active best quality limited by previous layer.
+ const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index);
+
+ if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS)) {
+ active_best_quality = get_active_best_quality(cpi, active_worst_quality,
+ cq_level, gf_index);
+ } else {
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int local_active_best_quality =
+ simulate_parallel_frame
+ ? p_rc->temp_active_best_quality[pyramid_level - 1]
+ : p_rc->active_best_quality[pyramid_level - 1];
+ active_best_quality = local_active_best_quality + 1;
+#else
+ active_best_quality = p_rc->active_best_quality[pyramid_level - 1] + 1;
+#endif
+
+ active_best_quality = AOMMIN(active_best_quality, active_worst_quality);
+#ifdef STRICT_RC
+ active_best_quality += (active_worst_quality - active_best_quality) / 16;
+#else
+ active_best_quality += (active_worst_quality - active_best_quality) / 2;
+#endif
+ }
+
+ // For alt_ref and GF frames (including internal arf frames) adjust the
+ // worst allowed quality as well. This insures that even on hard
+ // sections we dont clamp the Q at the same value for arf frames and
+ // leaf (non arf) frames. This is important to the TPL model which assumes
+ // Q drops with each arf level.
+ if (!(rc->is_src_frame_alt_ref) &&
+ (refresh_frame->golden_frame || refresh_frame->alt_ref_frame ||
+ is_intrl_arf_boost)) {
+ active_worst_quality =
+ (active_best_quality + (3 * active_worst_quality) + 2) / 4;
+ }
+ }
+
+ adjust_active_best_and_worst_quality(
+ cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality);
+ q = get_q(cpi, width, height, active_worst_quality, active_best_quality);
+
+ // Special case when we are targeting the max allowed rate.
+ if (rc->this_frame_target >= rc->max_frame_bandwidth &&
+ q > active_worst_quality) {
+ active_worst_quality = q;
+ }
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+
+ return q;
+}
+
+static void rc_compute_variance_onepass_rt(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ YV12_BUFFER_CONFIG const *const unscaled_src = cpi->unscaled_source;
+ if (unscaled_src == NULL) return;
+
+ const uint8_t *src_y = unscaled_src->y_buffer;
+ const int src_ystride = unscaled_src->y_stride;
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
+ const uint8_t *pre_y = yv12->buffers[0];
+ const int pre_ystride = yv12->strides[0];
+
+ // TODO(yunqing): support scaled reference frames.
+ if (cpi->scaled_ref_buf[LAST_FRAME - 1]) return;
+
+ for (int i = 0; i < 2; ++i) {
+ if (unscaled_src->widths[i] != yv12->widths[i] ||
+ unscaled_src->heights[i] != yv12->heights[i]) {
+ return;
+ }
+ }
+
+ const int num_mi_cols = cm->mi_params.mi_cols;
+ const int num_mi_rows = cm->mi_params.mi_rows;
+ const BLOCK_SIZE bsize = BLOCK_64X64;
+ int num_samples = 0;
+ // sse is computed on 64x64 blocks
+ const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
+ ? (cm->seq_params->mib_size >> 1)
+ : cm->seq_params->mib_size;
+ const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
+ const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb;
+
+ uint64_t fsse = 0;
+ cpi->rec_sse = 0;
+
+ for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
+ for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
+ unsigned int sse;
+ uint8_t src[64 * 64] = { 0 };
+ // Apply 4x4 block averaging/denoising on source frame.
+ for (int i = 0; i < 64; i += 4) {
+ for (int j = 0; j < 64; j += 4) {
+ const unsigned int avg =
+ aom_avg_4x4(src_y + i * src_ystride + j, src_ystride);
+
+ for (int m = 0; m < 4; ++m) {
+ for (int n = 0; n < 4; ++n) src[i * 64 + j + m * 64 + n] = avg;
+ }
+ }
+ }
+
+ cpi->ppi->fn_ptr[bsize].vf(src, 64, pre_y, pre_ystride, &sse);
+ fsse += sse;
+ num_samples++;
+ src_y += 64;
+ pre_y += 64;
+ }
+ src_y += (src_ystride << 6) - (sb_cols << 6);
+ pre_y += (pre_ystride << 6) - (sb_cols << 6);
+ }
+ assert(num_samples > 0);
+ // Ensure rec_sse > 0
+ if (num_samples > 0) cpi->rec_sse = fsse > 0 ? fsse : 1;
+}
+
+int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height, int gf_index,
+ int *bottom_index, int *top_index) {
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ int q;
+ // TODO(sarahparker) merge no-stats vbr and altref q computation
+ // with rc_pick_q_and_bounds().
+ const GF_GROUP *gf_group = &cpi->ppi->gf_group;
+ if ((cpi->oxcf.rc_cfg.mode != AOM_Q ||
+ gf_group->update_type[gf_index] == ARF_UPDATE) &&
+ has_no_stats_stage(cpi)) {
+ if (cpi->oxcf.rc_cfg.mode == AOM_CBR) {
+ // TODO(yunqing): the results could be used for encoder optimization.
+ cpi->rec_sse = UINT64_MAX;
+ if (cpi->sf.hl_sf.accurate_bit_estimate &&
+ cpi->common.current_frame.frame_type != KEY_FRAME)
+ rc_compute_variance_onepass_rt(cpi);
+
+ q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index,
+ top_index);
+ // preserve copy of active worst quality selected.
+ cpi->rc.active_worst_quality = *top_index;
+
+#if USE_UNRESTRICTED_Q_IN_CQ_MODE
+ } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) {
+ q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index,
+ top_index);
+#endif // USE_UNRESTRICTED_Q_IN_CQ_MODE
+ } else {
+ q = rc_pick_q_and_bounds_no_stats(cpi, width, height, bottom_index,
+ top_index);
+ }
+ } else {
+ q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index,
+ top_index);
+ }
+ if (gf_group->update_type[gf_index] == ARF_UPDATE) p_rc->arf_q = q;
+
+ return q;
+}
+
+void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit) {
+ if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
+ *frame_under_shoot_limit = 0;
+ *frame_over_shoot_limit = INT_MAX;
+ } else {
+ // For very small rate targets where the fractional adjustment
+ // may be tiny make sure there is at least a minimum range.
+ assert(cpi->sf.hl_sf.recode_tolerance <= 100);
+ const int tolerance = (int)AOMMAX(
+ 100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100);
+ *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0);
+ *frame_over_shoot_limit =
+ AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth);
+ }
+}
+
+void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) {
+ const AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ rc->this_frame_target = target;
+
+ // Modify frame size target when down-scaled.
+ if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) {
+ rc->this_frame_target =
+ (int)(rc->this_frame_target *
+ resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height));
+ }
+
+ // Target rate per SB64 (including partial SB64s.
+ rc->sb64_target_rate =
+ (int)(((int64_t)rc->this_frame_target << 12) / (width * height));
+}
+
+static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
+ // this frame refreshes means next frames don't unless specified by user
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->frames_since_golden = 0;
+}
+
+static void update_golden_frame_stats(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Update the Golden frame usage counts.
+ if (cpi->refresh_frame.golden_frame || rc->is_src_frame_alt_ref) {
+ rc->frames_since_golden = 0;
+ } else if (cpi->common.show_frame) {
+ rc->frames_since_golden++;
+ }
+}
+
+void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const CurrentFrame *const current_frame = &cm->current_frame;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
+
+ const int is_intrnl_arf =
+ gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE;
+
+ const int qindex = cm->quant_params.base_qindex;
+
+#if RT_PASSIVE_STRATEGY
+ const int frame_number = current_frame->frame_number % MAX_Q_HISTORY;
+ p_rc->q_history[frame_number] = qindex;
+#endif // RT_PASSIVE_STRATEGY
+
+ // Update rate control heuristics
+ rc->projected_frame_size = (int)(bytes_used << 3);
+
+ // Post encode loop adjustment of Q prediction.
+ av1_rc_update_rate_correction_factors(cpi, 0, cm->width, cm->height);
+
+ // Update bit estimation ratio.
+ if (cpi->oxcf.rc_cfg.mode == AOM_CBR &&
+ cm->current_frame.frame_type != KEY_FRAME &&
+ cpi->sf.hl_sf.accurate_bit_estimate) {
+ const double q = av1_convert_qindex_to_q(cm->quant_params.base_qindex,
+ cm->seq_params->bit_depth);
+ const int this_bit_est_ratio =
+ (int)(rc->projected_frame_size * q / sqrt((double)cpi->rec_sse));
+ cpi->rc.bit_est_ratio =
+ cpi->rc.bit_est_ratio == 0
+ ? this_bit_est_ratio
+ : (7 * cpi->rc.bit_est_ratio + this_bit_est_ratio) / 8;
+ }
+
+ // Keep a record of last Q and ambient average Q.
+ if (current_frame->frame_type == KEY_FRAME) {
+ p_rc->last_q[KEY_FRAME] = qindex;
+ p_rc->avg_frame_qindex[KEY_FRAME] =
+ ROUND_POWER_OF_TWO(3 * p_rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
+ } else {
+ if ((cpi->ppi->use_svc && cpi->oxcf.rc_cfg.mode == AOM_CBR) ||
+ cpi->rc.rtc_external_ratectrl ||
+ (!rc->is_src_frame_alt_ref &&
+ !(refresh_frame->golden_frame || is_intrnl_arf ||
+ refresh_frame->alt_ref_frame))) {
+ p_rc->last_q[INTER_FRAME] = qindex;
+ p_rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO(
+ 3 * p_rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
+ p_rc->ni_frames++;
+ p_rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params->bit_depth);
+ p_rc->avg_q = p_rc->tot_q / p_rc->ni_frames;
+ // Calculate the average Q for normal inter frames (not key or GFU
+ // frames).
+ rc->ni_tot_qi += qindex;
+ rc->ni_av_qi = rc->ni_tot_qi / p_rc->ni_frames;
+ }
+ }
+ // Keep record of last boosted (KF/GF/ARF) Q value.
+ // If the current frame is coded at a lower Q then we also update it.
+ // If all mbs in this group are skipped only update if the Q value is
+ // better than that already stored.
+ // This is used to help set quality in forced key frames to reduce popping
+ if ((qindex < p_rc->last_boosted_qindex) ||
+ (current_frame->frame_type == KEY_FRAME) ||
+ (!p_rc->constrained_gf_group &&
+ (refresh_frame->alt_ref_frame || is_intrnl_arf ||
+ (refresh_frame->golden_frame && !rc->is_src_frame_alt_ref)))) {
+ p_rc->last_boosted_qindex = qindex;
+ }
+ if (current_frame->frame_type == KEY_FRAME) p_rc->last_kf_qindex = qindex;
+
+ update_buffer_level(cpi, rc->projected_frame_size);
+ rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth;
+
+ // Rolling monitors of whether we are over or underspending used to help
+ // regulate min and Max Q in two pass.
+ if (av1_frame_scaled(cm))
+ rc->this_frame_target = (int)(rc->this_frame_target /
+ resize_rate_factor(&cpi->oxcf.frm_dim_cfg,
+ cm->width, cm->height));
+ if (current_frame->frame_type != KEY_FRAME) {
+ p_rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64(
+ p_rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
+ p_rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64(
+ p_rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
+ }
+
+ // Actual bits spent
+ p_rc->total_actual_bits += rc->projected_frame_size;
+ p_rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
+
+ if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames,
+ cpi->oxcf.gf_cfg.enable_auto_arf) &&
+ refresh_frame->alt_ref_frame &&
+ (current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm)))
+ // Update the alternate reference frame stats as appropriate.
+ update_alt_ref_frame_stats(cpi);
+ else
+ // Update the Golden frame stats as appropriate.
+ update_golden_frame_stats(cpi);
+
+#if CONFIG_FPMT_TEST
+ /*The variables temp_avg_frame_qindex, temp_last_q, temp_avg_q,
+ * temp_last_boosted_qindex are introduced only for quality simulation
+ * purpose, it retains the value previous to the parallel encode frames. The
+ * variables are updated based on the update flag.
+ *
+ * If there exist show_existing_frames between parallel frames, then to
+ * retain the temp state do not update it. */
+ int show_existing_between_parallel_frames =
+ (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
+ INTNL_OVERLAY_UPDATE &&
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
+
+ if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
+ for (int i = 0; i < FRAME_TYPES; i++) {
+ p_rc->temp_last_q[i] = p_rc->last_q[i];
+ }
+ p_rc->temp_avg_q = p_rc->avg_q;
+ p_rc->temp_last_boosted_qindex = p_rc->last_boosted_qindex;
+ p_rc->temp_total_actual_bits = p_rc->total_actual_bits;
+ p_rc->temp_projected_frame_size = rc->projected_frame_size;
+ for (int i = 0; i < RATE_FACTOR_LEVELS; i++)
+ p_rc->temp_rate_correction_factors[i] = p_rc->rate_correction_factors[i];
+ }
+#endif
+ if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0;
+ if (cpi->refresh_frame.golden_frame)
+ rc->frame_num_last_gf_refresh = current_frame->frame_number;
+ rc->prev_coded_width = cm->width;
+ rc->prev_coded_height = cm->height;
+ rc->frame_number_encoded++;
+ rc->prev_frame_is_dropped = 0;
+ rc->drop_count_consec = 0;
+ // if (current_frame->frame_number == 1 && cm->show_frame)
+ /*
+ rc->this_frame_target =
+ (int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg,
+ cm->width, cm->height));
+ */
+}
+
+void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
+ // Update buffer level with zero size, update frame counters, and return.
+ update_buffer_level(cpi, 0);
+ if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
+ cpi->rc.frames_since_key++;
+ cpi->rc.frames_to_key--;
+ }
+ cpi->rc.rc_2_frame = 0;
+ cpi->rc.rc_1_frame = 0;
+ cpi->rc.prev_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
+ cpi->rc.prev_coded_width = cpi->common.width;
+ cpi->rc.prev_coded_height = cpi->common.height;
+ cpi->rc.prev_frame_is_dropped = 1;
+ // On a scene/slide change for dropped frame: reset the avg_source_sad to 0,
+ // otherwise the avg_source_sad can get too large and subsequent frames
+ // may miss the scene/slide detection.
+ if (cpi->rc.high_source_sad) cpi->rc.avg_source_sad = 0;
+ if (cpi->ppi->use_svc && cpi->svc.number_spatial_layers > 1) {
+ cpi->svc.last_layer_dropped[cpi->svc.spatial_layer_id] = true;
+ cpi->svc.drop_spatial_layer[cpi->svc.spatial_layer_id] = true;
+ }
+}
+
+int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth,
+ int best_qindex, int worst_qindex) {
+ assert(best_qindex <= worst_qindex);
+ int low = best_qindex;
+ int high = worst_qindex;
+ while (low < high) {
+ const int mid = (low + high) >> 1;
+ const double mid_q = av1_convert_qindex_to_q(mid, bit_depth);
+ if (mid_q < desired_q) {
+ low = mid + 1;
+ } else {
+ high = mid;
+ }
+ }
+ assert(low == high);
+ assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q ||
+ low == worst_qindex);
+ return low;
+}
+
+int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+ aom_bit_depth_t bit_depth) {
+ const int start_index =
+ av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality);
+ const int target_index =
+ av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality);
+ return target_index - start_index;
+}
+
+// Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex],
+// assuming 'correction_factor' is 1.0.
+// To be precise, 'q_index' is the smallest integer, for which the corresponding
+// bits per mb <= desired_bits_per_mb.
+// If no such q index is found, returns 'worst_qindex'.
+static int find_qindex_by_rate(const AV1_COMP *const cpi,
+ int desired_bits_per_mb, FRAME_TYPE frame_type,
+ int best_qindex, int worst_qindex) {
+ assert(best_qindex <= worst_qindex);
+ int low = best_qindex;
+ int high = worst_qindex;
+ while (low < high) {
+ const int mid = (low + high) >> 1;
+ const int mid_bits_per_mb =
+ av1_rc_bits_per_mb(cpi, frame_type, mid, 1.0, 0);
+ if (mid_bits_per_mb > desired_bits_per_mb) {
+ low = mid + 1;
+ } else {
+ high = mid;
+ }
+ }
+ assert(low == high);
+ assert(av1_rc_bits_per_mb(cpi, frame_type, low, 1.0, 0) <=
+ desired_bits_per_mb ||
+ low == worst_qindex);
+ return low;
+}
+
+int av1_compute_qdelta_by_rate(const AV1_COMP *cpi, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio) {
+ const RATE_CONTROL *rc = &cpi->rc;
+
+ // Look up the current projected bits per block for the base index
+ const int base_bits_per_mb =
+ av1_rc_bits_per_mb(cpi, frame_type, qindex, 1.0, 0);
+
+ // Find the target bits per mb based on the base value and given ratio.
+ const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
+
+ const int target_index = find_qindex_by_rate(
+ cpi, target_bits_per_mb, frame_type, rc->best_quality, rc->worst_quality);
+ return target_index - qindex;
+}
+
+void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
+ RATE_CONTROL *const rc) {
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+
+ // Special case code for 1 pass fixed Q mode tests
+ if ((has_no_stats_stage(cpi)) && (oxcf->rc_cfg.mode == AOM_Q)) {
+ rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval;
+ rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval;
+ rc->static_scene_max_gf_interval = rc->min_gf_interval + 1;
+ } else {
+ // Set Maximum gf/arf interval
+ rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval;
+ rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval;
+ if (rc->min_gf_interval == 0)
+ rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
+ oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate);
+ if (rc->max_gf_interval == 0)
+ rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
+ cpi->framerate, rc->min_gf_interval);
+ /*
+ * Extended max interval for genuinely static scenes like slide shows.
+ * The no.of.stats available in the case of LAP is limited,
+ * hence setting to max_gf_interval.
+ */
+ if (cpi->ppi->lap_enabled)
+ rc->static_scene_max_gf_interval = rc->max_gf_interval + 1;
+ else
+ rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
+
+ if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
+ rc->max_gf_interval = rc->static_scene_max_gf_interval;
+
+ // Clamp min to max
+ rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
+ }
+}
+
+void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int vbr_max_bits;
+ const int MBs = av1_get_MBs(width, height);
+
+ rc->avg_frame_bandwidth =
+ (int)round(oxcf->rc_cfg.target_bandwidth / cpi->framerate);
+ rc->min_frame_bandwidth =
+ (int)(rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100);
+
+ rc->min_frame_bandwidth =
+ AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
+
+ // A maximum bitrate for a frame is defined.
+ // The baseline for this aligns with HW implementations that
+ // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
+ // per 16x16 MB (averaged over a frame). However this limit is extended if
+ // a very high rate is given on the command line or the the rate cannnot
+ // be acheived because of a user specificed max q (e.g. when the user
+ // specifies lossless encode.
+ vbr_max_bits =
+ (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section) /
+ 100);
+ rc->max_frame_bandwidth =
+ AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
+
+ av1_rc_set_gf_interval_range(cpi, rc);
+}
+
+#define VBR_PCT_ADJUSTMENT_LIMIT 50
+// For VBR...adjustment to the frame target based on error from previous frames
+static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ int64_t vbr_bits_off_target = simulate_parallel_frame
+ ? cpi->ppi->p_rc.temp_vbr_bits_off_target
+ : p_rc->vbr_bits_off_target;
+#else
+ int64_t vbr_bits_off_target = p_rc->vbr_bits_off_target;
+#endif
+ const int stats_count =
+ cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL
+ ? (int)cpi->ppi->twopass.stats_buf_ctx->total_stats->count
+ : 0;
+ const int frame_window = AOMMIN(
+ 16, (int)(stats_count - (int)cpi->common.current_frame.frame_number));
+ assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100);
+ if (frame_window > 0) {
+ const int max_delta = (int)AOMMIN(
+ abs((int)(vbr_bits_off_target / frame_window)),
+ ((int64_t)(*this_frame_target) * VBR_PCT_ADJUSTMENT_LIMIT) / 100);
+
+ // vbr_bits_off_target > 0 means we have extra bits to spend
+ // vbr_bits_off_target < 0 we are currently overshooting
+ *this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta;
+ }
+
+#if CONFIG_FPMT_TEST
+ int64_t vbr_bits_off_target_fast =
+ simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target_fast
+ : p_rc->vbr_bits_off_target_fast;
+#endif
+ // Fast redistribution of bits arising from massive local undershoot.
+ // Dont do it for kf,arf,gf or overlay frames.
+ if (!frame_is_kf_gf_arf(cpi) &&
+#if CONFIG_FPMT_TEST
+ vbr_bits_off_target_fast &&
+#else
+ p_rc->vbr_bits_off_target_fast &&
+#endif
+ !rc->is_src_frame_alt_ref) {
+ int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
+ int fast_extra_bits;
+#if CONFIG_FPMT_TEST
+ fast_extra_bits = (int)AOMMIN(vbr_bits_off_target_fast, one_frame_bits);
+ fast_extra_bits =
+ (int)AOMMIN(fast_extra_bits,
+ AOMMAX(one_frame_bits / 8, vbr_bits_off_target_fast / 8));
+#else
+ fast_extra_bits =
+ (int)AOMMIN(p_rc->vbr_bits_off_target_fast, one_frame_bits);
+ fast_extra_bits = (int)AOMMIN(
+ fast_extra_bits,
+ AOMMAX(one_frame_bits / 8, p_rc->vbr_bits_off_target_fast / 8));
+#endif
+ if (fast_extra_bits > 0) {
+ // Update this_frame_target only if additional bits are available from
+ // local undershoot.
+ *this_frame_target += (int)fast_extra_bits;
+ }
+ // Store the fast_extra_bits of the frame and reduce it from
+ // vbr_bits_off_target_fast during postencode stage.
+ rc->frame_level_fast_extra_bits = fast_extra_bits;
+ // Retaining the condition to udpate during postencode stage since
+ // fast_extra_bits are calculated based on vbr_bits_off_target_fast.
+ cpi->do_update_vbr_bits_off_target_fast = 1;
+ }
+}
+
+void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target_rate = rc->base_frame_target;
+
+ // Correction to rate target based on prior over or under shoot.
+ if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ)
+ vbr_rate_correction(cpi, &target_rate);
+ av1_rc_set_frame_target(cpi, target_rate, width, height);
+}
+
+int av1_calc_pframe_target_size_one_pass_vbr(
+ const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) {
+ static const int af_ratio = 10;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ int64_t target;
+#if USE_ALTREF_FOR_ONE_PASS
+ if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE ||
+ frame_update_type == ARF_UPDATE) {
+ target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval *
+ af_ratio) /
+ (p_rc->baseline_gf_interval + af_ratio - 1);
+ } else {
+ target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval) /
+ (p_rc->baseline_gf_interval + af_ratio - 1);
+ }
+ if (target > INT_MAX) target = INT_MAX;
+#else
+ target = rc->avg_frame_bandwidth;
+#endif
+ return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type);
+}
+
+int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
+ static const int kf_ratio = 25;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const int64_t target = (int64_t)rc->avg_frame_bandwidth * kf_ratio;
+ return av1_rc_clamp_iframe_target_size(cpi, target);
+}
+
+int av1_calc_pframe_target_size_one_pass_cbr(
+ const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) {
+ const AV1EncoderConfig *oxcf = &cpi->oxcf;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
+ const RateControlCfg *rc_cfg = &oxcf->rc_cfg;
+ const int64_t diff = p_rc->optimal_buffer_level - p_rc->buffer_level;
+ const int64_t one_pct_bits = 1 + p_rc->optimal_buffer_level / 100;
+ int min_frame_target =
+ AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
+ int target;
+
+ if (rc_cfg->gf_cbr_boost_pct) {
+ const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100;
+ if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) {
+ target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval *
+ af_ratio_pct) /
+ (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
+ } else {
+ target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * 100) /
+ (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
+ }
+ } else {
+ target = rc->avg_frame_bandwidth;
+ }
+ if (cpi->ppi->use_svc) {
+ // Note that for layers, avg_frame_bandwidth is the cumulative
+ // per-frame-bandwidth. For the target size of this frame, use the
+ // layer average frame size (i.e., non-cumulative per-frame-bw).
+ int layer =
+ LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id,
+ cpi->svc.number_temporal_layers);
+ const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
+ target = lc->avg_frame_size;
+ min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
+ }
+ if (diff > 0) {
+ // Lower the target bandwidth for this frame.
+ const int pct_low =
+ (int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct);
+ target -= (target * pct_low) / 200;
+ } else if (diff < 0) {
+ // Increase the target bandwidth for this frame.
+ const int pct_high =
+ (int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct);
+ target += (target * pct_high) / 200;
+ }
+ if (rc_cfg->max_inter_bitrate_pct) {
+ const int max_rate =
+ rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100;
+ target = AOMMIN(target, max_rate);
+ }
+ return AOMMAX(min_frame_target, target);
+}
+
+int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
+ int64_t target;
+ if (cpi->common.current_frame.frame_number == 0) {
+ target = ((p_rc->starting_buffer_level / 2) > INT_MAX)
+ ? INT_MAX
+ : (int)(p_rc->starting_buffer_level / 2);
+ if (cpi->svc.number_temporal_layers > 1 && target < (INT_MAX >> 2)) {
+ target = target << AOMMIN(2, (cpi->svc.number_temporal_layers - 1));
+ }
+ } else {
+ int kf_boost = 32;
+ int framerate = (int)round(cpi->framerate);
+
+ kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
+ if (rc->frames_since_key < framerate / 2) {
+ kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
+ }
+ target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
+ }
+ return av1_rc_clamp_iframe_target_size(cpi, target);
+}
+
+static void set_golden_update(AV1_COMP *const cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ int divisor = 10;
+ if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ)
+ divisor = cpi->cyclic_refresh->percent_refresh;
+
+ // Set minimum gf_interval for GF update to a multiple of the refresh period,
+ // with some max limit. Depending on past encoding stats, GF flag may be
+ // reset and update may not occur until next baseline_gf_interval.
+ const int gf_length_mult[2] = { 8, 4 };
+ if (divisor > 0)
+ p_rc->baseline_gf_interval =
+ AOMMIN(gf_length_mult[cpi->sf.rt_sf.gf_length_lvl] * (100 / divisor),
+ MAX_GF_INTERVAL_RT);
+ else
+ p_rc->baseline_gf_interval = FIXED_GF_INTERVAL_RT;
+ if (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 40)
+ p_rc->baseline_gf_interval = 16;
+}
+
+static void set_baseline_gf_interval(AV1_COMP *cpi, FRAME_TYPE frame_type) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+
+ set_golden_update(cpi);
+
+ if (p_rc->baseline_gf_interval > rc->frames_to_key &&
+ cpi->oxcf.kf_cfg.auto_key)
+ p_rc->baseline_gf_interval = rc->frames_to_key;
+ p_rc->gfu_boost = DEFAULT_GF_BOOST_RT;
+ p_rc->constrained_gf_group =
+ (p_rc->baseline_gf_interval >= rc->frames_to_key &&
+ cpi->oxcf.kf_cfg.auto_key)
+ ? 1
+ : 0;
+ rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
+ cpi->gf_frame_index = 0;
+ // SVC does not use GF as periodic boost.
+ // TODO(marpan): Find better way to disable this for SVC.
+ if (cpi->ppi->use_svc) {
+ SVC *const svc = &cpi->svc;
+ p_rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1;
+ p_rc->gfu_boost = 1;
+ p_rc->constrained_gf_group = 0;
+ rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
+ for (int layer = 0;
+ layer < svc->number_spatial_layers * svc->number_temporal_layers;
+ ++layer) {
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ lc->p_rc.baseline_gf_interval = p_rc->baseline_gf_interval;
+ lc->p_rc.gfu_boost = p_rc->gfu_boost;
+ lc->p_rc.constrained_gf_group = p_rc->constrained_gf_group;
+ lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due;
+ lc->group_index = 0;
+ }
+ }
+ gf_group->size = p_rc->baseline_gf_interval;
+ gf_group->update_type[0] = (frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE;
+ gf_group->refbuf_state[cpi->gf_frame_index] =
+ (frame_type == KEY_FRAME) ? REFBUF_RESET : REFBUF_UPDATE;
+}
+
+void av1_adjust_gf_refresh_qp_one_pass_rt(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
+ const int resize_pending = is_frame_resize_pending(cpi);
+ if (!resize_pending && !rc->high_source_sad) {
+ // Check if we should disable GF refresh (if period is up),
+ // or force a GF refresh update (if we are at least halfway through
+ // period) based on QP. Look into add info on segment deltaq.
+ PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc;
+ const int avg_qp = p_rc->avg_frame_qindex[INTER_FRAME];
+ const int allow_gf_update =
+ rc->frames_till_gf_update_due <= (p_rc->baseline_gf_interval - 10);
+ int gf_update_changed = 0;
+ int thresh = 87;
+ if ((cm->current_frame.frame_number - cpi->rc.frame_num_last_gf_refresh) <
+ FIXED_GF_INTERVAL_RT &&
+ rc->frames_till_gf_update_due == 1 &&
+ cm->quant_params.base_qindex > avg_qp) {
+ // Disable GF refresh since QP is above the running average QP.
+ rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 0;
+ gf_update_changed = 1;
+ cpi->refresh_frame.golden_frame = 0;
+ } else if (allow_gf_update &&
+ ((cm->quant_params.base_qindex < thresh * avg_qp / 100) ||
+ (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 20))) {
+ // Force refresh since QP is well below average QP or this is a high
+ // motion frame.
+ rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 1;
+ gf_update_changed = 1;
+ cpi->refresh_frame.golden_frame = 1;
+ }
+ if (gf_update_changed) {
+ set_baseline_gf_interval(cpi, INTER_FRAME);
+ int refresh_mask = 0;
+ for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) {
+ int ref_frame_map_idx = rtc_ref->ref_idx[i];
+ refresh_mask |= rtc_ref->refresh[ref_frame_map_idx]
+ << ref_frame_map_idx;
+ }
+ cm->current_frame.refresh_frame_flags = refresh_mask;
+ }
+ }
+}
+
+/*!\brief Setup the reference prediction structure for 1 pass real-time
+ *
+ * Set the reference prediction structure for 1 layer.
+ * Current structue is to use 3 references (LAST, GOLDEN, ALTREF),
+ * where ALT_REF always behind current by lag_alt frames, and GOLDEN is
+ * either updated on LAST with period baseline_gf_interval (fixed slot)
+ * or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7).
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ * \param[in] gf_update Flag to indicate if GF is updated
+ *
+ * \remark Nothing is returned. Instead the settings for the prediction
+ * structure are set in \c cpi-ext_flags; and the buffer slot index
+ * (for each of 7 references) and refresh flags (for each of the 8 slots)
+ * are set in \c cpi->svc.ref_idx[] and \c cpi->svc.refresh[].
+ */
+void av1_set_rtc_reference_structure_one_layer(AV1_COMP *cpi, int gf_update) {
+ AV1_COMMON *const cm = &cpi->common;
+ ExternalFlags *const ext_flags = &cpi->ext_flags;
+ RATE_CONTROL *const rc = &cpi->rc;
+ ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags =
+ &ext_flags->refresh_frame;
+ RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
+ unsigned int frame_number = (cpi->oxcf.rc_cfg.drop_frames_water_mark)
+ ? rc->frame_number_encoded
+ : cm->current_frame.frame_number;
+ unsigned int lag_alt = 4;
+ int last_idx = 0;
+ int last_idx_refresh = 0;
+ int gld_idx = 0;
+ int alt_ref_idx = 0;
+ int last2_idx = 0;
+ ext_refresh_frame_flags->update_pending = 1;
+ ext_flags->ref_frame_flags = 0;
+ ext_refresh_frame_flags->last_frame = 1;
+ ext_refresh_frame_flags->golden_frame = 0;
+ ext_refresh_frame_flags->alt_ref_frame = 0;
+ // Decide altref lag adaptively for rt
+ if (cpi->sf.rt_sf.sad_based_adp_altref_lag) {
+ lag_alt = 6;
+ const uint64_t th_frame_sad[4][3] = {
+ { 18000, 18000, 18000 }, // HDRES CPU 9
+ { 25000, 25000, 25000 }, // MIDRES CPU 9
+ { 40000, 30000, 20000 }, // HDRES CPU10
+ { 30000, 25000, 20000 } // MIDRES CPU 10
+ };
+ int th_idx = cpi->sf.rt_sf.sad_based_adp_altref_lag - 1;
+ assert(th_idx < 4);
+ if (rc->avg_source_sad > th_frame_sad[th_idx][0])
+ lag_alt = 3;
+ else if (rc->avg_source_sad > th_frame_sad[th_idx][1])
+ lag_alt = 4;
+ else if (rc->avg_source_sad > th_frame_sad[th_idx][2])
+ lag_alt = 5;
+ }
+ // This defines the reference structure for 1 layer (non-svc) RTC encoding.
+ // To avoid the internal/default reference structure for non-realtime
+ // overwriting this behavior, we use the "svc" ref parameters from the
+ // external control SET_SVC_REF_FRAME_CONFIG.
+ // TODO(marpan): rename that control and the related internal parameters
+ // to rtc_ref.
+ for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) rtc_ref->ref_idx[i] = 7;
+ for (int i = 0; i < REF_FRAMES; ++i) rtc_ref->refresh[i] = 0;
+ // Set the reference frame flags.
+ ext_flags->ref_frame_flags ^= AOM_LAST_FLAG;
+ if (!cpi->sf.rt_sf.force_only_last_ref) {
+ ext_flags->ref_frame_flags ^= AOM_ALT_FLAG;
+ ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG;
+ if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1])
+ ext_flags->ref_frame_flags ^= AOM_LAST2_FLAG;
+ }
+ const int sh = 6;
+ // Moving index slot for last: 0 - (sh - 1).
+ if (frame_number > 1) last_idx = ((frame_number - 1) % sh);
+ // Moving index for refresh of last: one ahead for next frame.
+ last_idx_refresh = (frame_number % sh);
+ gld_idx = 6;
+
+ // Moving index for alt_ref, lag behind LAST by lag_alt frames.
+ if (frame_number > lag_alt) alt_ref_idx = ((frame_number - lag_alt) % sh);
+ if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) {
+ // Moving index for LAST2, lag behind LAST by 2 frames.
+ if (frame_number > 2) last2_idx = ((frame_number - 2) % sh);
+ }
+ rtc_ref->ref_idx[0] = last_idx; // LAST
+ rtc_ref->ref_idx[1] = last_idx_refresh; // LAST2 (for refresh of last).
+ if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) {
+ rtc_ref->ref_idx[1] = last2_idx; // LAST2
+ rtc_ref->ref_idx[2] = last_idx_refresh; // LAST3 (for refresh of last).
+ }
+ rtc_ref->ref_idx[3] = gld_idx; // GOLDEN
+ rtc_ref->ref_idx[6] = alt_ref_idx; // ALT_REF
+ // Refresh this slot, which will become LAST on next frame.
+ rtc_ref->refresh[last_idx_refresh] = 1;
+ // Update GOLDEN on period for fixed slot case.
+ if (gf_update && cm->current_frame.frame_type != KEY_FRAME) {
+ ext_refresh_frame_flags->golden_frame = 1;
+ rtc_ref->refresh[gld_idx] = 1;
+ }
+ rtc_ref->gld_idx_1layer = gld_idx;
+ // Set the flag to reduce the number of reference frame buffers used.
+ // This assumes that slot 7 is never used.
+ cpi->rt_reduce_num_ref_buffers = 1;
+ cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[0] < 7);
+ cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[1] < 7);
+ cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[3] < 7);
+ cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[6] < 7);
+ if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1])
+ cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[2] < 7);
+}
+
+/*!\brief Check for scene detection, for 1 pass real-time mode.
+ *
+ * Compute average source sad (temporal sad: between current source and
+ * previous source) over a subset of superblocks. Use this is detect big changes
+ * in content and set the \c cpi->rc.high_source_sad flag.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ * \param[in] frame_input Current and last input source frames
+ *
+ * \remark Nothing is returned. Instead the flag \c cpi->rc.high_source_sad
+ * is set if scene change is detected, and \c cpi->rc.avg_source_sad is updated.
+ */
+static void rc_scene_detection_onepass_rt(AV1_COMP *cpi,
+ const EncodeFrameInput *frame_input) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ YV12_BUFFER_CONFIG const *const unscaled_src = frame_input->source;
+ YV12_BUFFER_CONFIG const *const unscaled_last_src = frame_input->last_source;
+ uint8_t *src_y;
+ int src_ystride;
+ int src_width;
+ int src_height;
+ uint8_t *last_src_y;
+ int last_src_ystride;
+ int last_src_width;
+ int last_src_height;
+ int width = cm->width;
+ int height = cm->height;
+ if (cpi->svc.number_spatial_layers > 1) {
+ width = cpi->oxcf.frm_dim_cfg.width;
+ height = cpi->oxcf.frm_dim_cfg.height;
+ }
+ if (width != cm->render_width || height != cm->render_height ||
+ unscaled_src == NULL || unscaled_last_src == NULL) {
+ aom_free(cpi->src_sad_blk_64x64);
+ cpi->src_sad_blk_64x64 = NULL;
+ }
+ if (unscaled_src == NULL || unscaled_last_src == NULL) return;
+ src_y = unscaled_src->y_buffer;
+ src_ystride = unscaled_src->y_stride;
+ src_width = unscaled_src->y_width;
+ src_height = unscaled_src->y_height;
+ last_src_y = unscaled_last_src->y_buffer;
+ last_src_ystride = unscaled_last_src->y_stride;
+ last_src_width = unscaled_last_src->y_width;
+ last_src_height = unscaled_last_src->y_height;
+ if (src_width != last_src_width || src_height != last_src_height) {
+ aom_free(cpi->src_sad_blk_64x64);
+ cpi->src_sad_blk_64x64 = NULL;
+ return;
+ }
+ rc->high_source_sad = 0;
+ rc->percent_blocks_with_motion = 0;
+ rc->max_block_source_sad = 0;
+ rc->prev_avg_source_sad = rc->avg_source_sad;
+ int num_mi_cols = cm->mi_params.mi_cols;
+ int num_mi_rows = cm->mi_params.mi_rows;
+ if (cpi->svc.number_spatial_layers > 1) {
+ num_mi_cols = cpi->svc.mi_cols_full_resoln;
+ num_mi_rows = cpi->svc.mi_rows_full_resoln;
+ }
+ int num_zero_temp_sad = 0;
+ uint32_t min_thresh = 10000;
+ if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) {
+ min_thresh = cm->width * cm->height <= 320 * 240 && cpi->framerate < 10.0
+ ? 50000
+ : 100000;
+ }
+ const BLOCK_SIZE bsize = BLOCK_64X64;
+ // Loop over sub-sample of frame, compute average sad over 64x64 blocks.
+ uint64_t avg_sad = 0;
+ uint64_t tmp_sad = 0;
+ int num_samples = 0;
+ const int thresh =
+ cm->width * cm->height <= 320 * 240 && cpi->framerate < 10.0 ? 5 : 6;
+ // SAD is computed on 64x64 blocks
+ const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
+ ? (cm->seq_params->mib_size >> 1)
+ : cm->seq_params->mib_size;
+ const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
+ const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb;
+ uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5
+ int num_low_var_high_sumdiff = 0;
+ int light_change = 0;
+ // Flag to check light change or not.
+ const int check_light_change = 0;
+ // TODO(marpan): There seems some difference along the bottom border when
+ // using the source_last_tl0 for last_source (used for temporal layers or
+ // when previous frame is dropped).
+ // Remove this bord parameter when issue is resolved: difference is that
+ // non-zero sad exists along bottom border even though source is static.
+ const int border =
+ rc->prev_frame_is_dropped || cpi->svc.number_temporal_layers > 1;
+ // Store blkwise SAD for later use
+ if (width == cm->render_width && height == cm->render_height) {
+ if (cpi->src_sad_blk_64x64 == NULL) {
+ CHECK_MEM_ERROR(cm, cpi->src_sad_blk_64x64,
+ (uint64_t *)aom_calloc(sb_cols * sb_rows,
+ sizeof(*cpi->src_sad_blk_64x64)));
+ }
+ }
+ // Avoid bottom and right border.
+ for (int sbi_row = 0; sbi_row < sb_rows - border; ++sbi_row) {
+ for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
+ tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
+ last_src_ystride);
+ if (cpi->src_sad_blk_64x64 != NULL)
+ cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad;
+ if (check_light_change) {
+ unsigned int sse, variance;
+ variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
+ last_src_ystride, &sse);
+ // Note: sse - variance = ((sum * sum) >> 12)
+ // Detect large lighting change.
+ if (variance < (sse >> 1) && (sse - variance) > sum_sq_thresh) {
+ num_low_var_high_sumdiff++;
+ }
+ }
+ avg_sad += tmp_sad;
+ num_samples++;
+ if (tmp_sad == 0) num_zero_temp_sad++;
+ if (tmp_sad > rc->max_block_source_sad)
+ rc->max_block_source_sad = tmp_sad;
+
+ src_y += 64;
+ last_src_y += 64;
+ }
+ src_y += (src_ystride << 6) - (sb_cols << 6);
+ last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
+ }
+ if (check_light_change && num_samples > 0 &&
+ num_low_var_high_sumdiff > (num_samples >> 1))
+ light_change = 1;
+ if (num_samples > 0) avg_sad = avg_sad / num_samples;
+ // Set high_source_sad flag if we detect very high increase in avg_sad
+ // between current and previous frame value(s). Use minimum threshold
+ // for cases where there is small change from content that is completely
+ // static.
+ if (!light_change &&
+ avg_sad >
+ AOMMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) &&
+ rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
+ num_zero_temp_sad < 3 * (num_samples >> 2))
+ rc->high_source_sad = 1;
+ else
+ rc->high_source_sad = 0;
+ rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2;
+ rc->frame_source_sad = avg_sad;
+ if (num_samples > 0)
+ rc->percent_blocks_with_motion =
+ ((num_samples - num_zero_temp_sad) * 100) / num_samples;
+ // Scene detection is only on base SLO, and using full/orignal resolution.
+ // Pass the state to the upper spatial layers.
+ if (cpi->svc.number_spatial_layers > 1) {
+ SVC *svc = &cpi->svc;
+ for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
+ int tl = svc->temporal_layer_id;
+ const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ lrc->high_source_sad = rc->high_source_sad;
+ lrc->frame_source_sad = rc->frame_source_sad;
+ lrc->avg_source_sad = rc->avg_source_sad;
+ lrc->percent_blocks_with_motion = rc->percent_blocks_with_motion;
+ lrc->max_block_source_sad = rc->max_block_source_sad;
+ }
+ }
+}
+
+/*!\brief Set the GF baseline interval for 1 pass real-time mode.
+ *
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ * \param[in] frame_type frame type
+ *
+ * \return Return GF update flag, and update the \c cpi->rc with
+ * the next GF interval settings.
+ */
+static int set_gf_interval_update_onepass_rt(AV1_COMP *cpi,
+ FRAME_TYPE frame_type) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int gf_update = 0;
+ const int resize_pending = is_frame_resize_pending(cpi);
+ // GF update based on frames_till_gf_update_due, also
+ // force upddate on resize pending frame or for scene change.
+ if ((resize_pending || rc->high_source_sad ||
+ rc->frames_till_gf_update_due == 0) &&
+ cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) {
+ set_baseline_gf_interval(cpi, frame_type);
+ gf_update = 1;
+ }
+ return gf_update;
+}
+
+static void resize_reset_rc(AV1_COMP *cpi, int resize_width, int resize_height,
+ int prev_width, int prev_height) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ SVC *const svc = &cpi->svc;
+ int target_bits_per_frame;
+ int active_worst_quality;
+ int qindex;
+ double tot_scale_change = (double)(resize_width * resize_height) /
+ (double)(prev_width * prev_height);
+ // Disable the skip mv search for svc on resize frame.
+ svc->skip_mvsearch_last = 0;
+ svc->skip_mvsearch_gf = 0;
+ svc->skip_mvsearch_altref = 0;
+ // Reset buffer level to optimal, update target size.
+ p_rc->buffer_level = p_rc->optimal_buffer_level;
+ p_rc->bits_off_target = p_rc->optimal_buffer_level;
+ rc->this_frame_target =
+ av1_calc_pframe_target_size_one_pass_cbr(cpi, INTER_FRAME);
+ target_bits_per_frame = rc->this_frame_target;
+ if (tot_scale_change > 4.0)
+ p_rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
+ else if (tot_scale_change > 1.0)
+ p_rc->avg_frame_qindex[INTER_FRAME] =
+ (p_rc->avg_frame_qindex[INTER_FRAME] + rc->worst_quality) >> 1;
+ active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi);
+ qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
+ active_worst_quality, resize_width, resize_height);
+ // If resize is down, check if projected q index is close to worst_quality,
+ // and if so, reduce the rate correction factor (since likely can afford
+ // lower q for resized frame).
+ if (tot_scale_change < 1.0 && qindex > 90 * rc->worst_quality / 100)
+ p_rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
+ // If resize is back up: check if projected q index is too much above the
+ // previous index, and if so, reduce the rate correction factor
+ // (since prefer to keep q for resized frame at least closet to previous q).
+ // Also check if projected qindex is close to previous qindex, if so
+ // increase correction factor (to push qindex higher and avoid overshoot).
+ if (tot_scale_change >= 1.0) {
+ if (tot_scale_change < 4.0 &&
+ qindex > 130 * p_rc->last_q[INTER_FRAME] / 100)
+ p_rc->rate_correction_factors[INTER_NORMAL] *= 0.8;
+ if (qindex <= 120 * p_rc->last_q[INTER_FRAME] / 100)
+ p_rc->rate_correction_factors[INTER_NORMAL] *= 1.5;
+ }
+ if (svc->number_temporal_layers > 1) {
+ // Apply the same rate control reset to all temporal layers.
+ for (int tl = 0; tl < svc->number_temporal_layers; tl++) {
+ LAYER_CONTEXT *lc = NULL;
+ lc = &svc->layer_context[svc->spatial_layer_id *
+ svc->number_temporal_layers +
+ tl];
+ lc->rc.resize_state = rc->resize_state;
+ lc->p_rc.buffer_level = lc->p_rc.optimal_buffer_level;
+ lc->p_rc.bits_off_target = lc->p_rc.optimal_buffer_level;
+ lc->p_rc.rate_correction_factors[INTER_NORMAL] =
+ p_rc->rate_correction_factors[INTER_NORMAL];
+ lc->p_rc.avg_frame_qindex[INTER_FRAME] =
+ p_rc->avg_frame_qindex[INTER_FRAME];
+ }
+ }
+}
+
+/*!\brief ChecK for resize based on Q, for 1 pass real-time mode.
+ *
+ * Check if we should resize, based on average QP from past x frames.
+ * Only allow for resize at most 1/2 scale down for now, Scaling factor
+ * for each step may be 3/4 or 1/2.
+ *
+ * \ingroup rate_control
+ * \param[in] cpi Top level encoder structure
+ *
+ * \remark Return resized width/height in \c cpi->resize_pending_params,
+ * and update some resize counters in \c rc.
+ */
+static void dynamic_resize_one_pass_cbr(AV1_COMP *cpi) {
+ const AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ RESIZE_ACTION resize_action = NO_RESIZE;
+ const int avg_qp_thr1 = 70;
+ const int avg_qp_thr2 = 50;
+ // Don't allow for resized frame to go below 160x90, resize in steps of 3/4.
+ const int min_width = (160 * 4) / 3;
+ const int min_height = (90 * 4) / 3;
+ int down_size_on = 1;
+ // Don't resize on key frame; reset the counters on key frame.
+ if (cm->current_frame.frame_type == KEY_FRAME) {
+ rc->resize_avg_qp = 0;
+ rc->resize_count = 0;
+ rc->resize_buffer_underflow = 0;
+ return;
+ }
+ // No resizing down if frame size is below some limit.
+ if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0;
+
+ // Resize based on average buffer underflow and QP over some window.
+ // Ignore samples close to key frame, since QP is usually high after key.
+ if (cpi->rc.frames_since_key > cpi->framerate) {
+ const int window = AOMMIN(30, (int)(2 * cpi->framerate));
+ rc->resize_avg_qp += p_rc->last_q[INTER_FRAME];
+ if (cpi->ppi->p_rc.buffer_level <
+ (int)(30 * p_rc->optimal_buffer_level / 100))
+ ++rc->resize_buffer_underflow;
+ ++rc->resize_count;
+ // Check for resize action every "window" frames.
+ if (rc->resize_count >= window) {
+ int avg_qp = rc->resize_avg_qp / rc->resize_count;
+ // Resize down if buffer level has underflowed sufficient amount in past
+ // window, and we are at original or 3/4 of original resolution.
+ // Resize back up if average QP is low, and we are currently in a resized
+ // down state, i.e. 1/2 or 3/4 of original resolution.
+ // Currently, use a flag to turn 3/4 resizing feature on/off.
+ if (rc->resize_buffer_underflow > (rc->resize_count >> 2) &&
+ down_size_on) {
+ if (rc->resize_state == THREE_QUARTER) {
+ resize_action = DOWN_ONEHALF;
+ rc->resize_state = ONE_HALF;
+ } else if (rc->resize_state == ORIG) {
+ resize_action = DOWN_THREEFOUR;
+ rc->resize_state = THREE_QUARTER;
+ }
+ } else if (rc->resize_state != ORIG &&
+ avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
+ if (rc->resize_state == THREE_QUARTER ||
+ avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100) {
+ resize_action = UP_ORIG;
+ rc->resize_state = ORIG;
+ } else if (rc->resize_state == ONE_HALF) {
+ resize_action = UP_THREEFOUR;
+ rc->resize_state = THREE_QUARTER;
+ }
+ }
+ // Reset for next window measurement.
+ rc->resize_avg_qp = 0;
+ rc->resize_count = 0;
+ rc->resize_buffer_underflow = 0;
+ }
+ }
+ // If decision is to resize, reset some quantities, and check is we should
+ // reduce rate correction factor,
+ if (resize_action != NO_RESIZE) {
+ int resize_width = cpi->oxcf.frm_dim_cfg.width;
+ int resize_height = cpi->oxcf.frm_dim_cfg.height;
+ int resize_scale_num = 1;
+ int resize_scale_den = 1;
+ if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
+ resize_scale_num = 3;
+ resize_scale_den = 4;
+ } else if (resize_action == DOWN_ONEHALF) {
+ resize_scale_num = 1;
+ resize_scale_den = 2;
+ }
+ resize_width = resize_width * resize_scale_num / resize_scale_den;
+ resize_height = resize_height * resize_scale_num / resize_scale_den;
+ resize_reset_rc(cpi, resize_width, resize_height, cm->width, cm->height);
+ }
+ return;
+}
+
+static INLINE int set_key_frame(AV1_COMP *cpi, unsigned int frame_flags) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ AV1_COMMON *const cm = &cpi->common;
+ SVC *const svc = &cpi->svc;
+
+ // Very first frame has to be key frame.
+ if (cm->current_frame.frame_number == 0) return 1;
+ // Set key frame if forced by frame flags.
+ if (frame_flags & FRAMEFLAGS_KEY) return 1;
+ if (!cpi->ppi->use_svc) {
+ // Non-SVC
+ if (cpi->oxcf.kf_cfg.auto_key && rc->frames_to_key == 0) return 1;
+ } else {
+ // SVC
+ if (svc->spatial_layer_id == 0 &&
+ (cpi->oxcf.kf_cfg.auto_key &&
+ (cpi->oxcf.kf_cfg.key_freq_max == 0 ||
+ svc->current_superframe % cpi->oxcf.kf_cfg.key_freq_max == 0)))
+ return 1;
+ }
+
+ return 0;
+}
+
+// Set to true if this frame is a recovery frame, for 1 layer RPS,
+// and whether we should apply some boost (QP, adjust speed features, etc).
+// Recovery frame here means frame whose closest reference suddenly
+// switched from previous frame to one much further away.
+// TODO(marpan): Consider adding on/off flag to SVC_REF_FRAME_CONFIG to
+// allow more control for applications.
+static bool set_flag_rps_bias_recovery_frame(const AV1_COMP *const cpi) {
+ if (cpi->ppi->rtc_ref.set_ref_frame_config &&
+ cpi->svc.number_temporal_layers == 1 &&
+ cpi->svc.number_spatial_layers == 1 &&
+ cpi->ppi->rtc_ref.reference_was_previous_frame) {
+ int min_dist = av1_svc_get_min_ref_dist(cpi);
+ // Only consider boost for this frame if its closest reference is further
+ // than x frames away, using x = 4 for now.
+ if (min_dist != INT_MAX && min_dist > 4) return true;
+ }
+ return false;
+}
+
+void av1_get_one_pass_rt_params(AV1_COMP *cpi, FRAME_TYPE *const frame_type,
+ const EncodeFrameInput *frame_input,
+ unsigned int frame_flags) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ AV1_COMMON *const cm = &cpi->common;
+ GF_GROUP *const gf_group = &cpi->ppi->gf_group;
+ SVC *const svc = &cpi->svc;
+ ResizePendingParams *const resize_pending_params =
+ &cpi->resize_pending_params;
+ int target;
+ const int layer =
+ LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ if (cpi->ppi->use_svc) {
+ av1_update_temporal_layer_framerate(cpi);
+ av1_restore_layer_context(cpi);
+ }
+ cpi->ppi->rtc_ref.bias_recovery_frame = set_flag_rps_bias_recovery_frame(cpi);
+ // Set frame type.
+ if (set_key_frame(cpi, frame_flags)) {
+ *frame_type = KEY_FRAME;
+ p_rc->this_key_frame_forced =
+ cm->current_frame.frame_number != 0 && rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.kf_cfg.key_freq_max;
+ p_rc->kf_boost = DEFAULT_KF_BOOST_RT;
+ gf_group->update_type[cpi->gf_frame_index] = KF_UPDATE;
+ gf_group->frame_type[cpi->gf_frame_index] = KEY_FRAME;
+ gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_RESET;
+ if (cpi->ppi->use_svc) {
+ if (cm->current_frame.frame_number > 0)
+ av1_svc_reset_temporal_layers(cpi, 1);
+ svc->layer_context[layer].is_key_frame = 1;
+ }
+ rc->frame_number_encoded = 0;
+ cpi->ppi->rtc_ref.non_reference_frame = 0;
+ } else {
+ *frame_type = INTER_FRAME;
+ gf_group->update_type[cpi->gf_frame_index] = LF_UPDATE;
+ gf_group->frame_type[cpi->gf_frame_index] = INTER_FRAME;
+ gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_UPDATE;
+ if (cpi->ppi->use_svc) {
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ lc->is_key_frame =
+ svc->spatial_layer_id == 0
+ ? 0
+ : svc->layer_context[svc->temporal_layer_id].is_key_frame;
+ // If the user is setting the reference structure with
+ // set_ref_frame_config and did not set any references, set the
+ // frame type to Intra-only.
+ if (cpi->ppi->rtc_ref.set_ref_frame_config) {
+ int no_references_set = 1;
+ for (int i = 0; i < INTER_REFS_PER_FRAME; i++) {
+ if (cpi->ppi->rtc_ref.reference[i]) {
+ no_references_set = 0;
+ break;
+ }
+ }
+ // Set to intra_only_frame if no references are set.
+ // The stream can start decoding on INTRA_ONLY_FRAME so long as the
+ // layer with the intra_only_frame doesn't signal a reference to a slot
+ // that hasn't been set yet.
+ if (no_references_set) *frame_type = INTRA_ONLY_FRAME;
+ }
+ }
+ }
+ // Check for scene change: for SVC check on base spatial layer only.
+ if (cpi->sf.rt_sf.check_scene_detection && svc->spatial_layer_id == 0) {
+ if (rc->prev_coded_width == cm->width &&
+ rc->prev_coded_height == cm->height) {
+ rc_scene_detection_onepass_rt(cpi, frame_input);
+ } else {
+ aom_free(cpi->src_sad_blk_64x64);
+ cpi->src_sad_blk_64x64 = NULL;
+ }
+ }
+ // Check for dynamic resize, for single spatial layer for now.
+ // For temporal layers only check on base temporal layer.
+ if (cpi->oxcf.resize_cfg.resize_mode == RESIZE_DYNAMIC) {
+ if (svc->number_spatial_layers == 1 && svc->temporal_layer_id == 0)
+ dynamic_resize_one_pass_cbr(cpi);
+ if (rc->resize_state == THREE_QUARTER) {
+ resize_pending_params->width = (3 + cpi->oxcf.frm_dim_cfg.width * 3) >> 2;
+ resize_pending_params->height =
+ (3 + cpi->oxcf.frm_dim_cfg.height * 3) >> 2;
+ } else if (rc->resize_state == ONE_HALF) {
+ resize_pending_params->width = (1 + cpi->oxcf.frm_dim_cfg.width) >> 1;
+ resize_pending_params->height = (1 + cpi->oxcf.frm_dim_cfg.height) >> 1;
+ } else {
+ resize_pending_params->width = cpi->oxcf.frm_dim_cfg.width;
+ resize_pending_params->height = cpi->oxcf.frm_dim_cfg.height;
+ }
+ } else if (is_frame_resize_pending(cpi)) {
+ resize_reset_rc(cpi, resize_pending_params->width,
+ resize_pending_params->height, cm->width, cm->height);
+ }
+ // Set the GF interval and update flag.
+ if (!rc->rtc_external_ratectrl)
+ set_gf_interval_update_onepass_rt(cpi, *frame_type);
+ // Set target size.
+ if (cpi->oxcf.rc_cfg.mode == AOM_CBR) {
+ if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) {
+ target = av1_calc_iframe_target_size_one_pass_cbr(cpi);
+ } else {
+ target = av1_calc_pframe_target_size_one_pass_cbr(
+ cpi, gf_group->update_type[cpi->gf_frame_index]);
+ }
+ } else {
+ if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) {
+ target = av1_calc_iframe_target_size_one_pass_vbr(cpi);
+ } else {
+ target = av1_calc_pframe_target_size_one_pass_vbr(
+ cpi, gf_group->update_type[cpi->gf_frame_index]);
+ }
+ }
+ if (cpi->oxcf.rc_cfg.mode == AOM_Q)
+ rc->active_worst_quality = cpi->oxcf.rc_cfg.cq_level;
+
+ av1_rc_set_frame_target(cpi, target, cm->width, cm->height);
+ rc->base_frame_target = target;
+ cm->current_frame.frame_type = *frame_type;
+ // For fixed mode SVC: if KSVC is enabled remove inter layer
+ // prediction on spatial enhancement layer frames for frames
+ // whose base is not KEY frame.
+ if (cpi->ppi->use_svc && !svc->use_flexible_mode && svc->ksvc_fixed_mode &&
+ svc->number_spatial_layers > 1 &&
+ !svc->layer_context[layer].is_key_frame) {
+ ExternalFlags *const ext_flags = &cpi->ext_flags;
+ ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG;
+ }
+}
+
+int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) {
+ AV1_COMMON *const cm = &cpi->common;
+ PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
+ double rate_correction_factor =
+ cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL];
+ const int target_size = cpi->rc.avg_frame_bandwidth;
+ double new_correction_factor;
+ int target_bits_per_mb;
+ double q2;
+ int enumerator;
+ int is_screen_content = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN);
+ *q = (3 * cpi->rc.worst_quality + *q) >> 2;
+ // For screen content use the max-q set by the user to allow for less
+ // overshoot on slide changes.
+ if (is_screen_content) *q = cpi->rc.worst_quality;
+ cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
+ // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
+ // these parameters will affect QP selection for subsequent frames. If they
+ // have settled down to a very different (low QP) state, then not adjusting
+ // them may cause next frame to select low QP and overshoot again.
+ p_rc->avg_frame_qindex[INTER_FRAME] = *q;
+ p_rc->buffer_level = p_rc->optimal_buffer_level;
+ p_rc->bits_off_target = p_rc->optimal_buffer_level;
+ // Reset rate under/over-shoot flags.
+ cpi->rc.rc_1_frame = 0;
+ cpi->rc.rc_2_frame = 0;
+ // Adjust rate correction factor.
+ target_bits_per_mb =
+ (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->mi_params.MBs);
+ // Reset rate correction factor: for now base it on target_bits_per_mb
+ // and qp (==max_QP). This comes from the inverse computation of
+ // av1_rc_bits_per_mb().
+ q2 = av1_convert_qindex_to_q(*q, cm->seq_params->bit_depth);
+ enumerator = av1_get_bpmb_enumerator(INTER_NORMAL, is_screen_content);
+ new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
+ if (new_correction_factor > rate_correction_factor) {
+ rate_correction_factor =
+ (new_correction_factor + rate_correction_factor) / 2.0;
+ if (rate_correction_factor > MAX_BPB_FACTOR)
+ rate_correction_factor = MAX_BPB_FACTOR;
+ cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL] =
+ rate_correction_factor;
+ }
+ // For temporal layers: reset the rate control parameters across all
+ // temporal layers.
+ if (cpi->svc.number_temporal_layers > 1) {
+ SVC *svc = &cpi->svc;
+ for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
+ int sl = svc->spatial_layer_id;
+ const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc;
+ lp_rc->avg_frame_qindex[INTER_FRAME] = *q;
+ lp_rc->buffer_level = lp_rc->optimal_buffer_level;
+ lp_rc->bits_off_target = lp_rc->optimal_buffer_level;
+ lrc->rc_1_frame = 0;
+ lrc->rc_2_frame = 0;
+ lp_rc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
+ }
+ }
+ return 1;
+}