diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /third_party/aom/av1/encoder/saliency_map.c | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/encoder/saliency_map.c')
-rw-r--r-- | third_party/aom/av1/encoder/saliency_map.c | 1414 |
1 files changed, 1414 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/saliency_map.c b/third_party/aom/av1/encoder/saliency_map.c new file mode 100644 index 0000000000..30019bbec0 --- /dev/null +++ b/third_party/aom/av1/encoder/saliency_map.c @@ -0,0 +1,1414 @@ +/* + * Copyright (c) 2023, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#include <assert.h> +#include <float.h> +#include <string.h> + +#include "av1/encoder/encoder.h" +#include "av1/encoder/encoder_utils.h" +#include "av1/encoder/firstpass.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/saliency_map.h" + +// The Gabor filter is generated by setting the parameters as: +// ksize = 9 +// sigma = 1 +// theta = y*np.pi/4, where y /in {0, 1, 2, 3}, i.e., 0, 45, 90, 135 degree +// lambda1 = 1 +// gamma=0.8 +// phi =0 +static const double kGaborFilter[4][9][9] = { // [angle: 0, 45, 90, 135 + // degree][ksize][ksize] + { { 2.0047323e-06, 6.6387620e-05, 8.0876675e-04, 3.6246411e-03, 5.9760227e-03, + 3.6246411e-03, 8.0876675e-04, 6.6387620e-05, 2.0047323e-06 }, + { 1.8831115e-05, 6.2360091e-04, 7.5970138e-03, 3.4047455e-02, 5.6134764e-02, + 3.4047455e-02, 7.5970138e-03, 6.2360091e-04, 1.8831115e-05 }, + { 9.3271126e-05, 3.0887155e-03, 3.7628256e-02, 1.6863814e-01, 2.7803731e-01, + 1.6863814e-01, 3.7628256e-02, 3.0887155e-03, 9.3271126e-05 }, + { 2.4359586e-04, 8.0667874e-03, 9.8273583e-02, 4.4043165e-01, 7.2614902e-01, + 4.4043165e-01, 9.8273583e-02, 8.0667874e-03, 2.4359586e-04 }, + { 3.3546262e-04, 1.1108996e-02, 1.3533528e-01, 6.0653067e-01, 1.0000000e+00, + 6.0653067e-01, 1.3533528e-01, 1.1108996e-02, 3.3546262e-04 }, + { 2.4359586e-04, 8.0667874e-03, 9.8273583e-02, 4.4043165e-01, 7.2614902e-01, + 4.4043165e-01, 9.8273583e-02, 8.0667874e-03, 2.4359586e-04 }, + { 9.3271126e-05, 3.0887155e-03, 3.7628256e-02, 1.6863814e-01, 2.7803731e-01, + 1.6863814e-01, 3.7628256e-02, 3.0887155e-03, 9.3271126e-05 }, + { 1.8831115e-05, 6.2360091e-04, 7.5970138e-03, 3.4047455e-02, 5.6134764e-02, + 3.4047455e-02, 7.5970138e-03, 6.2360091e-04, 1.8831115e-05 }, + { 2.0047323e-06, 6.6387620e-05, 8.0876675e-04, 3.6246411e-03, 5.9760227e-03, + 3.6246411e-03, 8.0876675e-04, 6.6387620e-05, 2.0047323e-06 } }, + + { { -6.2165498e-08, 3.8760313e-06, 3.0079011e-06, -4.4602581e-04, + 6.6981313e-04, 1.3962291e-03, -9.9486928e-04, -8.1631159e-05, + 3.5712848e-05 }, + { 3.8760313e-06, 5.7044272e-06, -1.6041942e-03, 4.5687673e-03, + 1.8061366e-02, -2.4406660e-02, -3.7979286e-03, 3.1511115e-03, + -8.1631159e-05 }, + { 3.0079011e-06, -1.6041942e-03, 8.6645801e-03, 6.4960226e-02, + -1.6647682e-01, -4.9129307e-02, 7.7304743e-02, -3.7979286e-03, + -9.9486928e-04 }, + { -4.4602581e-04, 4.5687673e-03, 6.4960226e-02, -3.1572008e-01, + -1.7670043e-01, 5.2729243e-01, -4.9129307e-02, -2.4406660e-02, + 1.3962291e-03 }, + { 6.6981313e-04, 1.8061366e-02, -1.6647682e-01, -1.7670043e-01, + 1.0000000e+00, -1.7670043e-01, -1.6647682e-01, 1.8061366e-02, + 6.6981313e-04 }, + { 1.3962291e-03, -2.4406660e-02, -4.9129307e-02, 5.2729243e-01, + -1.7670043e-01, -3.1572008e-01, 6.4960226e-02, 4.5687673e-03, + -4.4602581e-04 }, + { -9.9486928e-04, -3.7979286e-03, 7.7304743e-02, -4.9129307e-02, + -1.6647682e-01, 6.4960226e-02, 8.6645801e-03, -1.6041942e-03, + 3.0079011e-06 }, + { -8.1631159e-05, 3.1511115e-03, -3.7979286e-03, -2.4406660e-02, + 1.8061366e-02, 4.5687673e-03, -1.6041942e-03, 5.7044272e-06, + 3.8760313e-06 }, + { 3.5712848e-05, -8.1631159e-05, -9.9486928e-04, 1.3962291e-03, + 6.6981313e-04, -4.4602581e-04, 3.0079011e-06, 3.8760313e-06, + -6.2165498e-08 } }, + + { { 2.0047323e-06, 1.8831115e-05, 9.3271126e-05, 2.4359586e-04, 3.3546262e-04, + 2.4359586e-04, 9.3271126e-05, 1.8831115e-05, 2.0047323e-06 }, + { 6.6387620e-05, 6.2360091e-04, 3.0887155e-03, 8.0667874e-03, 1.1108996e-02, + 8.0667874e-03, 3.0887155e-03, 6.2360091e-04, 6.6387620e-05 }, + { 8.0876675e-04, 7.5970138e-03, 3.7628256e-02, 9.8273583e-02, 1.3533528e-01, + 9.8273583e-02, 3.7628256e-02, 7.5970138e-03, 8.0876675e-04 }, + { 3.6246411e-03, 3.4047455e-02, 1.6863814e-01, 4.4043165e-01, 6.0653067e-01, + 4.4043165e-01, 1.6863814e-01, 3.4047455e-02, 3.6246411e-03 }, + { 5.9760227e-03, 5.6134764e-02, 2.7803731e-01, 7.2614902e-01, 1.0000000e+00, + 7.2614902e-01, 2.7803731e-01, 5.6134764e-02, 5.9760227e-03 }, + { 3.6246411e-03, 3.4047455e-02, 1.6863814e-01, 4.4043165e-01, 6.0653067e-01, + 4.4043165e-01, 1.6863814e-01, 3.4047455e-02, 3.6246411e-03 }, + { 8.0876675e-04, 7.5970138e-03, 3.7628256e-02, 9.8273583e-02, 1.3533528e-01, + 9.8273583e-02, 3.7628256e-02, 7.5970138e-03, 8.0876675e-04 }, + { 6.6387620e-05, 6.2360091e-04, 3.0887155e-03, 8.0667874e-03, 1.1108996e-02, + 8.0667874e-03, 3.0887155e-03, 6.2360091e-04, 6.6387620e-05 }, + { 2.0047323e-06, 1.8831115e-05, 9.3271126e-05, 2.4359586e-04, 3.3546262e-04, + 2.4359586e-04, 9.3271126e-05, 1.8831115e-05, 2.0047323e-06 } }, + + { { 3.5712848e-05, -8.1631159e-05, -9.9486928e-04, 1.3962291e-03, + 6.6981313e-04, -4.4602581e-04, 3.0079011e-06, 3.8760313e-06, + -6.2165498e-08 }, + { -8.1631159e-05, 3.1511115e-03, -3.7979286e-03, -2.4406660e-02, + 1.8061366e-02, 4.5687673e-03, -1.6041942e-03, 5.7044272e-06, + 3.8760313e-06 }, + { -9.9486928e-04, -3.7979286e-03, 7.7304743e-02, -4.9129307e-02, + -1.6647682e-01, 6.4960226e-02, 8.6645801e-03, -1.6041942e-03, + 3.0079011e-06 }, + { 1.3962291e-03, -2.4406660e-02, -4.9129307e-02, 5.2729243e-01, + -1.7670043e-01, -3.1572008e-01, 6.4960226e-02, 4.5687673e-03, + -4.4602581e-04 }, + { 6.6981313e-04, 1.8061366e-02, -1.6647682e-01, -1.7670043e-01, + 1.0000000e+00, -1.7670043e-01, -1.6647682e-01, 1.8061366e-02, + 6.6981313e-04 }, + { -4.4602581e-04, 4.5687673e-03, 6.4960226e-02, -3.1572008e-01, + -1.7670043e-01, 5.2729243e-01, -4.9129307e-02, -2.4406660e-02, + 1.3962291e-03 }, + { 3.0079011e-06, -1.6041942e-03, 8.6645801e-03, 6.4960226e-02, + -1.6647682e-01, -4.9129307e-02, 7.7304743e-02, -3.7979286e-03, + -9.9486928e-04 }, + { 3.8760313e-06, 5.7044272e-06, -1.6041942e-03, 4.5687673e-03, + 1.8061366e-02, -2.4406660e-02, -3.7979286e-03, 3.1511115e-03, + -8.1631159e-05 }, + { -6.2165498e-08, 3.8760313e-06, 3.0079011e-06, -4.4602581e-04, + 6.6981313e-04, 1.3962291e-03, -9.9486928e-04, -8.1631159e-05, + 3.5712848e-05 } } +}; + +// This function is to extract red/green/blue channels, and calculate intensity +// = (r+g+b)/3. Note that it only handles 8bits case now. +// TODO(linzhen): add high bitdepth support. +static void get_color_intensity(const YV12_BUFFER_CONFIG *src, + int subsampling_x, int subsampling_y, + double *cr, double *cg, double *cb, + double *intensity) { + const uint8_t *y = src->buffers[0]; + const uint8_t *u = src->buffers[1]; + const uint8_t *v = src->buffers[2]; + + const int y_height = src->crop_heights[0]; + const int y_width = src->crop_widths[0]; + const int y_stride = src->strides[0]; + const int c_stride = src->strides[1]; + + for (int i = 0; i < y_height; ++i) { + for (int j = 0; j < y_width; ++j) { + cr[i * y_width + j] = + fclamp((double)y[i * y_stride + j] + + 1.370 * (double)(v[(i >> subsampling_y) * c_stride + + (j >> subsampling_x)] - + 128), + 0, 255); + cg[i * y_width + j] = + fclamp((double)y[i * y_stride + j] - + 0.698 * (double)(u[(i >> subsampling_y) * c_stride + + (j >> subsampling_x)] - + 128) - + 0.337 * (double)(v[(i >> subsampling_y) * c_stride + + (j >> subsampling_x)] - + 128), + 0, 255); + cb[i * y_width + j] = + fclamp((double)y[i * y_stride + j] + + 1.732 * (double)(u[(i >> subsampling_y) * c_stride + + (j >> subsampling_x)] - + 128), + 0, 255); + + intensity[i * y_width + j] = + (cr[i * y_width + j] + cg[i * y_width + j] + cb[i * y_width + j]) / + 3.0; + assert(intensity[i * y_width + j] >= 0 && + intensity[i * y_width + j] <= 255); + + intensity[i * y_width + j] /= 256; + cr[i * y_width + j] /= 256; + cg[i * y_width + j] /= 256; + cb[i * y_width + j] /= 256; + } + } +} + +static INLINE double convolve_map(const double *filter, const double *map, + const int size) { + double result = 0; + for (int i = 0; i < size; ++i) { + result += filter[i] * map[i]; // symmetric filter is used + } + return result; +} + +// This function is to decimate the map by half, and apply Gaussian filter on +// top of the downsampled map. +static INLINE void decimate_map(const double *map, int height, int width, + int stride, double *downsampled_map) { + const int new_width = width / 2; + const int window_size = 5; + const double gaussian_filter[25] = { + 1. / 256, 1.0 / 64, 3. / 128, 1. / 64, 1. / 256, 1. / 64, 1. / 16, + 3. / 32, 1. / 16, 1. / 64, 3. / 128, 3. / 32, 9. / 64, 3. / 32, + 3. / 128, 1. / 64, 1. / 16, 3. / 32, 1. / 16, 1. / 64, 1. / 256, + 1. / 64, 3. / 128, 1. / 64, 1. / 256 + }; + + double map_region[25]; + for (int y = 0; y < height - 1; y += 2) { + for (int x = 0; x < width - 1; x += 2) { + int i = 0; + for (int yy = y - window_size / 2; yy <= y + window_size / 2; ++yy) { + for (int xx = x - window_size / 2; xx <= x + window_size / 2; ++xx) { + int yvalue = clamp(yy, 0, height - 1); + int xvalue = clamp(xx, 0, width - 1); + map_region[i++] = map[yvalue * stride + xvalue]; + } + } + downsampled_map[(y / 2) * new_width + (x / 2)] = + convolve_map(gaussian_filter, map_region, window_size * window_size); + } + } +} + +// This function is to upscale the map from in_level size to out_level size. +// Note that the map at "level-1" will upscale the map at "level" by x2. +static INLINE int upscale_map(const double *input, int in_level, int out_level, + int height[9], int width[9], double *output) { + for (int level = in_level; level > out_level; level--) { + const int cur_width = width[level]; + const int cur_height = height[level]; + const int cur_stride = width[level]; + + double *original = (level == in_level) ? (double *)input : output; + + assert(level > 0); + + const int h_upscale = height[level - 1]; + const int w_upscale = width[level - 1]; + const int s_upscale = width[level - 1]; + + double *upscale = aom_malloc(h_upscale * w_upscale * sizeof(*upscale)); + + if (!upscale) { + return 0; + } + + for (int i = 0; i < h_upscale; ++i) { + for (int j = 0; j < w_upscale; ++j) { + const int ii = clamp((i >> 1), 0, cur_height - 1); + const int jj = clamp((j >> 1), 0, cur_width - 1); + upscale[j + i * s_upscale] = (double)original[jj + ii * cur_stride]; + } + } + memcpy(output, upscale, h_upscale * w_upscale * sizeof(double)); + aom_free(upscale); + } + + return 1; +} + +// This function calculates the differences between a fine scale c and a +// coarser scale s yielding the feature maps. c \in {2, 3, 4}, and s = c + +// delta, where delta \in {3, 4}. +static int center_surround_diff(const double *input[9], int height[9], + int width[9], saliency_feature_map *output[6]) { + int j = 0; + for (int k = 2; k < 5; ++k) { + int cur_height = height[k]; + int cur_width = width[k]; + + if (upscale_map(input[k + 3], k + 3, k, height, width, output[j]->buf) == + 0) { + return 0; + } + + for (int r = 0; r < cur_height; ++r) { + for (int c = 0; c < cur_width; ++c) { + output[j]->buf[r * cur_width + c] = + fabs((double)(input[k][r * cur_width + c] - + output[j]->buf[r * cur_width + c])); + } + } + + if (upscale_map(input[k + 4], k + 4, k, height, width, + output[j + 1]->buf) == 0) { + return 0; + } + + for (int r = 0; r < cur_height; ++r) { + for (int c = 0; c < cur_width; ++c) { + output[j + 1]->buf[r * cur_width + c] = + fabs(input[k][r * cur_width + c] - + output[j + 1]->buf[r * cur_width + c]); + } + } + + j += 2; + } + return 1; +} + +// For color channels, the differences is calculated based on "color +// double-opponency". For example, the RG feature map is constructed between a +// fine scale c of R-G component and a coarser scale s of G-R component. +static int center_surround_diff_rgb(const double *input_1[9], + const double *input_2[9], int height[9], + int width[9], + saliency_feature_map *output[6]) { + int j = 0; + for (int k = 2; k < 5; ++k) { + int cur_height = height[k]; + int cur_width = width[k]; + + if (upscale_map(input_2[k + 3], k + 3, k, height, width, output[j]->buf) == + 0) { + return 0; + } + + for (int r = 0; r < cur_height; ++r) { + for (int c = 0; c < cur_width; ++c) { + output[j]->buf[r * cur_width + c] = + fabs((double)(input_1[k][r * cur_width + c] - + output[j]->buf[r * cur_width + c])); + } + } + + if (upscale_map(input_2[k + 4], k + 4, k, height, width, + output[j + 1]->buf) == 0) { + return 0; + } + + for (int r = 0; r < cur_height; ++r) { + for (int c = 0; c < cur_width; ++c) { + output[j + 1]->buf[r * cur_width + c] = + fabs(input_1[k][r * cur_width + c] - + output[j + 1]->buf[r * cur_width + c]); + } + } + + j += 2; + } + return 1; +} + +// This function is to generate Gaussian pyramid images with indexes from 0 to +// 8, and construct the feature maps from calculating the center-surround +// differences. +static int gaussian_pyramid(const double *src, int width[9], int height[9], + saliency_feature_map *dst[6]) { + double *gaussian_map[9]; // scale = 9 + gaussian_map[0] = + (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[0])); + if (!gaussian_map[0]) { + return 0; + } + + memcpy(gaussian_map[0], src, width[0] * height[0] * sizeof(double)); + + for (int i = 1; i < 9; ++i) { + int stride = width[i - 1]; + int new_width = width[i]; + int new_height = height[i]; + + gaussian_map[i] = + (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[i])); + + if (!gaussian_map[i]) { + for (int l = 0; l < i; ++l) { + aom_free(gaussian_map[l]); + } + return 0; + } + + memset(gaussian_map[i], 0, new_width * new_height * sizeof(double)); + + decimate_map(gaussian_map[i - 1], height[i - 1], width[i - 1], stride, + gaussian_map[i]); + } + + if (center_surround_diff((const double **)gaussian_map, height, width, dst) == + 0) { + for (int l = 0; l < 9; ++l) { + aom_free(gaussian_map[l]); + } + return 0; + } + + for (int i = 0; i < 9; ++i) { + aom_free(gaussian_map[i]); + } + return 1; +} + +static int gaussian_pyramid_rgb(double *src_1, double *src_2, int width[9], + int height[9], saliency_feature_map *dst[6]) { + double *gaussian_map[2][9]; // scale = 9 + double *src[2]; + + src[0] = src_1; + src[1] = src_2; + + for (int k = 0; k < 2; ++k) { + gaussian_map[k][0] = (double *)aom_malloc(width[0] * height[0] * + sizeof(*gaussian_map[k][0])); + if (!gaussian_map[k][0]) { + for (int l = 0; l < k; ++l) { + aom_free(gaussian_map[l][0]); + } + return 0; + } + memcpy(gaussian_map[k][0], src[k], width[0] * height[0] * sizeof(double)); + + for (int i = 1; i < 9; ++i) { + int stride = width[i - 1]; + int new_width = width[i]; + int new_height = height[i]; + + gaussian_map[k][i] = (double *)aom_malloc(new_width * new_height * + sizeof(*gaussian_map[k][i])); + if (!gaussian_map[k][i]) { + for (int l = 0; l < k; ++l) { + aom_free(gaussian_map[l][i]); + } + return 0; + } + memset(gaussian_map[k][i], 0, new_width * new_height * sizeof(double)); + decimate_map(gaussian_map[k][i - 1], height[i - 1], width[i - 1], stride, + gaussian_map[k][i]); + } + } + + if (center_surround_diff_rgb((const double **)gaussian_map[0], + (const double **)gaussian_map[1], height, width, + dst) == 0) { + for (int l = 0; l < 2; ++l) { + for (int i = 0; i < 9; ++i) { + aom_free(gaussian_map[l][i]); + } + } + return 0; + } + + for (int l = 0; l < 2; ++l) { + for (int i = 0; i < 9; ++i) { + aom_free(gaussian_map[l][i]); + } + } + return 1; +} + +static int get_feature_map_intensity(double *intensity, int width[9], + int height[9], + saliency_feature_map *i_map[6]) { + if (gaussian_pyramid(intensity, width, height, i_map) == 0) { + return 0; + } + return 1; +} + +static int get_feature_map_rgb(double *cr, double *cg, double *cb, int width[9], + int height[9], saliency_feature_map *rg_map[6], + saliency_feature_map *by_map[6]) { + double *rg_mat = aom_malloc(height[0] * width[0] * sizeof(*rg_mat)); + double *by_mat = aom_malloc(height[0] * width[0] * sizeof(*by_mat)); + double *gr_mat = aom_malloc(height[0] * width[0] * sizeof(*gr_mat)); + double *yb_mat = aom_malloc(height[0] * width[0] * sizeof(*yb_mat)); + + if (!rg_mat || !by_mat || !gr_mat || !yb_mat) { + aom_free(rg_mat); + aom_free(by_mat); + aom_free(gr_mat); + aom_free(yb_mat); + return 0; + } + + double r, g, b, y; + for (int i = 0; i < height[0]; ++i) { + for (int j = 0; j < width[0]; ++j) { + r = AOMMAX(0, cr[i * width[0] + j] - + (cg[i * width[0] + j] + cb[i * width[0] + j]) / 2); + g = AOMMAX(0, cg[i * width[0] + j] - + (cr[i * width[0] + j] + cb[i * width[0] + j]) / 2); + b = AOMMAX(0, cb[i * width[0] + j] - + (cr[i * width[0] + j] + cg[i * width[0] + j]) / 2); + y = AOMMAX(0, (cr[i * width[0] + j] + cg[i * width[0] + j]) / 2 - + fabs(cr[i * width[0] + j] - cg[i * width[0] + j]) / 2 - + cb[i * width[0] + j]); + + rg_mat[i * width[0] + j] = r - g; + by_mat[i * width[0] + j] = b - y; + gr_mat[i * width[0] + j] = g - r; + yb_mat[i * width[0] + j] = y - b; + } + } + + if (gaussian_pyramid_rgb(rg_mat, gr_mat, width, height, rg_map) == 0 || + gaussian_pyramid_rgb(by_mat, yb_mat, width, height, by_map) == 0) { + aom_free(rg_mat); + aom_free(by_mat); + aom_free(gr_mat); + aom_free(yb_mat); + return 0; + } + + aom_free(rg_mat); + aom_free(by_mat); + aom_free(gr_mat); + aom_free(yb_mat); + return 1; +} + +static INLINE void filter2d(const double *input, const double kernel[9][9], + int width, int height, double *output) { + const int window_size = 9; + double map_section[81]; + for (int y = 0; y <= height - 1; ++y) { + for (int x = 0; x <= width - 1; ++x) { + int i = 0; + for (int yy = y - window_size / 2; yy <= y + window_size / 2; ++yy) { + for (int xx = x - window_size / 2; xx <= x + window_size / 2; ++xx) { + int yvalue = clamp(yy, 0, height - 1); + int xvalue = clamp(xx, 0, width - 1); + map_section[i++] = input[yvalue * width + xvalue]; + } + } + + output[y * width + x] = 0; + for (int k = 0; k < window_size; ++k) { + for (int l = 0; l < window_size; ++l) { + output[y * width + x] += + kernel[k][l] * map_section[k * window_size + l]; + } + } + } + } +} + +static int get_feature_map_orientation(const double *intensity, int width[9], + int height[9], + saliency_feature_map *dst[24]) { + double *gaussian_map[9]; + + gaussian_map[0] = + (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[0])); + if (!gaussian_map[0]) { + return 0; + } + memcpy(gaussian_map[0], intensity, width[0] * height[0] * sizeof(double)); + + for (int i = 1; i < 9; ++i) { + int stride = width[i - 1]; + int new_width = width[i]; + int new_height = height[i]; + + gaussian_map[i] = + (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[i])); + if (!gaussian_map[i]) { + for (int l = 0; l < i; ++l) { + aom_free(gaussian_map[l]); + } + return 0; + } + memset(gaussian_map[i], 0, new_width * new_height * sizeof(double)); + decimate_map(gaussian_map[i - 1], height[i - 1], width[i - 1], stride, + gaussian_map[i]); + } + + double *tempGaborOutput[4][9]; //[angle: 0, 45, 90, 135 degree][filter_size] + + for (int i = 2; i < 9; ++i) { + const int cur_height = height[i]; + const int cur_width = width[i]; + for (int j = 0; j < 4; ++j) { + tempGaborOutput[j][i] = (double *)aom_malloc( + cur_height * cur_width * sizeof(*tempGaborOutput[j][i])); + if (!tempGaborOutput[j][i]) { + for (int l = 0; l < 9; ++l) { + aom_free(gaussian_map[l]); + } + for (int h = 0; h < 4; ++h) { + for (int g = 2; g < 9; ++g) { + aom_free(tempGaborOutput[h][g]); + } + } + return 0; + } + filter2d(gaussian_map[i], kGaborFilter[j], cur_width, cur_height, + tempGaborOutput[j][i]); + } + } + + for (int i = 0; i < 9; ++i) { + aom_free(gaussian_map[i]); + } + + saliency_feature_map + *tmp[4][6]; //[angle: 0, 45, 90, 135 degree][filter_size] + + for (int i = 0; i < 6; ++i) { + for (int j = 0; j < 4; ++j) { + tmp[j][i] = dst[j * 6 + i]; + } + } + + for (int j = 0; j < 4; ++j) { + if (center_surround_diff((const double **)tempGaborOutput[j], height, width, + tmp[j]) == 0) { + for (int h = 0; h < 4; ++h) { + for (int g = 2; g < 9; ++g) { + aom_free(tempGaborOutput[h][g]); + } + } + return 0; + } + } + + for (int i = 2; i < 9; ++i) { + for (int j = 0; j < 4; ++j) { + aom_free(tempGaborOutput[j][i]); + } + } + + return 1; +} + +static INLINE void find_min_max(const saliency_feature_map *input, + double *max_value, double *min_value) { + assert(input && input->buf); + *min_value = DBL_MAX; + *max_value = 0.0; + + for (int i = 0; i < input->height; ++i) { + for (int j = 0; j < input->width; ++j) { + assert(input->buf[i * input->width + j] >= 0.0); + *min_value = fmin(input->buf[i * input->width + j], *min_value); + *max_value = fmax(input->buf[i * input->width + j], *max_value); + } + } +} + +static INLINE double average_local_max(const saliency_feature_map *input, + int stepsize) { + int numlocal = 0; + double lmaxmean = 0, lmax = 0, dummy = 0; + saliency_feature_map local_map; + local_map.height = stepsize; + local_map.width = stepsize; + local_map.buf = + (double *)aom_malloc(stepsize * stepsize * sizeof(*local_map.buf)); + + if (!local_map.buf) { + return -1; + } + + for (int y = 0; y < input->height - stepsize; y += stepsize) { + for (int x = 0; x < input->width - stepsize; x += stepsize) { + for (int i = 0; i < stepsize; ++i) { + for (int j = 0; j < stepsize; ++j) { + local_map.buf[i * stepsize + j] = + input->buf[(y + i) * input->width + x + j]; + } + } + + find_min_max(&local_map, &lmax, &dummy); + lmaxmean += lmax; + numlocal++; + } + } + + aom_free(local_map.buf); + + return lmaxmean / numlocal; +} + +// Linear normalization the values in the map to [0,1]. +static void minmax_normalize(saliency_feature_map *input) { + double max_value, min_value; + find_min_max(input, &max_value, &min_value); + + for (int i = 0; i < input->height; ++i) { + for (int j = 0; j < input->width; ++j) { + if (max_value != min_value) { + input->buf[i * input->width + j] = + input->buf[i * input->width + j] / (max_value - min_value) + + min_value / (min_value - max_value); + } else { + input->buf[i * input->width + j] -= min_value; + } + } + } +} + +// This function is to promote meaningful “activation spots” in the map and +// ignores homogeneous areas. +static int nomalization_operator(saliency_feature_map *input, int stepsize) { + minmax_normalize(input); + double lmaxmean = average_local_max(input, stepsize); + if (lmaxmean < 0) { + return 0; + } + double normCoeff = (1 - lmaxmean) * (1 - lmaxmean); + + for (int i = 0; i < input->height; ++i) { + for (int j = 0; j < input->width; ++j) { + input->buf[i * input->width + j] *= normCoeff; + } + } + + return 1; +} + +// Normalize the values in feature maps to [0,1], and then upscale all maps to +// the original frame size. +static int normalize_fm(saliency_feature_map *input[6], int width[9], + int height[9], int num_fm, + saliency_feature_map *output[6]) { + // Feature maps (FM) are generated by function "center_surround_diff()". The + // difference is between a fine scale c and a coarser scale s, where c \in {2, + // 3, 4}, and s = c + delta, where delta \in {3, 4}, and the FM size is scale + // c. Specifically, i=0: c=2 and s=5, i=1: c=2 and s=6, i=2: c=3 and s=6, i=3: + // c=3 and s=7, i=4: c=4 and s=7, i=5: c=4 and s=8. + for (int i = 0; i < num_fm; ++i) { + if (nomalization_operator(input[i], 8) == 0) { + return 0; + } + + // Upscale FM to original frame size + if (upscale_map(input[i]->buf, (i / 2) + 2, 0, height, width, + output[i]->buf) == 0) { + return 0; + } + } + return 1; +} + +// Combine feature maps with the same category (intensity, color, or +// orientation) into one conspicuity map. +static int normalized_map(saliency_feature_map *input[6], int width[9], + int height[9], saliency_feature_map *output) { + int num_fm = 6; + + saliency_feature_map *n_input[6]; + for (int i = 0; i < 6; ++i) { + n_input[i] = (saliency_feature_map *)aom_malloc(sizeof(*n_input[i])); + if (!n_input[i]) { + return 0; + } + n_input[i]->buf = + (double *)aom_malloc(width[0] * height[0] * sizeof(*n_input[i]->buf)); + if (!n_input[i]->buf) { + aom_free(n_input[i]); + return 0; + } + n_input[i]->height = height[0]; + n_input[i]->width = width[0]; + } + + if (normalize_fm(input, width, height, num_fm, n_input) == 0) { + for (int i = 0; i < num_fm; ++i) { + aom_free(n_input[i]->buf); + aom_free(n_input[i]); + } + return 0; + } + + // Add up all normalized feature maps with the same category into one map. + for (int i = 0; i < num_fm; ++i) { + for (int r = 0; r < height[0]; ++r) { + for (int c = 0; c < width[0]; ++c) { + output->buf[r * width[0] + c] += n_input[i]->buf[r * width[0] + c]; + } + } + } + + for (int i = 0; i < num_fm; ++i) { + aom_free(n_input[i]->buf); + aom_free(n_input[i]); + } + + nomalization_operator(output, 8); + return 1; +} + +static int normalized_map_rgb(saliency_feature_map *rg_map[6], + saliency_feature_map *by_map[6], int width[9], + int height[9], saliency_feature_map *output) { + saliency_feature_map *color_cm[2]; // 0: color_cm_rg, 1: color_cm_by + for (int i = 0; i < 2; ++i) { + color_cm[i] = aom_malloc(sizeof(*color_cm[i])); + if (!color_cm[i]) { + return 0; + } + color_cm[i]->buf = + (double *)aom_malloc(width[0] * height[0] * sizeof(*color_cm[i]->buf)); + if (!color_cm[i]->buf) { + for (int l = 0; l < i; ++l) { + aom_free(color_cm[l]->buf); + } + aom_free(color_cm[i]); + return 0; + } + + color_cm[i]->width = width[0]; + color_cm[i]->height = height[0]; + memset(color_cm[i]->buf, 0, + width[0] * height[0] * sizeof(*color_cm[i]->buf)); + } + + if (normalized_map(rg_map, width, height, color_cm[0]) == 0 || + normalized_map(by_map, width, height, color_cm[1]) == 0) { + for (int i = 0; i < 2; ++i) { + aom_free(color_cm[i]->buf); + aom_free(color_cm[i]); + } + return 0; + } + + for (int r = 0; r < height[0]; ++r) { + for (int c = 0; c < width[0]; ++c) { + output->buf[r * width[0] + c] = color_cm[0]->buf[r * width[0] + c] + + color_cm[1]->buf[r * width[0] + c]; + } + } + + for (int i = 0; i < 2; ++i) { + aom_free(color_cm[i]->buf); + aom_free(color_cm[i]); + } + + nomalization_operator(output, 8); + return 1; +} + +static int normalized_map_orientation(saliency_feature_map *orientation_map[24], + int width[9], int height[9], + saliency_feature_map *output) { + int num_fms_per_angle = 6; + + saliency_feature_map *ofm[4][6]; + for (int i = 0; i < num_fms_per_angle; ++i) { + for (int j = 0; j < 4; ++j) { + ofm[j][i] = orientation_map[j * num_fms_per_angle + i]; + } + } + + // extract conspicuity map for each angle + saliency_feature_map *nofm = aom_malloc(sizeof(*nofm)); + if (!nofm) { + return 0; + } + nofm->buf = (double *)aom_malloc(width[0] * height[0] * sizeof(*nofm->buf)); + if (!nofm->buf) { + aom_free(nofm); + return 0; + } + nofm->height = height[0]; + nofm->width = width[0]; + + for (int i = 0; i < 4; ++i) { + memset(nofm->buf, 0, width[0] * height[0] * sizeof(*nofm->buf)); + if (normalized_map(ofm[i], width, height, nofm) == 0) { + aom_free(nofm->buf); + aom_free(nofm); + return 0; + } + + for (int r = 0; r < height[0]; ++r) { + for (int c = 0; c < width[0]; ++c) { + output->buf[r * width[0] + c] += nofm->buf[r * width[0] + c]; + } + } + } + + aom_free(nofm->buf); + aom_free(nofm); + + nomalization_operator(output, 8); + return 1; +} + +// Set pixel level saliency mask based on Itti-Koch algorithm +int av1_set_saliency_map(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + + int frm_width = cm->width; + int frm_height = cm->height; + + int pyr_height[9]; + int pyr_width[9]; + + pyr_height[0] = frm_height; + pyr_width[0] = frm_width; + + for (int i = 1; i < 9; ++i) { + pyr_width[i] = pyr_width[i - 1] / 2; + pyr_height[i] = pyr_height[i - 1] / 2; + } + + double *cr = aom_malloc(frm_width * frm_height * sizeof(*cr)); + double *cg = aom_malloc(frm_width * frm_height * sizeof(*cg)); + double *cb = aom_malloc(frm_width * frm_height * sizeof(*cb)); + double *intensity = aom_malloc(frm_width * frm_height * sizeof(*intensity)); + + if (!cr || !cg || !cb || !intensity) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + return 0; + } + + // Extract red / green / blue channels and intensity component + get_color_intensity(cpi->source, cm->seq_params->subsampling_x, + cm->seq_params->subsampling_y, cr, cg, cb, intensity); + + // Feature Map Extraction + // intensity map + saliency_feature_map *i_map[6]; + for (int i = 0; i < 6; ++i) { + int cur_height = pyr_height[(i / 2) + 2]; + int cur_width = pyr_width[(i / 2) + 2]; + + i_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*i_map[i])); + if (!i_map[i]) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < i; ++l) { + aom_free(i_map[l]); + } + return 0; + } + i_map[i]->buf = + (double *)aom_malloc(cur_height * cur_width * sizeof(*i_map[i]->buf)); + if (!i_map[i]->buf) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < i; ++l) { + aom_free(i_map[l]->buf); + aom_free(i_map[l]); + } + return 0; + } + i_map[i]->height = cur_height; + i_map[i]->width = cur_width; + } + + if (get_feature_map_intensity(intensity, pyr_width, pyr_height, i_map) == 0) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(i_map[l]); + } + return 0; + } + + // RGB map + saliency_feature_map *rg_map[6], *by_map[6]; + for (int i = 0; i < 6; ++i) { + int cur_height = pyr_height[(i / 2) + 2]; + int cur_width = pyr_width[(i / 2) + 2]; + rg_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*rg_map[i])); + by_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*by_map[i])); + if (!rg_map[i] || !by_map[i]) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + return 0; + } + rg_map[i]->buf = + (double *)aom_malloc(cur_height * cur_width * sizeof(*rg_map[i]->buf)); + by_map[i]->buf = + (double *)aom_malloc(cur_height * cur_width * sizeof(*by_map[i]->buf)); + if (!by_map[i]->buf || !rg_map[i]->buf) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(i_map[l]); + } + for (int l = 0; l < i; ++l) { + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + return 0; + } + rg_map[i]->height = cur_height; + rg_map[i]->width = cur_width; + by_map[i]->height = cur_height; + by_map[i]->width = cur_width; + } + + if (get_feature_map_rgb(cr, cg, cb, pyr_width, pyr_height, rg_map, by_map) == + 0) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + return 0; + } + + // Orientation map + saliency_feature_map *orientation_map[24]; + for (int i = 0; i < 24; ++i) { + int cur_height = pyr_height[((i % 6) / 2) + 2]; + int cur_width = pyr_width[((i % 6) / 2) + 2]; + + orientation_map[i] = + (saliency_feature_map *)aom_malloc(sizeof(*orientation_map[i])); + if (!orientation_map[i]) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + for (int h = 0; h < i; ++h) { + aom_free(orientation_map[h]); + } + return 0; + } + + orientation_map[i]->buf = (double *)aom_malloc( + cur_height * cur_width * sizeof(*orientation_map[i]->buf)); + if (!orientation_map[i]->buf) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + + for (int h = 0; h < i; ++h) { + aom_free(orientation_map[h]->buf); + aom_free(orientation_map[h]->buf); + aom_free(orientation_map[h]); + aom_free(orientation_map[h]); + } + return 0; + } + + orientation_map[i]->height = cur_height; + orientation_map[i]->width = cur_width; + } + + if (get_feature_map_orientation(intensity, pyr_width, pyr_height, + orientation_map) == 0) { + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + for (int h = 0; h < 24; ++h) { + aom_free(orientation_map[h]->buf); + aom_free(orientation_map[h]); + } + return 0; + } + + aom_free(cr); + aom_free(cg); + aom_free(cb); + aom_free(intensity); + + saliency_feature_map + *normalized_maps[3]; // 0: intensity, 1: color, 2: orientation + + for (int i = 0; i < 3; ++i) { + normalized_maps[i] = aom_malloc(sizeof(*normalized_maps[i])); + if (!normalized_maps[i]) { + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + + for (int h = 0; h < 24; ++h) { + aom_free(orientation_map[h]->buf); + aom_free(orientation_map[h]); + } + + for (int l = 0; l < i; ++l) { + aom_free(normalized_maps[l]); + } + return 0; + } + normalized_maps[i]->buf = (double *)aom_malloc( + frm_width * frm_height * sizeof(*normalized_maps[i]->buf)); + if (!normalized_maps[i]->buf) { + for (int l = 0; l < 6; ++l) { + aom_free(i_map[l]->buf); + aom_free(rg_map[l]->buf); + aom_free(by_map[l]->buf); + aom_free(i_map[l]); + aom_free(rg_map[l]); + aom_free(by_map[l]); + } + for (int h = 0; h < 24; ++h) { + aom_free(orientation_map[h]->buf); + aom_free(orientation_map[h]); + } + for (int l = 0; l < i; ++l) { + aom_free(normalized_maps[l]->buf); + aom_free(normalized_maps[l]); + } + return 0; + } + normalized_maps[i]->width = frm_width; + normalized_maps[i]->height = frm_height; + memset(normalized_maps[i]->buf, 0, + frm_width * frm_height * sizeof(*normalized_maps[i]->buf)); + } + + // Conspicuity map generation + if (normalized_map(i_map, pyr_width, pyr_height, normalized_maps[0]) == 0 || + normalized_map_rgb(rg_map, by_map, pyr_width, pyr_height, + normalized_maps[1]) == 0 || + normalized_map_orientation(orientation_map, pyr_width, pyr_height, + normalized_maps[2]) == 0) { + for (int i = 0; i < 6; ++i) { + aom_free(i_map[i]->buf); + aom_free(rg_map[i]->buf); + aom_free(by_map[i]->buf); + aom_free(i_map[i]); + aom_free(rg_map[i]); + aom_free(by_map[i]); + } + + for (int i = 0; i < 24; ++i) { + aom_free(orientation_map[i]->buf); + aom_free(orientation_map[i]); + } + + for (int i = 0; i < 3; ++i) { + aom_free(normalized_maps[i]->buf); + aom_free(normalized_maps[i]); + } + return 0; + } + + for (int i = 0; i < 6; ++i) { + aom_free(i_map[i]->buf); + aom_free(rg_map[i]->buf); + aom_free(by_map[i]->buf); + aom_free(i_map[i]); + aom_free(rg_map[i]); + aom_free(by_map[i]); + } + + for (int i = 0; i < 24; ++i) { + aom_free(orientation_map[i]->buf); + aom_free(orientation_map[i]); + } + + // Pixel level saliency map + saliency_feature_map *combined_saliency_map = + aom_malloc(sizeof(*combined_saliency_map)); + if (!combined_saliency_map) { + for (int i = 0; i < 3; ++i) { + aom_free(normalized_maps[i]->buf); + aom_free(normalized_maps[i]); + } + return 0; + } + + combined_saliency_map->buf = (double *)aom_malloc( + frm_width * frm_height * sizeof(*combined_saliency_map->buf)); + if (!combined_saliency_map->buf) { + for (int i = 0; i < 3; ++i) { + aom_free(normalized_maps[i]->buf); + aom_free(normalized_maps[i]); + } + + aom_free(combined_saliency_map); + return 0; + } + combined_saliency_map->height = frm_height; + combined_saliency_map->width = frm_width; + + double w_intensity, w_color, w_orient; + + w_intensity = w_color = w_orient = (double)1 / 3; + + for (int r = 0; r < frm_height; ++r) { + for (int c = 0; c < frm_width; ++c) { + combined_saliency_map->buf[r * frm_width + c] = + (w_intensity * normalized_maps[0]->buf[r * frm_width + c] + + w_color * normalized_maps[1]->buf[r * frm_width + c] + + w_orient * normalized_maps[2]->buf[r * frm_width + c]); + } + } + + for (int r = 0; r < frm_height; ++r) { + for (int c = 0; c < frm_width; ++c) { + int index = r * frm_width + c; + cpi->saliency_map[index] = + (uint8_t)(combined_saliency_map->buf[index] * 255); + } + } + + for (int i = 0; i < 3; ++i) { + aom_free(normalized_maps[i]->buf); + aom_free(normalized_maps[i]); + } + + aom_free(combined_saliency_map->buf); + aom_free(combined_saliency_map); + + return 1; +} + +// Set superblock level saliency mask for rdmult scaling +int av1_setup_sm_rdmult_scaling_factor(AV1_COMP *cpi, double motion_ratio) { + AV1_COMMON *cm = &cpi->common; + + saliency_feature_map *sb_saliency_map = + aom_malloc(sizeof(saliency_feature_map)); + + if (sb_saliency_map == NULL) { + return 0; + } + + const BLOCK_SIZE bsize = cm->seq_params->sb_size; + const int num_mi_w = mi_size_wide[bsize]; + const int num_mi_h = mi_size_high[bsize]; + const int block_width = block_size_wide[bsize]; + const int block_height = block_size_high[bsize]; + const int num_sb_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; + const int num_sb_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; + + sb_saliency_map->height = num_sb_rows; + sb_saliency_map->width = num_sb_cols; + sb_saliency_map->buf = (double *)aom_malloc(num_sb_rows * num_sb_cols * + sizeof(*sb_saliency_map->buf)); + + if (sb_saliency_map->buf == NULL) { + aom_free(sb_saliency_map); + return 0; + } + + for (int row = 0; row < num_sb_rows; ++row) { + for (int col = 0; col < num_sb_cols; ++col) { + const int index = row * num_sb_cols + col; + double total_pixel = 0; + double total_weight = 0; + + for (int i = 0; i < block_height; i++) { + for (int j = 0; j < block_width; j++) { + if ((row * block_height + i) >= cpi->common.height || + (col * block_width + j) >= cpi->common.width) + continue; + total_pixel++; + total_weight += + cpi->saliency_map[(row * block_height + i) * cpi->common.width + + col * block_width + j]; + } + } + + assert(total_pixel > 0); + + // Calculate the superblock level saliency map from pixel level saliency + // map + sb_saliency_map->buf[index] = total_weight / total_pixel; + + // Further lower the superblock saliency score for boundary superblocks. + if (row < 1 || row > num_sb_rows - 2 || col < 1 || + col > num_sb_cols - 2) { + sb_saliency_map->buf[index] /= 5; + } + } + } + + // superblock level saliency map finalization + minmax_normalize(sb_saliency_map); + + double log_sum = 0.0; + double sum = 0.0; + int block_count = 0; + + // Calculate the average superblock sm_scaling_factor for a frame, to be used + // for clamping later. + for (int row = 0; row < num_sb_rows; ++row) { + for (int col = 0; col < num_sb_cols; ++col) { + const int index = row * num_sb_cols + col; + const double saliency = sb_saliency_map->buf[index]; + + cpi->sm_scaling_factor[index] = 1 - saliency; + sum += cpi->sm_scaling_factor[index]; + block_count++; + } + } + assert(block_count > 0); + sum /= block_count; + + // Calculate the geometric mean of superblock sm_scaling_factor for a frame, + // to be used for normalization. + for (int row = 0; row < num_sb_rows; ++row) { + for (int col = 0; col < num_sb_cols; ++col) { + const int index = row * num_sb_cols + col; + log_sum += log(fmax(cpi->sm_scaling_factor[index], 0.001)); + cpi->sm_scaling_factor[index] = + fmax(cpi->sm_scaling_factor[index], 0.8 * sum); + } + } + + log_sum = exp(log_sum / block_count); + + // Normalize the sm_scaling_factor by geometric mean. + for (int row = 0; row < num_sb_rows; ++row) { + for (int col = 0; col < num_sb_cols; ++col) { + const int index = row * num_sb_cols + col; + assert(log_sum > 0); + cpi->sm_scaling_factor[index] /= log_sum; + + // Modulate the sm_scaling_factor by frame basis motion factor + cpi->sm_scaling_factor[index] = + cpi->sm_scaling_factor[index] * motion_ratio; + } + } + + aom_free(sb_saliency_map->buf); + aom_free(sb_saliency_map); + return 1; +} + +// av1_setup_motion_ratio() is only enabled when CONFIG_REALTIME_ONLY is 0, +// because the computations need to access the first pass stats which are +// only available when CONFIG_REALTIME_ONLY is equal to 0. +#if !CONFIG_REALTIME_ONLY +// Set motion_ratio that reflects the motion quantities between two consecutive +// frames. Motion_ratio will be used to set up saliency_map based rdmult scaling +// factor, i.e., the less the motion quantities are, the more bits will be spent +// on this frame, and vice versa. +double av1_setup_motion_ratio(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + int frames_since_key = + cm->current_frame.display_order_hint - cpi->rc.frames_since_key; + const FIRSTPASS_STATS *cur_stats = av1_firstpass_info_peek( + &cpi->ppi->twopass.firstpass_info, frames_since_key); + assert(cur_stats != NULL); + assert(cpi->ppi->twopass.firstpass_info.total_stats.count > 0); + + const double avg_intra_error = + exp(cpi->ppi->twopass.firstpass_info.total_stats.log_intra_error / + cpi->ppi->twopass.firstpass_info.total_stats.count); + const double avg_inter_error = + exp(cpi->ppi->twopass.firstpass_info.total_stats.log_coded_error / + cpi->ppi->twopass.firstpass_info.total_stats.count); + + double inter_error = cur_stats->coded_error; + double error_stdev = 0; + const double avg_error = + cpi->ppi->twopass.firstpass_info.total_stats.intra_error / + cpi->ppi->twopass.firstpass_info.total_stats.count; + for (int i = 0; i < cpi->ppi->twopass.firstpass_info.total_stats.count; i++) { + const FIRSTPASS_STATS *stats = + &cpi->ppi->twopass.firstpass_info.stats_buf[i]; + error_stdev += + (stats->intra_error - avg_error) * (stats->intra_error - avg_error); + } + error_stdev = + sqrt(error_stdev / cpi->ppi->twopass.firstpass_info.total_stats.count); + + double motion_ratio = 1; + if (error_stdev / fmax(avg_intra_error, 1) > 0.1) { + motion_ratio = inter_error / fmax(1, avg_inter_error); + motion_ratio = AOMMIN(motion_ratio, 1.5); + motion_ratio = AOMMAX(motion_ratio, 0.8); + } + + return motion_ratio; +} +#endif // !CONFIG_REALTIME_ONLY |