summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-15 03:34:50 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-15 03:34:50 +0000
commitdef92d1b8e9d373e2f6f27c366d578d97d8960c6 (patch)
tree2ef34b9ad8bb9a9220e05d60352558b15f513894 /third_party/aom/av1
parentAdding debian version 125.0.3-1. (diff)
downloadfirefox-def92d1b8e9d373e2f6f27c366d578d97d8960c6.tar.xz
firefox-def92d1b8e9d373e2f6f27c366d578d97d8960c6.zip
Merging upstream version 126.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1')
-rw-r--r--third_party/aom/av1/av1.cmake22
-rw-r--r--third_party/aom/av1/av1_cx_iface.c49
-rw-r--r--third_party/aom/av1/av1_dx_iface.c17
-rw-r--r--third_party/aom/av1/common/alloccommon.c6
-rw-r--r--third_party/aom/av1/common/arm/highbd_compound_convolve_neon.c532
-rw-r--r--third_party/aom/av1/common/arm/highbd_compound_convolve_neon.h293
-rw-r--r--third_party/aom/av1/common/arm/highbd_compound_convolve_sve2.c1555
-rw-r--r--third_party/aom/av1/common/arm/highbd_convolve_sve2.c1720
-rw-r--r--third_party/aom/av1/common/arm/highbd_convolve_sve2.h97
-rw-r--r--third_party/aom/av1/common/arm/highbd_warp_plane_neon.c30
-rw-r--r--third_party/aom/av1/common/arm/highbd_warp_plane_neon.h60
-rw-r--r--third_party/aom/av1/common/arm/highbd_warp_plane_sve.c32
-rw-r--r--third_party/aom/av1/common/arm/warp_plane_neon.c38
-rw-r--r--third_party/aom/av1/common/arm/warp_plane_neon.h60
-rw-r--r--third_party/aom/av1/common/arm/warp_plane_neon_i8mm.c38
-rw-r--r--third_party/aom/av1/common/arm/warp_plane_sve.c40
-rw-r--r--third_party/aom/av1/common/av1_common_int.h2
-rw-r--r--third_party/aom/av1/common/av1_rtcd_defs.pl54
-rw-r--r--third_party/aom/av1/common/cdef.c13
-rw-r--r--third_party/aom/av1/common/entropymode.h9
-rw-r--r--third_party/aom/av1/common/quant_common.c18
-rw-r--r--third_party/aom/av1/common/reconintra.c6
-rw-r--r--third_party/aom/av1/common/resize.c52
-rw-r--r--third_party/aom/av1/common/resize.h44
-rw-r--r--third_party/aom/av1/common/restoration.c35
-rw-r--r--third_party/aom/av1/common/thread_common.c7
-rw-r--r--third_party/aom/av1/common/thread_common.h1
-rw-r--r--third_party/aom/av1/common/tile_common.c61
-rw-r--r--third_party/aom/av1/common/tile_common.h15
-rw-r--r--third_party/aom/av1/common/x86/cdef_block_sse2.c40
-rw-r--r--third_party/aom/av1/common/x86/cdef_block_ssse3.c11
-rw-r--r--third_party/aom/av1/common/x86/convolve_2d_avx2.c18
-rw-r--r--third_party/aom/av1/common/x86/convolve_2d_sse2.c17
-rw-r--r--third_party/aom/av1/common/x86/convolve_sse2.c26
-rw-r--r--third_party/aom/av1/common/x86/jnt_convolve_sse2.c229
-rw-r--r--third_party/aom/av1/decoder/decodeframe.c49
-rw-r--r--third_party/aom/av1/decoder/decodemv.h2
-rw-r--r--third_party/aom/av1/decoder/decoder.c1
-rw-r--r--third_party/aom/av1/decoder/dthread.h1
-rw-r--r--third_party/aom/av1/decoder/obu.c41
-rw-r--r--third_party/aom/av1/encoder/allintra_vis.c4
-rw-r--r--third_party/aom/av1/encoder/aq_cyclicrefresh.c50
-rw-r--r--third_party/aom/av1/encoder/arm/neon/av1_error_sve.c2
-rw-r--r--third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c58
-rw-r--r--third_party/aom/av1/encoder/arm/neon/wedge_utils_sve.c92
-rw-r--r--third_party/aom/av1/encoder/av1_temporal_denoiser.c8
-rw-r--r--third_party/aom/av1/encoder/bitstream.c19
-rw-r--r--third_party/aom/av1/encoder/bitstream.h1
-rw-r--r--third_party/aom/av1/encoder/block.h3
-rw-r--r--third_party/aom/av1/encoder/cnn.c10
-rw-r--r--third_party/aom/av1/encoder/encode_strategy.c27
-rw-r--r--third_party/aom/av1/encoder/encodeframe.c20
-rw-r--r--third_party/aom/av1/encoder/encodeframe_utils.c6
-rw-r--r--third_party/aom/av1/encoder/encoder.c94
-rw-r--r--third_party/aom/av1/encoder/encoder.h9
-rw-r--r--third_party/aom/av1/encoder/encoder_alloc.h3
-rw-r--r--third_party/aom/av1/encoder/encoder_utils.c20
-rw-r--r--third_party/aom/av1/encoder/encodetxb.c26
-rw-r--r--third_party/aom/av1/encoder/ethread.c8
-rw-r--r--third_party/aom/av1/encoder/firstpass.c1
-rw-r--r--third_party/aom/av1/encoder/global_motion.c82
-rw-r--r--third_party/aom/av1/encoder/global_motion.h32
-rw-r--r--third_party/aom/av1/encoder/global_motion_facade.c47
-rw-r--r--third_party/aom/av1/encoder/k_means_template.h10
-rw-r--r--third_party/aom/av1/encoder/lookahead.c19
-rw-r--r--third_party/aom/av1/encoder/lookahead.h20
-rw-r--r--third_party/aom/av1/encoder/nonrd_pickmode.c7
-rw-r--r--third_party/aom/av1/encoder/palette.c2
-rw-r--r--third_party/aom/av1/encoder/palette.h2
-rw-r--r--third_party/aom/av1/encoder/partition_search.c48
-rw-r--r--third_party/aom/av1/encoder/partition_strategy.c2
-rw-r--r--third_party/aom/av1/encoder/pass2_strategy.c100
-rw-r--r--third_party/aom/av1/encoder/pickcdef.c2
-rw-r--r--third_party/aom/av1/encoder/picklpf.c21
-rw-r--r--third_party/aom/av1/encoder/pickrst.c111
-rw-r--r--third_party/aom/av1/encoder/ratectrl.c120
-rw-r--r--third_party/aom/av1/encoder/ratectrl.h3
-rw-r--r--third_party/aom/av1/encoder/speed_features.c9
-rw-r--r--third_party/aom/av1/encoder/speed_features.h7
-rw-r--r--third_party/aom/av1/encoder/superres_scale.c2
-rw-r--r--third_party/aom/av1/encoder/svc_layercontext.c12
-rw-r--r--third_party/aom/av1/encoder/svc_layercontext.h15
-rw-r--r--third_party/aom/av1/encoder/temporal_filter.c21
-rw-r--r--third_party/aom/av1/encoder/temporal_filter.h2
-rw-r--r--third_party/aom/av1/encoder/tpl_model.c3
-rw-r--r--third_party/aom/av1/encoder/tpl_model.h1
-rw-r--r--third_party/aom/av1/encoder/tune_butteraugli.c10
-rw-r--r--third_party/aom/av1/encoder/tune_vmaf.c105
-rw-r--r--third_party/aom/av1/encoder/tune_vmaf.h6
-rw-r--r--third_party/aom/av1/encoder/tx_search.c23
-rw-r--r--third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c6
-rw-r--r--third_party/aom/av1/encoder/x86/cnn_avx2.c2
92 files changed, 5155 insertions, 1499 deletions
diff --git a/third_party/aom/av1/av1.cmake b/third_party/aom/av1/av1.cmake
index c66a748d40..32645f6065 100644
--- a/third_party/aom/av1/av1.cmake
+++ b/third_party/aom/av1/av1.cmake
@@ -262,7 +262,6 @@ list(APPEND AOM_AV1_ENCODER_SOURCES
list(APPEND AOM_AV1_COMMON_INTRIN_SSE2
"${AOM_ROOT}/av1/common/x86/av1_txfm_sse2.h"
- "${AOM_ROOT}/av1/common/x86/cdef_block_sse2.c"
"${AOM_ROOT}/av1/common/x86/cfl_sse2.c"
"${AOM_ROOT}/av1/common/x86/convolve_2d_sse2.c"
"${AOM_ROOT}/av1/common/x86/convolve_sse2.c"
@@ -272,11 +271,14 @@ list(APPEND AOM_AV1_COMMON_INTRIN_SSE2
list(APPEND AOM_AV1_COMMON_INTRIN_SSSE3
"${AOM_ROOT}/av1/common/x86/av1_inv_txfm_ssse3.c"
"${AOM_ROOT}/av1/common/x86/av1_inv_txfm_ssse3.h"
- "${AOM_ROOT}/av1/common/x86/cdef_block_ssse3.c"
"${AOM_ROOT}/av1/common/x86/cfl_ssse3.c"
"${AOM_ROOT}/av1/common/x86/jnt_convolve_ssse3.c"
"${AOM_ROOT}/av1/common/x86/resize_ssse3.c")
+# Fallbacks to support Valgrind on 32-bit x86
+list(APPEND AOM_AV1_COMMON_INTRIN_SSSE3_X86
+ "${AOM_ROOT}/av1/common/x86/cdef_block_ssse3.c")
+
list(APPEND AOM_AV1_COMMON_INTRIN_SSE4_1
"${AOM_ROOT}/av1/common/x86/av1_convolve_horiz_rs_sse4.c"
"${AOM_ROOT}/av1/common/x86/av1_convolve_scale_sse4.c"
@@ -372,7 +374,8 @@ list(APPEND AOM_AV1_ENCODER_INTRIN_NEON_DOTPROD
"${AOM_ROOT}/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c")
list(APPEND AOM_AV1_ENCODER_INTRIN_SVE
- "${AOM_ROOT}/av1/encoder/arm/neon/av1_error_sve.c")
+ "${AOM_ROOT}/av1/encoder/arm/neon/av1_error_sve.c"
+ "${AOM_ROOT}/av1/encoder/arm/neon/wedge_utils_sve.c")
list(APPEND AOM_AV1_ENCODER_INTRIN_ARM_CRC32
"${AOM_ROOT}/av1/encoder/arm/crc32/hash_arm_crc32.c")
@@ -477,6 +480,10 @@ if(CONFIG_AV1_HIGHBITDEPTH)
"${AOM_ROOT}/av1/common/arm/highbd_warp_plane_neon.c"
"${AOM_ROOT}/av1/common/arm/highbd_wiener_convolve_neon.c")
+ list(APPEND AOM_AV1_COMMON_INTRIN_SVE2
+ "${AOM_ROOT}/av1/common/arm/highbd_compound_convolve_sve2.c"
+ "${AOM_ROOT}/av1/common/arm/highbd_convolve_sve2.c")
+
list(APPEND AOM_AV1_ENCODER_INTRIN_SSE2
"${AOM_ROOT}/av1/encoder/x86/highbd_block_error_intrin_sse2.c"
"${AOM_ROOT}/av1/encoder/x86/highbd_temporal_filter_sse2.c")
@@ -605,6 +612,10 @@ function(setup_av1_targets)
require_compiler_flag_nomsvc("-mssse3" NO)
add_intrinsics_object_library("-mssse3" "ssse3" "aom_av1_common"
"AOM_AV1_COMMON_INTRIN_SSSE3")
+ if(AOM_ARCH_X86)
+ add_intrinsics_object_library("-mssse3" "ssse3_x86" "aom_av1_common"
+ "AOM_AV1_COMMON_INTRIN_SSSE3_X86")
+ endif()
if(CONFIG_AV1_DECODER)
if(AOM_AV1_DECODER_INTRIN_SSSE3)
@@ -703,6 +714,11 @@ function(setup_av1_targets)
endif()
endif()
+ if(HAVE_SVE2)
+ add_intrinsics_object_library("${AOM_SVE2_FLAG}" "sve2" "aom_av1_common"
+ "AOM_AV1_COMMON_INTRIN_SVE2")
+ endif()
+
if(HAVE_VSX)
if(AOM_AV1_COMMON_INTRIN_VSX)
add_intrinsics_object_library("-mvsx -maltivec" "vsx" "aom_av1_common"
diff --git a/third_party/aom/av1/av1_cx_iface.c b/third_party/aom/av1/av1_cx_iface.c
index 9214feb4e6..2b6b1504e6 100644
--- a/third_party/aom/av1/av1_cx_iface.c
+++ b/third_party/aom/av1/av1_cx_iface.c
@@ -9,22 +9,28 @@
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
+#include <stdint.h>
#include <stdlib.h>
#include <string.h>
-#include "aom_mem/aom_mem.h"
#include "config/aom_config.h"
#include "config/aom_version.h"
-#include "aom_ports/mem_ops.h"
-
+#include "aom/aomcx.h"
#include "aom/aom_encoder.h"
+#include "aom/aom_external_partition.h"
+#include "aom/aom_image.h"
#include "aom/internal/aom_codec_internal.h"
-
#include "aom_dsp/flow_estimation/flow_estimation.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_scale/yv12config.h"
+#include "aom_util/aom_pthread.h"
#include "av1/av1_cx_iface.h"
#include "av1/av1_iface_common.h"
+#include "av1/common/av1_common_int.h"
+#include "av1/common/enums.h"
+#include "av1/common/scale.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encoder_alloc.h"
@@ -32,6 +38,7 @@
#include "av1/encoder/ethread.h"
#include "av1/encoder/external_partition.h"
#include "av1/encoder/firstpass.h"
+#include "av1/encoder/lookahead.h"
#include "av1/encoder/rc_utils.h"
#include "av1/arg_defs.h"
@@ -1836,6 +1843,11 @@ static aom_codec_err_t ctrl_set_enable_qm(aom_codec_alg_priv_t *ctx,
va_list args) {
struct av1_extracfg extra_cfg = ctx->extra_cfg;
extra_cfg.enable_qm = CAST(AV1E_SET_ENABLE_QM, args);
+#if !CONFIG_QUANT_MATRIX
+ if (extra_cfg.enable_qm) {
+ ERROR("QM can't be enabled with CONFIG_QUANT_MATRIX=0.");
+ }
+#endif
return update_extra_cfg(ctx, &extra_cfg);
}
static aom_codec_err_t ctrl_set_qm_y(aom_codec_alg_priv_t *ctx, va_list args) {
@@ -3072,11 +3084,36 @@ static aom_codec_err_t encoder_encode(aom_codec_alg_priv_t *ctx,
ctx->pts_offset = ptsvol;
ctx->pts_offset_initialized = 1;
}
+ if (ptsvol < ctx->pts_offset) {
+ aom_internal_error(&ppi->error, AOM_CODEC_INVALID_PARAM,
+ "pts is smaller than initial pts");
+ }
ptsvol -= ctx->pts_offset;
+ if (ptsvol > INT64_MAX / cpi_data.timestamp_ratio->num) {
+ aom_internal_error(
+ &ppi->error, AOM_CODEC_INVALID_PARAM,
+ "conversion of relative pts to ticks would overflow");
+ }
int64_t src_time_stamp =
timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol);
+#if ULONG_MAX > INT64_MAX
+ if (duration > INT64_MAX) {
+ aom_internal_error(&ppi->error, AOM_CODEC_INVALID_PARAM,
+ "duration is too big");
+ }
+#endif
+ if (ptsvol > INT64_MAX - (int64_t)duration) {
+ aom_internal_error(&ppi->error, AOM_CODEC_INVALID_PARAM,
+ "relative pts + duration is too big");
+ }
+ aom_codec_pts_t pts_end = ptsvol + (int64_t)duration;
+ if (pts_end > INT64_MAX / cpi_data.timestamp_ratio->num) {
+ aom_internal_error(
+ &ppi->error, AOM_CODEC_INVALID_PARAM,
+ "conversion of relative pts + duration to ticks would overflow");
+ }
int64_t src_end_time_stamp =
- timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol + duration);
+ timebase_units_to_ticks(cpi_data.timestamp_ratio, pts_end);
YV12_BUFFER_CONFIG sd;
res = image2yuvconfig(img, &sd);
@@ -3110,7 +3147,7 @@ static aom_codec_err_t encoder_encode(aom_codec_alg_priv_t *ctx,
subsampling_x, subsampling_y, use_highbitdepth, lag_in_frames,
src_border_in_pixels, cpi->common.features.byte_alignment,
ctx->num_lap_buffers, (cpi->oxcf.kf_cfg.key_freq_max == 0),
- cpi->image_pyramid_levels);
+ cpi->alloc_pyramid);
}
if (!ppi->lookahead)
aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
diff --git a/third_party/aom/av1/av1_dx_iface.c b/third_party/aom/av1/av1_dx_iface.c
index 3d7e132ab8..1a2dea37b6 100644
--- a/third_party/aom/av1/av1_dx_iface.c
+++ b/third_party/aom/av1/av1_dx_iface.c
@@ -19,18 +19,23 @@
#include "aom/internal/aom_image_internal.h"
#include "aom/aomdx.h"
#include "aom/aom_decoder.h"
+#include "aom/aom_image.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_dsp/aom_dsp_common.h"
+#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
+#include "aom_util/aom_pthread.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
+#include "av1/common/av1_common_int.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/enums.h"
#include "av1/common/obu_util.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodeframe.h"
+#include "av1/decoder/dthread.h"
#include "av1/decoder/grain_synthesis.h"
#include "av1/decoder/obu.h"
@@ -865,7 +870,9 @@ static aom_image_t *decoder_get_frame(aom_codec_alg_priv_t *ctx,
if (pbi->ext_tile_debug && tiles->single_tile_decoding &&
pbi->dec_tile_row >= 0) {
int tile_width, tile_height;
- av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
+ if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
+ return NULL;
+ }
const int tile_row = AOMMIN(pbi->dec_tile_row, tiles->rows - 1);
const int mi_row = tile_row * tile_height;
const int ssy = ctx->img.y_chroma_shift;
@@ -884,7 +891,9 @@ static aom_image_t *decoder_get_frame(aom_codec_alg_priv_t *ctx,
if (pbi->ext_tile_debug && tiles->single_tile_decoding &&
pbi->dec_tile_col >= 0) {
int tile_width, tile_height;
- av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
+ if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
+ return NULL;
+ }
const int tile_col = AOMMIN(pbi->dec_tile_col, tiles->cols - 1);
const int mi_col = tile_col * tile_width;
const int ssx = ctx->img.x_chroma_shift;
@@ -1428,7 +1437,9 @@ static aom_codec_err_t ctrl_get_tile_size(aom_codec_alg_priv_t *ctx,
(FrameWorkerData *)worker->data1;
const AV1_COMMON *const cm = &frame_worker_data->pbi->common;
int tile_width, tile_height;
- av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
+ if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
+ return AOM_CODEC_CORRUPT_FRAME;
+ }
*tile_size = ((tile_width * MI_SIZE) << 16) + tile_height * MI_SIZE;
return AOM_CODEC_OK;
} else {
diff --git a/third_party/aom/av1/common/alloccommon.c b/third_party/aom/av1/common/alloccommon.c
index 2a9a8beb40..e9a38c4a60 100644
--- a/third_party/aom/av1/common/alloccommon.c
+++ b/third_party/aom/av1/common/alloccommon.c
@@ -13,6 +13,8 @@
#include "config/aom_config.h"
#include "aom_mem/aom_mem.h"
+#include "aom_scale/yv12config.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
@@ -20,6 +22,8 @@
#include "av1/common/cdef_block.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
+#include "av1/common/enums.h"
+#include "av1/common/restoration.h"
#include "av1/common/thread_common.h"
int av1_get_MBs(int width, int height) {
@@ -200,7 +204,7 @@ void av1_alloc_cdef_buffers(AV1_COMMON *const cm,
const int is_num_workers_changed =
cdef_info->allocated_num_workers != num_workers;
const int is_cdef_enabled =
- cm->seq_params->enable_cdef && !cm->tiles.large_scale;
+ cm->seq_params->enable_cdef && !cm->tiles.single_tile_decoding;
// num-bufs=3 represents ping-pong buffers for top linebuf,
// followed by bottom linebuf.
diff --git a/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.c b/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.c
index fc03a2ee04..9247ded6bf 100644
--- a/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.c
+++ b/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.c
@@ -20,266 +20,9 @@
#include "aom_ports/mem.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
+#include "av1/common/arm/highbd_compound_convolve_neon.h"
#include "av1/common/arm/highbd_convolve_neon.h"
-#define ROUND_SHIFT 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS
-
-static INLINE void highbd_12_comp_avg_neon(const uint16_t *src_ptr,
- int src_stride, uint16_t *dst_ptr,
- int dst_stride, int w, int h,
- ConvolveParams *conv_params,
- const int offset, const int bd) {
- CONV_BUF_TYPE *ref_ptr = conv_params->dst;
- const int ref_stride = conv_params->dst_stride;
- const uint16x4_t offset_vec = vdup_n_u16(offset);
- const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
-
- if (w == 4) {
- do {
- const uint16x4_t src = vld1_u16(src_ptr);
- const uint16x4_t ref = vld1_u16(ref_ptr);
-
- uint16x4_t avg = vhadd_u16(src, ref);
- int32x4_t d0 = vreinterpretq_s32_u32(vsubl_u16(avg, offset_vec));
-
- uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT - 2);
- d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
-
- vst1_u16(dst_ptr, d0_u16);
-
- src_ptr += src_stride;
- ref_ptr += ref_stride;
- dst_ptr += dst_stride;
- } while (--h != 0);
- } else {
- do {
- int width = w;
- const uint16_t *src = src_ptr;
- const uint16_t *ref = ref_ptr;
- uint16_t *dst = dst_ptr;
- do {
- const uint16x8_t s = vld1q_u16(src);
- const uint16x8_t r = vld1q_u16(ref);
-
- uint16x8_t avg = vhaddq_u16(s, r);
- int32x4_t d0_lo =
- vreinterpretq_s32_u32(vsubl_u16(vget_low_u16(avg), offset_vec));
- int32x4_t d0_hi =
- vreinterpretq_s32_u32(vsubl_u16(vget_high_u16(avg), offset_vec));
-
- uint16x8_t d0 = vcombine_u16(vqrshrun_n_s32(d0_lo, ROUND_SHIFT - 2),
- vqrshrun_n_s32(d0_hi, ROUND_SHIFT - 2));
- d0 = vminq_u16(d0, max);
- vst1q_u16(dst, d0);
-
- src += 8;
- ref += 8;
- dst += 8;
- width -= 8;
- } while (width != 0);
-
- src_ptr += src_stride;
- ref_ptr += ref_stride;
- dst_ptr += dst_stride;
- } while (--h != 0);
- }
-}
-
-static INLINE void highbd_comp_avg_neon(const uint16_t *src_ptr, int src_stride,
- uint16_t *dst_ptr, int dst_stride,
- int w, int h,
- ConvolveParams *conv_params,
- const int offset, const int bd) {
- CONV_BUF_TYPE *ref_ptr = conv_params->dst;
- const int ref_stride = conv_params->dst_stride;
- const uint16x4_t offset_vec = vdup_n_u16(offset);
- const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
-
- if (w == 4) {
- do {
- const uint16x4_t src = vld1_u16(src_ptr);
- const uint16x4_t ref = vld1_u16(ref_ptr);
-
- uint16x4_t avg = vhadd_u16(src, ref);
- int32x4_t d0 = vreinterpretq_s32_u32(vsubl_u16(avg, offset_vec));
-
- uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT);
- d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
-
- vst1_u16(dst_ptr, d0_u16);
-
- src_ptr += src_stride;
- ref_ptr += ref_stride;
- dst_ptr += dst_stride;
- } while (--h != 0);
- } else {
- do {
- int width = w;
- const uint16_t *src = src_ptr;
- const uint16_t *ref = ref_ptr;
- uint16_t *dst = dst_ptr;
- do {
- const uint16x8_t s = vld1q_u16(src);
- const uint16x8_t r = vld1q_u16(ref);
-
- uint16x8_t avg = vhaddq_u16(s, r);
- int32x4_t d0_lo =
- vreinterpretq_s32_u32(vsubl_u16(vget_low_u16(avg), offset_vec));
- int32x4_t d0_hi =
- vreinterpretq_s32_u32(vsubl_u16(vget_high_u16(avg), offset_vec));
-
- uint16x8_t d0 = vcombine_u16(vqrshrun_n_s32(d0_lo, ROUND_SHIFT),
- vqrshrun_n_s32(d0_hi, ROUND_SHIFT));
- d0 = vminq_u16(d0, max);
- vst1q_u16(dst, d0);
-
- src += 8;
- ref += 8;
- dst += 8;
- width -= 8;
- } while (width != 0);
-
- src_ptr += src_stride;
- ref_ptr += ref_stride;
- dst_ptr += dst_stride;
- } while (--h != 0);
- }
-}
-
-static INLINE void highbd_12_dist_wtd_comp_avg_neon(
- const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
- int w, int h, ConvolveParams *conv_params, const int offset, const int bd) {
- CONV_BUF_TYPE *ref_ptr = conv_params->dst;
- const int ref_stride = conv_params->dst_stride;
- const uint32x4_t offset_vec = vdupq_n_u32(offset);
- const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
- uint16x4_t fwd_offset = vdup_n_u16(conv_params->fwd_offset);
- uint16x4_t bck_offset = vdup_n_u16(conv_params->bck_offset);
-
- // Weighted averaging
- if (w == 4) {
- do {
- const uint16x4_t src = vld1_u16(src_ptr);
- const uint16x4_t ref = vld1_u16(ref_ptr);
-
- uint32x4_t wtd_avg = vmull_u16(ref, fwd_offset);
- wtd_avg = vmlal_u16(wtd_avg, src, bck_offset);
- wtd_avg = vshrq_n_u32(wtd_avg, DIST_PRECISION_BITS);
- int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg, offset_vec));
-
- uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT - 2);
- d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
-
- vst1_u16(dst_ptr, d0_u16);
-
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- ref_ptr += ref_stride;
- } while (--h != 0);
- } else {
- do {
- int width = w;
- const uint16_t *src = src_ptr;
- const uint16_t *ref = ref_ptr;
- uint16_t *dst = dst_ptr;
- do {
- const uint16x8_t s = vld1q_u16(src);
- const uint16x8_t r = vld1q_u16(ref);
-
- uint32x4_t wtd_avg0 = vmull_u16(vget_low_u16(r), fwd_offset);
- wtd_avg0 = vmlal_u16(wtd_avg0, vget_low_u16(s), bck_offset);
- wtd_avg0 = vshrq_n_u32(wtd_avg0, DIST_PRECISION_BITS);
- int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg0, offset_vec));
-
- uint32x4_t wtd_avg1 = vmull_u16(vget_high_u16(r), fwd_offset);
- wtd_avg1 = vmlal_u16(wtd_avg1, vget_high_u16(s), bck_offset);
- wtd_avg1 = vshrq_n_u32(wtd_avg1, DIST_PRECISION_BITS);
- int32x4_t d1 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg1, offset_vec));
-
- uint16x8_t d01 = vcombine_u16(vqrshrun_n_s32(d0, ROUND_SHIFT - 2),
- vqrshrun_n_s32(d1, ROUND_SHIFT - 2));
- d01 = vminq_u16(d01, max);
- vst1q_u16(dst, d01);
-
- src += 8;
- ref += 8;
- dst += 8;
- width -= 8;
- } while (width != 0);
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- ref_ptr += ref_stride;
- } while (--h != 0);
- }
-}
-
-static INLINE void highbd_dist_wtd_comp_avg_neon(
- const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
- int w, int h, ConvolveParams *conv_params, const int offset, const int bd) {
- CONV_BUF_TYPE *ref_ptr = conv_params->dst;
- const int ref_stride = conv_params->dst_stride;
- const uint32x4_t offset_vec = vdupq_n_u32(offset);
- const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
- uint16x4_t fwd_offset = vdup_n_u16(conv_params->fwd_offset);
- uint16x4_t bck_offset = vdup_n_u16(conv_params->bck_offset);
-
- // Weighted averaging
- if (w == 4) {
- do {
- const uint16x4_t src = vld1_u16(src_ptr);
- const uint16x4_t ref = vld1_u16(ref_ptr);
-
- uint32x4_t wtd_avg = vmull_u16(ref, fwd_offset);
- wtd_avg = vmlal_u16(wtd_avg, src, bck_offset);
- wtd_avg = vshrq_n_u32(wtd_avg, DIST_PRECISION_BITS);
- int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg, offset_vec));
-
- uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT);
- d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
-
- vst1_u16(dst_ptr, d0_u16);
-
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- ref_ptr += ref_stride;
- } while (--h != 0);
- } else {
- do {
- int width = w;
- const uint16_t *src = src_ptr;
- const uint16_t *ref = ref_ptr;
- uint16_t *dst = dst_ptr;
- do {
- const uint16x8_t s = vld1q_u16(src);
- const uint16x8_t r = vld1q_u16(ref);
-
- uint32x4_t wtd_avg0 = vmull_u16(vget_low_u16(r), fwd_offset);
- wtd_avg0 = vmlal_u16(wtd_avg0, vget_low_u16(s), bck_offset);
- wtd_avg0 = vshrq_n_u32(wtd_avg0, DIST_PRECISION_BITS);
- int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg0, offset_vec));
-
- uint32x4_t wtd_avg1 = vmull_u16(vget_high_u16(r), fwd_offset);
- wtd_avg1 = vmlal_u16(wtd_avg1, vget_high_u16(s), bck_offset);
- wtd_avg1 = vshrq_n_u32(wtd_avg1, DIST_PRECISION_BITS);
- int32x4_t d1 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg1, offset_vec));
-
- uint16x8_t d01 = vcombine_u16(vqrshrun_n_s32(d0, ROUND_SHIFT),
- vqrshrun_n_s32(d1, ROUND_SHIFT));
- d01 = vminq_u16(d01, max);
- vst1q_u16(dst, d01);
-
- src += 8;
- ref += 8;
- dst += 8;
- width -= 8;
- } while (width != 0);
- src_ptr += src_stride;
- dst_ptr += dst_stride;
- ref_ptr += ref_stride;
- } while (--h != 0);
- }
-}
-
static INLINE uint16x4_t highbd_12_convolve6_4(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
@@ -743,9 +486,6 @@ void av1_highbd_dist_wtd_convolve_x_neon(
const int im_stride = MAX_SB_SIZE;
const int horiz_offset = filter_params_x->taps / 2 - 1;
assert(FILTER_BITS == COMPOUND_ROUND1_BITS);
- const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
- const int offset_avg = (1 << (offset_bits - conv_params->round_1)) +
- (1 << (offset_bits - conv_params->round_1 - 1));
const int offset_convolve = (1 << (conv_params->round_0 - 1)) +
(1 << (bd + FILTER_BITS)) +
(1 << (bd + FILTER_BITS - 1));
@@ -768,10 +508,10 @@ void av1_highbd_dist_wtd_convolve_x_neon(
}
if (conv_params->use_dist_wtd_comp_avg) {
highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
- w, h, conv_params, offset_avg, bd);
+ w, h, conv_params);
} else {
highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
- conv_params, offset_avg, bd);
+ conv_params);
}
} else {
if (x_filter_taps <= 6 && w != 4) {
@@ -795,10 +535,10 @@ void av1_highbd_dist_wtd_convolve_x_neon(
}
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
- h, conv_params, offset_avg, bd);
+ h, conv_params, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
- conv_params, offset_avg, bd);
+ conv_params, bd);
}
} else {
if (x_filter_taps <= 6 && w != 4) {
@@ -971,6 +711,212 @@ static INLINE void highbd_dist_wtd_convolve_y_6tap_neon(
}
}
+static INLINE uint16x4_t highbd_12_convolve4_4(
+ const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
+ const int16x4_t s3, const int16x4_t filter, const int32x4_t offset) {
+ int32x4_t sum = vmlal_lane_s16(offset, s0, filter, 0);
+ sum = vmlal_lane_s16(sum, s1, filter, 1);
+ sum = vmlal_lane_s16(sum, s2, filter, 2);
+ sum = vmlal_lane_s16(sum, s3, filter, 3);
+
+ return vqshrun_n_s32(sum, ROUND0_BITS + 2);
+}
+
+static INLINE uint16x8_t highbd_12_convolve4_8(
+ const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
+ const int16x8_t s3, const int16x4_t filter, const int32x4_t offset) {
+ int32x4_t sum0 = vmlal_lane_s16(offset, vget_low_s16(s0), filter, 0);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter, 1);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter, 2);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter, 3);
+
+ int32x4_t sum1 = vmlal_lane_s16(offset, vget_high_s16(s0), filter, 0);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter, 1);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter, 2);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter, 3);
+
+ return vcombine_u16(vqshrun_n_s32(sum0, ROUND0_BITS + 2),
+ vqshrun_n_s32(sum1, ROUND0_BITS + 2));
+}
+
+static INLINE void highbd_12_dist_wtd_convolve_y_4tap_neon(
+ const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
+ int w, int h, const int16_t *y_filter_ptr, const int offset) {
+ const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2);
+ const int32x4_t offset_vec = vdupq_n_s32(offset);
+
+ if (w == 4) {
+ const int16_t *s = (const int16_t *)src_ptr;
+ uint16_t *d = dst_ptr;
+
+ int16x4_t s0, s1, s2;
+ load_s16_4x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x4_t s3, s4, s5, s6;
+ load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ uint16x4_t d0 =
+ highbd_12_convolve4_4(s0, s1, s2, s3, y_filter, offset_vec);
+ uint16x4_t d1 =
+ highbd_12_convolve4_4(s1, s2, s3, s4, y_filter, offset_vec);
+ uint16x4_t d2 =
+ highbd_12_convolve4_4(s2, s3, s4, s5, y_filter, offset_vec);
+ uint16x4_t d3 =
+ highbd_12_convolve4_4(s3, s4, s5, s6, y_filter, offset_vec);
+
+ store_u16_4x4(d, dst_stride, d0, d1, d2, d3);
+
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ } else {
+ do {
+ int height = h;
+ const int16_t *s = (const int16_t *)src_ptr;
+ uint16_t *d = dst_ptr;
+
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x8_t s3, s4, s5, s6;
+ load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ uint16x8_t d0 =
+ highbd_12_convolve4_8(s0, s1, s2, s3, y_filter, offset_vec);
+ uint16x8_t d1 =
+ highbd_12_convolve4_8(s1, s2, s3, s4, y_filter, offset_vec);
+ uint16x8_t d2 =
+ highbd_12_convolve4_8(s2, s3, s4, s5, y_filter, offset_vec);
+ uint16x8_t d3 =
+ highbd_12_convolve4_8(s3, s4, s5, s6, y_filter, offset_vec);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ src_ptr += 8;
+ dst_ptr += 8;
+ w -= 8;
+ } while (w != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve4_4(
+ const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
+ const int16x4_t s3, const int16x4_t filter, const int32x4_t offset) {
+ int32x4_t sum = vmlal_lane_s16(offset, s0, filter, 0);
+ sum = vmlal_lane_s16(sum, s1, filter, 1);
+ sum = vmlal_lane_s16(sum, s2, filter, 2);
+ sum = vmlal_lane_s16(sum, s3, filter, 3);
+
+ return vqshrun_n_s32(sum, ROUND0_BITS);
+}
+
+static INLINE uint16x8_t highbd_convolve4_8(
+ const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
+ const int16x8_t s3, const int16x4_t filter, const int32x4_t offset) {
+ int32x4_t sum0 = vmlal_lane_s16(offset, vget_low_s16(s0), filter, 0);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter, 1);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter, 2);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter, 3);
+
+ int32x4_t sum1 = vmlal_lane_s16(offset, vget_high_s16(s0), filter, 0);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter, 1);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter, 2);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter, 3);
+
+ return vcombine_u16(vqshrun_n_s32(sum0, ROUND0_BITS),
+ vqshrun_n_s32(sum1, ROUND0_BITS));
+}
+
+static INLINE void highbd_dist_wtd_convolve_y_4tap_neon(
+ const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
+ int w, int h, const int16_t *y_filter_ptr, const int offset) {
+ const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2);
+ const int32x4_t offset_vec = vdupq_n_s32(offset);
+
+ if (w == 4) {
+ const int16_t *s = (const int16_t *)src_ptr;
+ uint16_t *d = dst_ptr;
+
+ int16x4_t s0, s1, s2;
+ load_s16_4x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x4_t s3, s4, s5, s6;
+ load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ uint16x4_t d0 = highbd_convolve4_4(s0, s1, s2, s3, y_filter, offset_vec);
+ uint16x4_t d1 = highbd_convolve4_4(s1, s2, s3, s4, y_filter, offset_vec);
+ uint16x4_t d2 = highbd_convolve4_4(s2, s3, s4, s5, y_filter, offset_vec);
+ uint16x4_t d3 = highbd_convolve4_4(s3, s4, s5, s6, y_filter, offset_vec);
+
+ store_u16_4x4(d, dst_stride, d0, d1, d2, d3);
+
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ } else {
+ do {
+ int height = h;
+ const int16_t *s = (const int16_t *)src_ptr;
+ uint16_t *d = dst_ptr;
+
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x8_t s3, s4, s5, s6;
+ load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ uint16x8_t d0 =
+ highbd_convolve4_8(s0, s1, s2, s3, y_filter, offset_vec);
+ uint16x8_t d1 =
+ highbd_convolve4_8(s1, s2, s3, s4, y_filter, offset_vec);
+ uint16x8_t d2 =
+ highbd_convolve4_8(s2, s3, s4, s5, y_filter, offset_vec);
+ uint16x8_t d3 =
+ highbd_convolve4_8(s3, s4, s5, s6, y_filter, offset_vec);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ src_ptr += 8;
+ dst_ptr += 8;
+ w -= 8;
+ } while (w != 0);
+ }
+}
+
static INLINE void highbd_12_dist_wtd_convolve_y_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, const int offset) {
@@ -1148,9 +1094,6 @@ void av1_highbd_dist_wtd_convolve_y_neon(
const int im_stride = MAX_SB_SIZE;
const int vert_offset = filter_params_y->taps / 2 - 1;
assert(FILTER_BITS == COMPOUND_ROUND1_BITS);
- const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
- const int round_offset_avg = (1 << (offset_bits - conv_params->round_1)) +
- (1 << (offset_bits - conv_params->round_1 - 1));
const int round_offset_conv = (1 << (conv_params->round_0 - 1)) +
(1 << (bd + FILTER_BITS)) +
(1 << (bd + FILTER_BITS - 1));
@@ -1162,7 +1105,11 @@ void av1_highbd_dist_wtd_convolve_y_neon(
if (bd == 12) {
if (conv_params->do_average) {
- if (y_filter_taps <= 6) {
+ if (y_filter_taps <= 4) {
+ highbd_12_dist_wtd_convolve_y_4tap_neon(
+ src + 2 * src_stride, src_stride, im_block, im_stride, w, h,
+ y_filter_ptr, round_offset_conv);
+ } else if (y_filter_taps == 6) {
highbd_12_dist_wtd_convolve_y_6tap_neon(
src + src_stride, src_stride, im_block, im_stride, w, h,
y_filter_ptr, round_offset_conv);
@@ -1173,14 +1120,17 @@ void av1_highbd_dist_wtd_convolve_y_neon(
}
if (conv_params->use_dist_wtd_comp_avg) {
highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
- w, h, conv_params, round_offset_avg,
- bd);
+ w, h, conv_params);
} else {
highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
- conv_params, round_offset_avg, bd);
+ conv_params);
}
} else {
- if (y_filter_taps <= 6) {
+ if (y_filter_taps <= 4) {
+ highbd_12_dist_wtd_convolve_y_4tap_neon(
+ src + 2 * src_stride, src_stride, dst16, dst16_stride, w, h,
+ y_filter_ptr, round_offset_conv);
+ } else if (y_filter_taps == 6) {
highbd_12_dist_wtd_convolve_y_6tap_neon(
src + src_stride, src_stride, dst16, dst16_stride, w, h,
y_filter_ptr, round_offset_conv);
@@ -1192,7 +1142,11 @@ void av1_highbd_dist_wtd_convolve_y_neon(
}
} else {
if (conv_params->do_average) {
- if (y_filter_taps <= 6) {
+ if (y_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_y_4tap_neon(src + 2 * src_stride, src_stride,
+ im_block, im_stride, w, h,
+ y_filter_ptr, round_offset_conv);
+ } else if (y_filter_taps == 6) {
highbd_dist_wtd_convolve_y_6tap_neon(src + src_stride, src_stride,
im_block, im_stride, w, h,
y_filter_ptr, round_offset_conv);
@@ -1203,13 +1157,17 @@ void av1_highbd_dist_wtd_convolve_y_neon(
}
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
- h, conv_params, round_offset_avg, bd);
+ h, conv_params, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
- conv_params, round_offset_avg, bd);
+ conv_params, bd);
}
} else {
- if (y_filter_taps <= 6) {
+ if (y_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_y_4tap_neon(src + 2 * src_stride, src_stride,
+ dst16, dst16_stride, w, h,
+ y_filter_ptr, round_offset_conv);
+ } else if (y_filter_taps == 6) {
highbd_dist_wtd_convolve_y_6tap_neon(src + src_stride, src_stride,
dst16, dst16_stride, w, h,
y_filter_ptr, round_offset_conv);
@@ -1285,18 +1243,18 @@ void av1_highbd_dist_wtd_convolve_2d_copy_neon(const uint16_t *src,
if (conv_params->use_dist_wtd_comp_avg) {
if (bd == 12) {
highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
- w, h, conv_params, round_offset, bd);
+ w, h, conv_params);
} else {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
- h, conv_params, round_offset, bd);
+ h, conv_params, bd);
}
} else {
if (bd == 12) {
highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
- conv_params, round_offset, bd);
+ conv_params);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
- conv_params, round_offset, bd);
+ conv_params, bd);
}
}
}
@@ -1949,9 +1907,6 @@ void av1_highbd_dist_wtd_convolve_2d_neon(
(1 << (bd + FILTER_BITS - 1)) + (1 << (conv_params->round_0 - 1));
const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset_conv_y = (1 << y_offset_bits);
- const int round_offset_avg =
- ((1 << (y_offset_bits - conv_params->round_1)) +
- (1 << (y_offset_bits - conv_params->round_1 - 1)));
const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
@@ -2012,19 +1967,18 @@ void av1_highbd_dist_wtd_convolve_2d_neon(
if (conv_params->use_dist_wtd_comp_avg) {
if (bd == 12) {
highbd_12_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride,
- w, h, conv_params, round_offset_avg,
- bd);
+ w, h, conv_params);
} else {
highbd_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w,
- h, conv_params, round_offset_avg, bd);
+ h, conv_params, bd);
}
} else {
if (bd == 12) {
highbd_12_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
- conv_params, round_offset_avg, bd);
+ conv_params);
} else {
highbd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
- conv_params, round_offset_avg, bd);
+ conv_params, bd);
}
}
}
diff --git a/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.h b/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.h
new file mode 100644
index 0000000000..c9344f3adf
--- /dev/null
+++ b/third_party/aom/av1/common/arm/highbd_compound_convolve_neon.h
@@ -0,0 +1,293 @@
+/*
+ * Copyright (c) 2024, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <arm_neon.h>
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_ports/mem.h"
+
+#define ROUND_SHIFT 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS
+
+static INLINE void highbd_12_comp_avg_neon(const uint16_t *src_ptr,
+ int src_stride, uint16_t *dst_ptr,
+ int dst_stride, int w, int h,
+ ConvolveParams *conv_params) {
+ const int offset_bits = 12 + 2 * FILTER_BITS - ROUND0_BITS - 2;
+ const int offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
+ (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
+
+ CONV_BUF_TYPE *ref_ptr = conv_params->dst;
+ const int ref_stride = conv_params->dst_stride;
+ const uint16x4_t offset_vec = vdup_n_u16((uint16_t)offset);
+ const uint16x8_t max = vdupq_n_u16((1 << 12) - 1);
+
+ if (w == 4) {
+ do {
+ const uint16x4_t src = vld1_u16(src_ptr);
+ const uint16x4_t ref = vld1_u16(ref_ptr);
+
+ uint16x4_t avg = vhadd_u16(src, ref);
+ int32x4_t d0 = vreinterpretq_s32_u32(vsubl_u16(avg, offset_vec));
+
+ uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT - 2);
+ d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
+
+ vst1_u16(dst_ptr, d0_u16);
+
+ src_ptr += src_stride;
+ ref_ptr += ref_stride;
+ dst_ptr += dst_stride;
+ } while (--h != 0);
+ } else {
+ do {
+ int width = w;
+ const uint16_t *src = src_ptr;
+ const uint16_t *ref = ref_ptr;
+ uint16_t *dst = dst_ptr;
+ do {
+ const uint16x8_t s = vld1q_u16(src);
+ const uint16x8_t r = vld1q_u16(ref);
+
+ uint16x8_t avg = vhaddq_u16(s, r);
+ int32x4_t d0_lo =
+ vreinterpretq_s32_u32(vsubl_u16(vget_low_u16(avg), offset_vec));
+ int32x4_t d0_hi =
+ vreinterpretq_s32_u32(vsubl_u16(vget_high_u16(avg), offset_vec));
+
+ uint16x8_t d0 = vcombine_u16(vqrshrun_n_s32(d0_lo, ROUND_SHIFT - 2),
+ vqrshrun_n_s32(d0_hi, ROUND_SHIFT - 2));
+ d0 = vminq_u16(d0, max);
+ vst1q_u16(dst, d0);
+
+ src += 8;
+ ref += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+
+ src_ptr += src_stride;
+ ref_ptr += ref_stride;
+ dst_ptr += dst_stride;
+ } while (--h != 0);
+ }
+}
+
+static INLINE void highbd_comp_avg_neon(const uint16_t *src_ptr, int src_stride,
+ uint16_t *dst_ptr, int dst_stride,
+ int w, int h,
+ ConvolveParams *conv_params,
+ const int bd) {
+ const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
+ const int offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
+ (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
+
+ CONV_BUF_TYPE *ref_ptr = conv_params->dst;
+ const int ref_stride = conv_params->dst_stride;
+ const uint16x4_t offset_vec = vdup_n_u16((uint16_t)offset);
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+
+ if (w == 4) {
+ do {
+ const uint16x4_t src = vld1_u16(src_ptr);
+ const uint16x4_t ref = vld1_u16(ref_ptr);
+
+ uint16x4_t avg = vhadd_u16(src, ref);
+ int32x4_t d0 = vreinterpretq_s32_u32(vsubl_u16(avg, offset_vec));
+
+ uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT);
+ d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
+
+ vst1_u16(dst_ptr, d0_u16);
+
+ src_ptr += src_stride;
+ ref_ptr += ref_stride;
+ dst_ptr += dst_stride;
+ } while (--h != 0);
+ } else {
+ do {
+ int width = w;
+ const uint16_t *src = src_ptr;
+ const uint16_t *ref = ref_ptr;
+ uint16_t *dst = dst_ptr;
+ do {
+ const uint16x8_t s = vld1q_u16(src);
+ const uint16x8_t r = vld1q_u16(ref);
+
+ uint16x8_t avg = vhaddq_u16(s, r);
+ int32x4_t d0_lo =
+ vreinterpretq_s32_u32(vsubl_u16(vget_low_u16(avg), offset_vec));
+ int32x4_t d0_hi =
+ vreinterpretq_s32_u32(vsubl_u16(vget_high_u16(avg), offset_vec));
+
+ uint16x8_t d0 = vcombine_u16(vqrshrun_n_s32(d0_lo, ROUND_SHIFT),
+ vqrshrun_n_s32(d0_hi, ROUND_SHIFT));
+ d0 = vminq_u16(d0, max);
+ vst1q_u16(dst, d0);
+
+ src += 8;
+ ref += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+
+ src_ptr += src_stride;
+ ref_ptr += ref_stride;
+ dst_ptr += dst_stride;
+ } while (--h != 0);
+ }
+}
+
+static INLINE void highbd_12_dist_wtd_comp_avg_neon(
+ const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
+ int w, int h, ConvolveParams *conv_params) {
+ const int offset_bits = 12 + 2 * FILTER_BITS - ROUND0_BITS - 2;
+ const int offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
+ (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
+
+ CONV_BUF_TYPE *ref_ptr = conv_params->dst;
+ const int ref_stride = conv_params->dst_stride;
+ const uint32x4_t offset_vec = vdupq_n_u32(offset);
+ const uint16x8_t max = vdupq_n_u16((1 << 12) - 1);
+ uint16x4_t fwd_offset = vdup_n_u16(conv_params->fwd_offset);
+ uint16x4_t bck_offset = vdup_n_u16(conv_params->bck_offset);
+
+ // Weighted averaging
+ if (w == 4) {
+ do {
+ const uint16x4_t src = vld1_u16(src_ptr);
+ const uint16x4_t ref = vld1_u16(ref_ptr);
+
+ uint32x4_t wtd_avg = vmull_u16(ref, fwd_offset);
+ wtd_avg = vmlal_u16(wtd_avg, src, bck_offset);
+ wtd_avg = vshrq_n_u32(wtd_avg, DIST_PRECISION_BITS);
+ int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg, offset_vec));
+
+ uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT - 2);
+ d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
+
+ vst1_u16(dst_ptr, d0_u16);
+
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ref_ptr += ref_stride;
+ } while (--h != 0);
+ } else {
+ do {
+ int width = w;
+ const uint16_t *src = src_ptr;
+ const uint16_t *ref = ref_ptr;
+ uint16_t *dst = dst_ptr;
+ do {
+ const uint16x8_t s = vld1q_u16(src);
+ const uint16x8_t r = vld1q_u16(ref);
+
+ uint32x4_t wtd_avg0 = vmull_u16(vget_low_u16(r), fwd_offset);
+ wtd_avg0 = vmlal_u16(wtd_avg0, vget_low_u16(s), bck_offset);
+ wtd_avg0 = vshrq_n_u32(wtd_avg0, DIST_PRECISION_BITS);
+ int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg0, offset_vec));
+
+ uint32x4_t wtd_avg1 = vmull_u16(vget_high_u16(r), fwd_offset);
+ wtd_avg1 = vmlal_u16(wtd_avg1, vget_high_u16(s), bck_offset);
+ wtd_avg1 = vshrq_n_u32(wtd_avg1, DIST_PRECISION_BITS);
+ int32x4_t d1 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg1, offset_vec));
+
+ uint16x8_t d01 = vcombine_u16(vqrshrun_n_s32(d0, ROUND_SHIFT - 2),
+ vqrshrun_n_s32(d1, ROUND_SHIFT - 2));
+ d01 = vminq_u16(d01, max);
+ vst1q_u16(dst, d01);
+
+ src += 8;
+ ref += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ref_ptr += ref_stride;
+ } while (--h != 0);
+ }
+}
+
+static INLINE void highbd_dist_wtd_comp_avg_neon(
+ const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
+ int w, int h, ConvolveParams *conv_params, const int bd) {
+ const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
+ const int offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
+ (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
+
+ CONV_BUF_TYPE *ref_ptr = conv_params->dst;
+ const int ref_stride = conv_params->dst_stride;
+ const uint32x4_t offset_vec = vdupq_n_u32(offset);
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+ uint16x4_t fwd_offset = vdup_n_u16(conv_params->fwd_offset);
+ uint16x4_t bck_offset = vdup_n_u16(conv_params->bck_offset);
+
+ // Weighted averaging
+ if (w == 4) {
+ do {
+ const uint16x4_t src = vld1_u16(src_ptr);
+ const uint16x4_t ref = vld1_u16(ref_ptr);
+
+ uint32x4_t wtd_avg = vmull_u16(ref, fwd_offset);
+ wtd_avg = vmlal_u16(wtd_avg, src, bck_offset);
+ wtd_avg = vshrq_n_u32(wtd_avg, DIST_PRECISION_BITS);
+ int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg, offset_vec));
+
+ uint16x4_t d0_u16 = vqrshrun_n_s32(d0, ROUND_SHIFT);
+ d0_u16 = vmin_u16(d0_u16, vget_low_u16(max));
+
+ vst1_u16(dst_ptr, d0_u16);
+
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ref_ptr += ref_stride;
+ } while (--h != 0);
+ } else {
+ do {
+ int width = w;
+ const uint16_t *src = src_ptr;
+ const uint16_t *ref = ref_ptr;
+ uint16_t *dst = dst_ptr;
+ do {
+ const uint16x8_t s = vld1q_u16(src);
+ const uint16x8_t r = vld1q_u16(ref);
+
+ uint32x4_t wtd_avg0 = vmull_u16(vget_low_u16(r), fwd_offset);
+ wtd_avg0 = vmlal_u16(wtd_avg0, vget_low_u16(s), bck_offset);
+ wtd_avg0 = vshrq_n_u32(wtd_avg0, DIST_PRECISION_BITS);
+ int32x4_t d0 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg0, offset_vec));
+
+ uint32x4_t wtd_avg1 = vmull_u16(vget_high_u16(r), fwd_offset);
+ wtd_avg1 = vmlal_u16(wtd_avg1, vget_high_u16(s), bck_offset);
+ wtd_avg1 = vshrq_n_u32(wtd_avg1, DIST_PRECISION_BITS);
+ int32x4_t d1 = vreinterpretq_s32_u32(vsubq_u32(wtd_avg1, offset_vec));
+
+ uint16x8_t d01 = vcombine_u16(vqrshrun_n_s32(d0, ROUND_SHIFT),
+ vqrshrun_n_s32(d1, ROUND_SHIFT));
+ d01 = vminq_u16(d01, max);
+ vst1q_u16(dst, d01);
+
+ src += 8;
+ ref += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ref_ptr += ref_stride;
+ } while (--h != 0);
+ }
+}
diff --git a/third_party/aom/av1/common/arm/highbd_compound_convolve_sve2.c b/third_party/aom/av1/common/arm/highbd_compound_convolve_sve2.c
new file mode 100644
index 0000000000..1d6c9b4faf
--- /dev/null
+++ b/third_party/aom/av1/common/arm/highbd_compound_convolve_sve2.c
@@ -0,0 +1,1555 @@
+/*
+ * Copyright (c) 2024, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <arm_neon.h>
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/arm/aom_neon_sve_bridge.h"
+#include "aom_dsp/arm/aom_neon_sve2_bridge.h"
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_ports/mem.h"
+#include "av1/common/convolve.h"
+#include "av1/common/filter.h"
+#include "av1/common/filter.h"
+#include "av1/common/arm/highbd_compound_convolve_neon.h"
+#include "av1/common/arm/highbd_convolve_neon.h"
+#include "av1/common/arm/highbd_convolve_sve2.h"
+
+DECLARE_ALIGNED(16, static const uint16_t, kDotProdTbl[32]) = {
+ 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
+ 4, 5, 6, 7, 5, 6, 7, 0, 6, 7, 0, 1, 7, 0, 1, 2,
+};
+
+static INLINE uint16x8_t highbd_12_convolve8_8_x(int16x8_t s0[8],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum[8];
+ sum[0] = aom_sdotq_s16(offset, s0[0], filter);
+ sum[1] = aom_sdotq_s16(offset, s0[1], filter);
+ sum[2] = aom_sdotq_s16(offset, s0[2], filter);
+ sum[3] = aom_sdotq_s16(offset, s0[3], filter);
+ sum[4] = aom_sdotq_s16(offset, s0[4], filter);
+ sum[5] = aom_sdotq_s16(offset, s0[5], filter);
+ sum[6] = aom_sdotq_s16(offset, s0[6], filter);
+ sum[7] = aom_sdotq_s16(offset, s0[7], filter);
+
+ sum[0] = vpaddq_s64(sum[0], sum[1]);
+ sum[2] = vpaddq_s64(sum[2], sum[3]);
+ sum[4] = vpaddq_s64(sum[4], sum[5]);
+ sum[6] = vpaddq_s64(sum[6], sum[7]);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2]));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6]));
+
+ return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS + 2),
+ vqrshrun_n_s32(sum4567, ROUND0_BITS + 2));
+}
+
+static INLINE void highbd_12_dist_wtd_convolve_x_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr) {
+ const int64x1_t offset_vec =
+ vcreate_s64((1 << (12 + FILTER_BITS)) + (1 << (12 + FILTER_BITS - 1)));
+ const int64x2_t offset_lo = vcombine_s64(offset_vec, vdup_n_s64(0));
+
+ const int16x8_t filter = vld1q_s16(x_filter_ptr);
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = highbd_12_convolve8_8_x(s0, filter, offset_lo);
+ uint16x8_t d1 = highbd_12_convolve8_8_x(s1, filter, offset_lo);
+ uint16x8_t d2 = highbd_12_convolve8_8_x(s2, filter, offset_lo);
+ uint16x8_t d3 = highbd_12_convolve8_8_x(s3, filter, offset_lo);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+}
+
+static INLINE uint16x8_t highbd_convolve8_8_x(int16x8_t s0[8], int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum[8];
+ sum[0] = aom_sdotq_s16(offset, s0[0], filter);
+ sum[1] = aom_sdotq_s16(offset, s0[1], filter);
+ sum[2] = aom_sdotq_s16(offset, s0[2], filter);
+ sum[3] = aom_sdotq_s16(offset, s0[3], filter);
+ sum[4] = aom_sdotq_s16(offset, s0[4], filter);
+ sum[5] = aom_sdotq_s16(offset, s0[5], filter);
+ sum[6] = aom_sdotq_s16(offset, s0[6], filter);
+ sum[7] = aom_sdotq_s16(offset, s0[7], filter);
+
+ sum[0] = vpaddq_s64(sum[0], sum[1]);
+ sum[2] = vpaddq_s64(sum[2], sum[3]);
+ sum[4] = vpaddq_s64(sum[4], sum[5]);
+ sum[6] = vpaddq_s64(sum[6], sum[7]);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2]));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6]));
+
+ return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS),
+ vqrshrun_n_s32(sum4567, ROUND0_BITS));
+}
+
+static INLINE void highbd_dist_wtd_convolve_x_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr, const int bd) {
+ const int64x1_t offset_vec =
+ vcreate_s64((1 << (bd + FILTER_BITS)) + (1 << (bd + FILTER_BITS - 1)));
+ const int64x2_t offset_lo = vcombine_s64(offset_vec, vdup_n_s64(0));
+
+ const int16x8_t filter = vld1q_s16(x_filter_ptr);
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = highbd_convolve8_8_x(s0, filter, offset_lo);
+ uint16x8_t d1 = highbd_convolve8_8_x(s1, filter, offset_lo);
+ uint16x8_t d2 = highbd_convolve8_8_x(s2, filter, offset_lo);
+ uint16x8_t d3 = highbd_convolve8_8_x(s3, filter, offset_lo);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+}
+
+// clang-format off
+DECLARE_ALIGNED(16, static const uint16_t, kDeinterleaveTbl[8]) = {
+ 0, 2, 4, 6, 1, 3, 5, 7,
+};
+// clang-format on
+
+static INLINE uint16x4_t highbd_12_convolve4_4_x(int16x8_t s0, int16x8_t filter,
+ int64x2_t offset,
+ uint16x8x2_t permute_tbl) {
+ int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]);
+ int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]);
+
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+
+ return vqrshrun_n_s32(sum0123, ROUND0_BITS + 2);
+}
+
+static INLINE uint16x8_t highbd_12_convolve4_8_x(int16x8_t s0[4],
+ int16x8_t filter,
+ int64x2_t offset,
+ uint16x8_t tbl) {
+ int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0);
+ int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0);
+ int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0);
+ int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0);
+
+ int32x4_t sum0415 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15));
+ int32x4_t sum2637 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37));
+
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0415, ROUND0_BITS + 2),
+ vqrshrun_n_s32(sum2637, ROUND0_BITS + 2));
+ return aom_tbl_u16(res, tbl);
+}
+
+static INLINE void highbd_12_dist_wtd_convolve_x_4tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr) {
+ const int64x2_t offset =
+ vdupq_n_s64((1 << (12 + FILTER_BITS)) + (1 << (12 + FILTER_BITS - 1)));
+
+ const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
+ const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
+
+ if (width == 4) {
+ uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
+
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0, s1, s2, s3;
+ load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
+
+ uint16x4_t d0 = highbd_12_convolve4_4_x(s0, filter, offset, permute_tbl);
+ uint16x4_t d1 = highbd_12_convolve4_4_x(s1, filter, offset, permute_tbl);
+ uint16x4_t d2 = highbd_12_convolve4_4_x(s2, filter, offset, permute_tbl);
+ uint16x4_t d3 = highbd_12_convolve4_4_x(s3, filter, offset, permute_tbl);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
+
+ do {
+ const int16_t *s = (const int16_t *)(src);
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4], s3[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+ load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
+
+ uint16x8_t d0 = highbd_12_convolve4_8_x(s0, filter, offset, idx);
+ uint16x8_t d1 = highbd_12_convolve4_8_x(s1, filter, offset, idx);
+ uint16x8_t d2 = highbd_12_convolve4_8_x(s2, filter, offset, idx);
+ uint16x8_t d3 = highbd_12_convolve4_8_x(s3, filter, offset, idx);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve4_4_x(int16x8_t s0, int16x8_t filter,
+ int64x2_t offset,
+ uint16x8x2_t permute_tbl) {
+ int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]);
+ int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]);
+
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+
+ return vqrshrun_n_s32(sum0123, ROUND0_BITS);
+}
+
+static INLINE uint16x8_t highbd_convolve4_8_x(int16x8_t s0[4], int16x8_t filter,
+ int64x2_t offset,
+ uint16x8_t tbl) {
+ int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0);
+ int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0);
+ int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0);
+ int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0);
+
+ int32x4_t sum0415 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15));
+ int32x4_t sum2637 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37));
+
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0415, ROUND0_BITS),
+ vqrshrun_n_s32(sum2637, ROUND0_BITS));
+ return aom_tbl_u16(res, tbl);
+}
+
+static INLINE void highbd_dist_wtd_convolve_x_4tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr, const int bd) {
+ const int64x2_t offset =
+ vdupq_n_s64((1 << (bd + FILTER_BITS)) + (1 << (bd + FILTER_BITS - 1)));
+
+ const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
+ const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
+
+ if (width == 4) {
+ uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
+
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0, s1, s2, s3;
+ load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
+
+ uint16x4_t d0 = highbd_convolve4_4_x(s0, filter, offset, permute_tbl);
+ uint16x4_t d1 = highbd_convolve4_4_x(s1, filter, offset, permute_tbl);
+ uint16x4_t d2 = highbd_convolve4_4_x(s2, filter, offset, permute_tbl);
+ uint16x4_t d3 = highbd_convolve4_4_x(s3, filter, offset, permute_tbl);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
+
+ do {
+ const int16_t *s = (const int16_t *)(src);
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4], s3[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+ load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
+
+ uint16x8_t d0 = highbd_convolve4_8_x(s0, filter, offset, idx);
+ uint16x8_t d1 = highbd_convolve4_8_x(s1, filter, offset, idx);
+ uint16x8_t d2 = highbd_convolve4_8_x(s2, filter, offset, idx);
+ uint16x8_t d3 = highbd_convolve4_8_x(s3, filter, offset, idx);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ }
+}
+
+void av1_highbd_dist_wtd_convolve_x_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
+ int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
+ ConvolveParams *conv_params, int bd) {
+ DECLARE_ALIGNED(16, uint16_t,
+ im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
+ CONV_BUF_TYPE *dst16 = conv_params->dst;
+ const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
+
+ if (x_filter_taps == 6) {
+ av1_highbd_dist_wtd_convolve_x_neon(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, subpel_x_qn,
+ conv_params, bd);
+ return;
+ }
+
+ int dst16_stride = conv_params->dst_stride;
+ const int im_stride = MAX_SB_SIZE;
+ const int horiz_offset = filter_params_x->taps / 2 - 1;
+ assert(FILTER_BITS == COMPOUND_ROUND1_BITS);
+
+ const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_x, subpel_x_qn & SUBPEL_MASK);
+
+ src -= horiz_offset;
+
+ if (bd == 12) {
+ if (conv_params->do_average) {
+ if (x_filter_taps <= 4) {
+ highbd_12_dist_wtd_convolve_x_4tap_sve2(src + 2, src_stride, im_block,
+ im_stride, w, h, x_filter_ptr);
+ } else {
+ highbd_12_dist_wtd_convolve_x_8tap_sve2(src, src_stride, im_block,
+ im_stride, w, h, x_filter_ptr);
+ }
+
+ if (conv_params->use_dist_wtd_comp_avg) {
+ highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
+ w, h, conv_params);
+
+ } else {
+ highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
+ conv_params);
+ }
+ } else {
+ if (x_filter_taps <= 4) {
+ highbd_12_dist_wtd_convolve_x_4tap_sve2(
+ src + 2, src_stride, dst16, dst16_stride, w, h, x_filter_ptr);
+ } else {
+ highbd_12_dist_wtd_convolve_x_8tap_sve2(
+ src, src_stride, dst16, dst16_stride, w, h, x_filter_ptr);
+ }
+ }
+ } else {
+ if (conv_params->do_average) {
+ if (x_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_x_4tap_sve2(src + 2, src_stride, im_block,
+ im_stride, w, h, x_filter_ptr, bd);
+ } else {
+ highbd_dist_wtd_convolve_x_8tap_sve2(src, src_stride, im_block,
+ im_stride, w, h, x_filter_ptr, bd);
+ }
+
+ if (conv_params->use_dist_wtd_comp_avg) {
+ highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
+ h, conv_params, bd);
+ } else {
+ highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
+ conv_params, bd);
+ }
+ } else {
+ if (x_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_x_4tap_sve2(
+ src + 2, src_stride, dst16, dst16_stride, w, h, x_filter_ptr, bd);
+ } else {
+ highbd_dist_wtd_convolve_x_8tap_sve2(
+ src, src_stride, dst16, dst16_stride, w, h, x_filter_ptr, bd);
+ }
+ }
+ }
+}
+
+static INLINE uint16x4_t highbd_12_convolve8_4_y(int16x8_t samples_lo[2],
+ int16x8_t samples_hi[2],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+
+ return vqrshrun_n_s32(sum0123, ROUND0_BITS + 2);
+}
+
+static INLINE uint16x8_t highbd_12_convolve8_8_y(int16x8_t samples_lo[4],
+ int16x8_t samples_hi[4],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
+ sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
+
+ int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
+ sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS + 2),
+ vqrshrun_n_s32(sum4567, ROUND0_BITS + 2));
+}
+
+static INLINE void highbd_12_dist_wtd_convolve_y_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr) {
+ const int64x2_t offset =
+ vdupq_n_s64((1 << (12 + FILTER_BITS)) + (1 << (12 + FILTER_BITS - 1)));
+ const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ if (width == 4) {
+ int16_t *s = (int16_t *)src;
+ int16x4_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x4_t s7, s8, s9, s10;
+ load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_4x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x4_t d0 = highbd_12_convolve8_4_y(s0123, s4567, y_filter, offset);
+ uint16x4_t d1 = highbd_12_convolve8_4_y(s1234, s5678, y_filter, offset);
+ uint16x4_t d2 = highbd_12_convolve8_4_y(s2345, s6789, y_filter, offset);
+ uint16x4_t d3 = highbd_12_convolve8_4_y(s3456, s789A, y_filter, offset);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x8_t s7, s8, s9, s10;
+ load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
+ int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
+
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_8x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x8_t d0 = highbd_12_convolve8_8_y(s0123, s4567, y_filter, offset);
+ uint16x8_t d1 = highbd_12_convolve8_8_y(s1234, s5678, y_filter, offset);
+ uint16x8_t d2 = highbd_12_convolve8_8_y(s2345, s6789, y_filter, offset);
+ uint16x8_t d3 = highbd_12_convolve8_8_y(s3456, s789A, y_filter, offset);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s0123[2] = s4567[2];
+ s0123[3] = s4567[3];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s1234[2] = s5678[2];
+ s1234[3] = s5678[3];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s2345[2] = s6789[2];
+ s2345[3] = s6789[3];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s3456[2] = s789A[2];
+ s3456[3] = s789A[3];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve8_4_y(int16x8_t samples_lo[2],
+ int16x8_t samples_hi[2],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+
+ return vqrshrun_n_s32(sum0123, ROUND0_BITS);
+}
+
+static INLINE uint16x8_t highbd_convolve8_8_y(int16x8_t samples_lo[4],
+ int16x8_t samples_hi[4],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
+ sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
+
+ int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
+ sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ return vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS),
+ vqrshrun_n_s32(sum4567, ROUND0_BITS));
+}
+
+static INLINE void highbd_dist_wtd_convolve_y_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr, const int bd) {
+ const int64x2_t offset =
+ vdupq_n_s64((1 << (bd + FILTER_BITS)) + (1 << (bd + FILTER_BITS - 1)));
+ const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ if (width == 4) {
+ int16_t *s = (int16_t *)src;
+ int16x4_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x4_t s7, s8, s9, s10;
+ load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_4x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x4_t d0 = highbd_convolve8_4_y(s0123, s4567, y_filter, offset);
+ uint16x4_t d1 = highbd_convolve8_4_y(s1234, s5678, y_filter, offset);
+ uint16x4_t d2 = highbd_convolve8_4_y(s2345, s6789, y_filter, offset);
+ uint16x4_t d3 = highbd_convolve8_4_y(s3456, s789A, y_filter, offset);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x8_t s7, s8, s9, s10;
+ load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
+ int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
+
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_8x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x8_t d0 = highbd_convolve8_8_y(s0123, s4567, y_filter, offset);
+ uint16x8_t d1 = highbd_convolve8_8_y(s1234, s5678, y_filter, offset);
+ uint16x8_t d2 = highbd_convolve8_8_y(s2345, s6789, y_filter, offset);
+ uint16x8_t d3 = highbd_convolve8_8_y(s3456, s789A, y_filter, offset);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s0123[2] = s4567[2];
+ s0123[3] = s4567[3];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s1234[2] = s5678[2];
+ s1234[3] = s5678[3];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s2345[2] = s6789[2];
+ s2345[3] = s6789[3];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s3456[2] = s789A[2];
+ s3456[3] = s789A[3];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+void av1_highbd_dist_wtd_convolve_y_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
+ int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn,
+ ConvolveParams *conv_params, int bd) {
+ DECLARE_ALIGNED(16, uint16_t,
+ im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
+ CONV_BUF_TYPE *dst16 = conv_params->dst;
+ const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
+
+ if (y_filter_taps != 8) {
+ av1_highbd_dist_wtd_convolve_y_neon(src, src_stride, dst, dst_stride, w, h,
+ filter_params_y, subpel_y_qn,
+ conv_params, bd);
+ return;
+ }
+
+ int dst16_stride = conv_params->dst_stride;
+ const int im_stride = MAX_SB_SIZE;
+ const int vert_offset = filter_params_y->taps / 2 - 1;
+ assert(FILTER_BITS == COMPOUND_ROUND1_BITS);
+
+ const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_y, subpel_y_qn & SUBPEL_MASK);
+
+ src -= vert_offset * src_stride;
+
+ if (bd == 12) {
+ if (conv_params->do_average) {
+ highbd_12_dist_wtd_convolve_y_8tap_sve2(src, src_stride, im_block,
+ im_stride, w, h, y_filter_ptr);
+ if (conv_params->use_dist_wtd_comp_avg) {
+ highbd_12_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride,
+ w, h, conv_params);
+ } else {
+ highbd_12_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
+ conv_params);
+ }
+ } else {
+ highbd_12_dist_wtd_convolve_y_8tap_sve2(src, src_stride, dst16,
+ dst16_stride, w, h, y_filter_ptr);
+ }
+ } else {
+ if (conv_params->do_average) {
+ highbd_dist_wtd_convolve_y_8tap_sve2(src, src_stride, im_block, im_stride,
+ w, h, y_filter_ptr, bd);
+ if (conv_params->use_dist_wtd_comp_avg) {
+ highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w,
+ h, conv_params, bd);
+ } else {
+ highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
+ conv_params, bd);
+ }
+ } else {
+ highbd_dist_wtd_convolve_y_8tap_sve2(src, src_stride, dst16, dst16_stride,
+ w, h, y_filter_ptr, bd);
+ }
+ }
+}
+
+static INLINE void highbd_12_dist_wtd_convolve_2d_horiz_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr) {
+ const int64x2_t offset = vdupq_n_s64(1 << (12 + FILTER_BITS - 2));
+ const int16x8_t filter = vld1q_s16(x_filter_ptr);
+
+ // We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
+ // that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
+ // a time and then process the last 3 rows separately.
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = highbd_12_convolve8_8_x(s0, filter, offset);
+ uint16x8_t d1 = highbd_12_convolve8_8_x(s1, filter, offset);
+ uint16x8_t d2 = highbd_12_convolve8_8_x(s2, filter, offset);
+ uint16x8_t d3 = highbd_12_convolve8_8_x(s3, filter, offset);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 4);
+
+ // Process final 3 rows.
+ const int16_t *s = (const int16_t *)src;
+ do {
+ int16x8_t s0[8], s1[8], s2[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4],
+ &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4],
+ &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4],
+ &s2[5], &s2[6], &s2[7]);
+
+ uint16x8_t d0 = highbd_12_convolve8_8_x(s0, filter, offset);
+ uint16x8_t d1 = highbd_12_convolve8_8_x(s1, filter, offset);
+ uint16x8_t d2 = highbd_12_convolve8_8_x(s2, filter, offset);
+
+ store_u16_8x3(dst, dst_stride, d0, d1, d2);
+ s += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+}
+
+static INLINE void highbd_dist_wtd_convolve_2d_horiz_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr, const int bd) {
+ const int64x2_t offset = vdupq_n_s64(1 << (bd + FILTER_BITS - 2));
+ const int16x8_t filter = vld1q_s16(x_filter_ptr);
+
+ // We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
+ // that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
+ // a time and then process the last 3 rows separately.
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = highbd_convolve8_8_x(s0, filter, offset);
+ uint16x8_t d1 = highbd_convolve8_8_x(s1, filter, offset);
+ uint16x8_t d2 = highbd_convolve8_8_x(s2, filter, offset);
+ uint16x8_t d3 = highbd_convolve8_8_x(s3, filter, offset);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 4);
+
+ // Process final 3 rows.
+ const int16_t *s = (const int16_t *)src;
+ do {
+ int16x8_t s0[8], s1[8], s2[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3], &s0[4],
+ &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3], &s1[4],
+ &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3], &s2[4],
+ &s2[5], &s2[6], &s2[7]);
+
+ uint16x8_t d0 = highbd_convolve8_8_x(s0, filter, offset);
+ uint16x8_t d1 = highbd_convolve8_8_x(s1, filter, offset);
+ uint16x8_t d2 = highbd_convolve8_8_x(s2, filter, offset);
+
+ store_u16_8x3(dst, dst_stride, d0, d1, d2);
+ s += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+}
+
+static INLINE void highbd_12_dist_wtd_convolve_2d_horiz_4tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr) {
+ const int64x2_t offset = vdupq_n_s64(1 << (12 + FILTER_BITS - 1));
+ const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
+ const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
+
+ // We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
+ // that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
+ // a time and then process the last 3 rows separately.
+
+ if (width == 4) {
+ uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
+
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0, s1, s2, s3;
+ load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
+
+ uint16x4_t d0 = highbd_12_convolve4_4_x(s0, filter, offset, permute_tbl);
+ uint16x4_t d1 = highbd_12_convolve4_4_x(s1, filter, offset, permute_tbl);
+ uint16x4_t d2 = highbd_12_convolve4_4_x(s2, filter, offset, permute_tbl);
+ uint16x4_t d3 = highbd_12_convolve4_4_x(s3, filter, offset, permute_tbl);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 4);
+
+ // Process final 3 rows.
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+
+ uint16x4_t d0 = highbd_12_convolve4_4_x(s0, filter, offset, permute_tbl);
+ uint16x4_t d1 = highbd_12_convolve4_4_x(s1, filter, offset, permute_tbl);
+ uint16x4_t d2 = highbd_12_convolve4_4_x(s2, filter, offset, permute_tbl);
+
+ store_u16_4x3(dst, dst_stride, d0, d1, d2);
+
+ } else {
+ uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
+
+ do {
+ const int16_t *s = (const int16_t *)(src);
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4], s3[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+ load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
+
+ uint16x8_t d0 = highbd_12_convolve4_8_x(s0, filter, offset, idx);
+ uint16x8_t d1 = highbd_12_convolve4_8_x(s1, filter, offset, idx);
+ uint16x8_t d2 = highbd_12_convolve4_8_x(s2, filter, offset, idx);
+ uint16x8_t d3 = highbd_12_convolve4_8_x(s3, filter, offset, idx);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 4);
+
+ // Process final 3 rows.
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+
+ uint16x8_t d0 = highbd_12_convolve4_8_x(s0, filter, offset, idx);
+ uint16x8_t d1 = highbd_12_convolve4_8_x(s1, filter, offset, idx);
+ uint16x8_t d2 = highbd_12_convolve4_8_x(s2, filter, offset, idx);
+
+ store_u16_8x3(dst, dst_stride, d0, d1, d2);
+
+ s += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+static INLINE void highbd_dist_wtd_convolve_2d_horiz_4tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr, const int bd) {
+ const int64x2_t offset = vdupq_n_s64(1 << (bd + FILTER_BITS - 1));
+ const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
+ const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
+
+ // We are only doing 8-tap and 4-tap vertical convolutions, therefore we know
+ // that im_h % 4 = 3, so we can do the loop across the whole block 4 rows at
+ // a time and then process the last 3 rows separately.
+
+ if (width == 4) {
+ uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
+
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0, s1, s2, s3;
+ load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
+
+ uint16x4_t d0 = highbd_convolve4_4_x(s0, filter, offset, permute_tbl);
+ uint16x4_t d1 = highbd_convolve4_4_x(s1, filter, offset, permute_tbl);
+ uint16x4_t d2 = highbd_convolve4_4_x(s2, filter, offset, permute_tbl);
+ uint16x4_t d3 = highbd_convolve4_4_x(s3, filter, offset, permute_tbl);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 4);
+
+ // Process final 3 rows.
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+
+ uint16x4_t d0 = highbd_convolve4_4_x(s0, filter, offset, permute_tbl);
+ uint16x4_t d1 = highbd_convolve4_4_x(s1, filter, offset, permute_tbl);
+ uint16x4_t d2 = highbd_convolve4_4_x(s2, filter, offset, permute_tbl);
+
+ store_u16_4x3(dst, dst_stride, d0, d1, d2);
+ } else {
+ uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
+
+ do {
+ const int16_t *s = (const int16_t *)(src);
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4], s3[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+ load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
+
+ uint16x8_t d0 = highbd_convolve4_8_x(s0, filter, offset, idx);
+ uint16x8_t d1 = highbd_convolve4_8_x(s1, filter, offset, idx);
+ uint16x8_t d2 = highbd_convolve4_8_x(s2, filter, offset, idx);
+ uint16x8_t d3 = highbd_convolve4_8_x(s3, filter, offset, idx);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 4);
+
+ // Process final 3 rows.
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+
+ uint16x8_t d0 = highbd_convolve4_8_x(s0, filter, offset, idx);
+ uint16x8_t d1 = highbd_convolve4_8_x(s1, filter, offset, idx);
+ uint16x8_t d2 = highbd_convolve4_8_x(s2, filter, offset, idx);
+
+ store_u16_8x3(dst, dst_stride, d0, d1, d2);
+
+ s += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve8_4_2d_v(int16x8_t samples_lo[2],
+ int16x8_t samples_hi[2],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+
+ return vqrshrun_n_s32(sum0123, COMPOUND_ROUND1_BITS);
+}
+
+static INLINE uint16x8_t highbd_convolve8_8_2d_v(int16x8_t samples_lo[4],
+ int16x8_t samples_hi[4],
+ int16x8_t filter,
+ int64x2_t offset) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
+ sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
+
+ int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
+ sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ return vcombine_u16(vqrshrun_n_s32(sum0123, COMPOUND_ROUND1_BITS),
+ vqrshrun_n_s32(sum4567, COMPOUND_ROUND1_BITS));
+}
+
+static INLINE void highbd_dist_wtd_convolve_2d_vert_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr, int offset) {
+ const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
+ const int64x2_t offset_s64 = vdupq_n_s64(offset);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ if (width == 4) {
+ int16_t *s = (int16_t *)src;
+ int16x4_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x4_t s7, s8, s9, s10;
+ load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_4x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x4_t d0 =
+ highbd_convolve8_4_2d_v(s0123, s4567, y_filter, offset_s64);
+ uint16x4_t d1 =
+ highbd_convolve8_4_2d_v(s1234, s5678, y_filter, offset_s64);
+ uint16x4_t d2 =
+ highbd_convolve8_4_2d_v(s2345, s6789, y_filter, offset_s64);
+ uint16x4_t d3 =
+ highbd_convolve8_4_2d_v(s3456, s789A, y_filter, offset_s64);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x8_t s7, s8, s9, s10;
+ load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
+ int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
+
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_8x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x8_t d0 =
+ highbd_convolve8_8_2d_v(s0123, s4567, y_filter, offset_s64);
+ uint16x8_t d1 =
+ highbd_convolve8_8_2d_v(s1234, s5678, y_filter, offset_s64);
+ uint16x8_t d2 =
+ highbd_convolve8_8_2d_v(s2345, s6789, y_filter, offset_s64);
+ uint16x8_t d3 =
+ highbd_convolve8_8_2d_v(s3456, s789A, y_filter, offset_s64);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s0123[2] = s4567[2];
+ s0123[3] = s4567[3];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s1234[2] = s5678[2];
+ s1234[3] = s5678[3];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s2345[2] = s6789[2];
+ s2345[3] = s6789[3];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s3456[2] = s789A[2];
+ s3456[3] = s789A[3];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve4_4_2d_v(
+ const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
+ const int16x4_t s3, const int16x4_t filter, const int32x4_t offset) {
+ int32x4_t sum = vmlal_lane_s16(offset, s0, filter, 0);
+ sum = vmlal_lane_s16(sum, s1, filter, 1);
+ sum = vmlal_lane_s16(sum, s2, filter, 2);
+ sum = vmlal_lane_s16(sum, s3, filter, 3);
+
+ return vqrshrun_n_s32(sum, COMPOUND_ROUND1_BITS);
+}
+
+static INLINE uint16x8_t highbd_convolve4_8_2d_v(
+ const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
+ const int16x8_t s3, const int16x4_t filter, const int32x4_t offset) {
+ int32x4_t sum0 = vmlal_lane_s16(offset, vget_low_s16(s0), filter, 0);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter, 1);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter, 2);
+ sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter, 3);
+
+ int32x4_t sum1 = vmlal_lane_s16(offset, vget_high_s16(s0), filter, 0);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter, 1);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter, 2);
+ sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter, 3);
+
+ return vcombine_u16(vqrshrun_n_s32(sum0, COMPOUND_ROUND1_BITS),
+ vqrshrun_n_s32(sum1, COMPOUND_ROUND1_BITS));
+}
+
+static INLINE void highbd_dist_wtd_convolve_2d_vert_4tap_neon(
+ const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
+ int w, int h, const int16_t *y_filter_ptr, const int offset) {
+ const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2);
+ const int32x4_t offset_vec = vdupq_n_s32(offset);
+
+ if (w == 4) {
+ const int16_t *s = (const int16_t *)src_ptr;
+ uint16_t *d = dst_ptr;
+
+ int16x4_t s0, s1, s2;
+ load_s16_4x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x4_t s3, s4, s5, s6;
+ load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ uint16x4_t d0 =
+ highbd_convolve4_4_2d_v(s0, s1, s2, s3, y_filter, offset_vec);
+ uint16x4_t d1 =
+ highbd_convolve4_4_2d_v(s1, s2, s3, s4, y_filter, offset_vec);
+ uint16x4_t d2 =
+ highbd_convolve4_4_2d_v(s2, s3, s4, s5, y_filter, offset_vec);
+ uint16x4_t d3 =
+ highbd_convolve4_4_2d_v(s3, s4, s5, s6, y_filter, offset_vec);
+
+ store_u16_4x4(d, dst_stride, d0, d1, d2, d3);
+
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ } else {
+ do {
+ int height = h;
+ const int16_t *s = (const int16_t *)src_ptr;
+ uint16_t *d = dst_ptr;
+
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x8_t s3, s4, s5, s6;
+ load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ uint16x8_t d0 =
+ highbd_convolve4_8_2d_v(s0, s1, s2, s3, y_filter, offset_vec);
+ uint16x8_t d1 =
+ highbd_convolve4_8_2d_v(s1, s2, s3, s4, y_filter, offset_vec);
+ uint16x8_t d2 =
+ highbd_convolve4_8_2d_v(s2, s3, s4, s5, y_filter, offset_vec);
+ uint16x8_t d3 =
+ highbd_convolve4_8_2d_v(s3, s4, s5, s6, y_filter, offset_vec);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ src_ptr += 8;
+ dst_ptr += 8;
+ w -= 8;
+ } while (w != 0);
+ }
+}
+
+void av1_highbd_dist_wtd_convolve_2d_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
+ int h, const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y, const int subpel_x_qn,
+ const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
+ DECLARE_ALIGNED(16, uint16_t,
+ im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
+ DECLARE_ALIGNED(16, uint16_t,
+ im_block2[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
+
+ CONV_BUF_TYPE *dst16 = conv_params->dst;
+ int dst16_stride = conv_params->dst_stride;
+ const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
+ const int clamped_x_taps = x_filter_taps < 4 ? 4 : x_filter_taps;
+
+ const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
+ const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps;
+
+ if (x_filter_taps == 6 || y_filter_taps == 6) {
+ av1_highbd_dist_wtd_convolve_2d_neon(
+ src, src_stride, dst, dst_stride, w, h, filter_params_x,
+ filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd);
+ return;
+ }
+
+ const int im_h = h + clamped_y_taps - 1;
+ const int im_stride = MAX_SB_SIZE;
+ const int vert_offset = clamped_y_taps / 2 - 1;
+ const int horiz_offset = clamped_x_taps / 2 - 1;
+ const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
+ const int round_offset_conv_y = (1 << y_offset_bits);
+
+ const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
+
+ const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_x, subpel_x_qn & SUBPEL_MASK);
+ const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_y, subpel_y_qn & SUBPEL_MASK);
+
+ if (bd == 12) {
+ if (x_filter_taps <= 4) {
+ highbd_12_dist_wtd_convolve_2d_horiz_4tap_sve2(
+ src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr);
+ } else {
+ highbd_12_dist_wtd_convolve_2d_horiz_8tap_sve2(
+ src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr);
+ }
+ } else {
+ if (x_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_2d_horiz_4tap_sve2(
+ src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, bd);
+ } else {
+ highbd_dist_wtd_convolve_2d_horiz_8tap_sve2(
+ src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr, bd);
+ }
+ }
+
+ if (conv_params->do_average) {
+ if (y_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_2d_vert_4tap_neon(im_block, im_stride, im_block2,
+ im_stride, w, h, y_filter_ptr,
+ round_offset_conv_y);
+ } else {
+ highbd_dist_wtd_convolve_2d_vert_8tap_sve2(im_block, im_stride, im_block2,
+ im_stride, w, h, y_filter_ptr,
+ round_offset_conv_y);
+ }
+ if (conv_params->use_dist_wtd_comp_avg) {
+ if (bd == 12) {
+ highbd_12_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride,
+ w, h, conv_params);
+
+ } else {
+ highbd_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w,
+ h, conv_params, bd);
+ }
+ } else {
+ if (bd == 12) {
+ highbd_12_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
+ conv_params);
+
+ } else {
+ highbd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
+ conv_params, bd);
+ }
+ }
+ } else {
+ if (y_filter_taps <= 4) {
+ highbd_dist_wtd_convolve_2d_vert_4tap_neon(
+ im_block, im_stride, dst16, dst16_stride, w, h, y_filter_ptr,
+ round_offset_conv_y);
+ } else {
+ highbd_dist_wtd_convolve_2d_vert_8tap_sve2(
+ im_block, im_stride, dst16, dst16_stride, w, h, y_filter_ptr,
+ round_offset_conv_y);
+ }
+ }
+}
diff --git a/third_party/aom/av1/common/arm/highbd_convolve_sve2.c b/third_party/aom/av1/common/arm/highbd_convolve_sve2.c
new file mode 100644
index 0000000000..82eb12fcea
--- /dev/null
+++ b/third_party/aom/av1/common/arm/highbd_convolve_sve2.c
@@ -0,0 +1,1720 @@
+/*
+ * Copyright (c) 2024, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <arm_neon.h>
+
+#include "config/aom_config.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/arm/aom_neon_sve_bridge.h"
+#include "aom_dsp/arm/aom_neon_sve2_bridge.h"
+#include "aom_dsp/arm/mem_neon.h"
+#include "aom_ports/mem.h"
+#include "av1/common/convolve.h"
+#include "av1/common/filter.h"
+#include "av1/common/arm/highbd_convolve_sve2.h"
+
+DECLARE_ALIGNED(16, static const uint16_t, kDotProdTbl[32]) = {
+ 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
+ 4, 5, 6, 7, 5, 6, 7, 0, 6, 7, 0, 1, 7, 0, 1, 2,
+};
+
+static INLINE uint16x4_t convolve12_4_x(
+ int16x8_t s0, int16x8_t s1, int16x8_t filter_0_7, int16x8_t filter_4_11,
+ const int64x2_t offset, uint16x8x4_t permute_tbl, uint16x4_t max) {
+ int16x8_t permuted_samples[6];
+ permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]);
+ permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]);
+ permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]);
+ permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]);
+ permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]);
+ permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]);
+
+ int64x2_t sum01 =
+ aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1);
+
+ int64x2_t sum23 =
+ aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1);
+
+ int32x4_t res0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ uint16x4_t res = vqrshrun_n_s32(res0123, FILTER_BITS);
+
+ return vmin_u16(res, max);
+}
+
+static INLINE uint16x8_t convolve12_8_x(int16x8_t s0, int16x8_t s1,
+ int16x8_t s2, int16x8_t filter_0_7,
+ int16x8_t filter_4_11, int64x2_t offset,
+ uint16x8x4_t permute_tbl,
+ uint16x8_t max) {
+ int16x8_t permuted_samples[8];
+ permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]);
+ permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]);
+ permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]);
+ permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]);
+ permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]);
+ permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]);
+ permuted_samples[6] = aom_tbl2_s16(s1, s2, permute_tbl.val[2]);
+ permuted_samples[7] = aom_tbl2_s16(s1, s2, permute_tbl.val[3]);
+
+ int64x2_t sum01 =
+ aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1);
+
+ int64x2_t sum23 =
+ aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1);
+
+ int64x2_t sum45 =
+ aom_svdot_lane_s16(offset, permuted_samples[2], filter_0_7, 0);
+ sum45 = aom_svdot_lane_s16(sum45, permuted_samples[4], filter_0_7, 1);
+ sum45 = aom_svdot_lane_s16(sum45, permuted_samples[6], filter_4_11, 1);
+
+ int64x2_t sum67 =
+ aom_svdot_lane_s16(offset, permuted_samples[3], filter_0_7, 0);
+ sum67 = aom_svdot_lane_s16(sum67, permuted_samples[5], filter_0_7, 1);
+ sum67 = aom_svdot_lane_s16(sum67, permuted_samples[7], filter_4_11, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS),
+ vqrshrun_n_s32(sum4567, FILTER_BITS));
+
+ return vminq_u16(res, max);
+}
+
+static INLINE void highbd_convolve_x_sr_12tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr,
+ ConvolveParams *conv_params, int bd) {
+ // This shim allows to do only one rounding shift instead of two.
+ const int64x2_t offset = vdupq_n_s64(1 << (conv_params->round_0 - 1));
+
+ const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
+ const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4);
+
+ uint16x8x4_t permute_tbl = vld1q_u16_x4(kDotProdTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 = vreinterpretq_u16_u64(vcombine_u64(
+ vdup_n_u64(0), vdup_n_u64(svcnth() * 0x0001000000000000ULL)));
+ permute_tbl.val[2] = vaddq_u16(permute_tbl.val[2], correction0);
+
+ uint16x8_t correction1 = vreinterpretq_u16_u64(
+ vcombine_u64(vdup_n_u64(svcnth() * 0x0001000100000000ULL),
+ vdup_n_u64(svcnth() * 0x0001000100010000ULL)));
+ permute_tbl.val[3] = vaddq_u16(permute_tbl.val[3], correction1);
+
+ if (width == 4) {
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+ const int16_t *s = (const int16_t *)src;
+
+ do {
+ int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
+ load_s16_8x4(s, src_stride, &s0, &s2, &s4, &s6);
+ load_s16_8x4(s + 8, src_stride, &s1, &s3, &s5, &s7);
+
+ uint16x4_t d0 = convolve12_4_x(s0, s1, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+ uint16x4_t d1 = convolve12_4_x(s2, s3, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+ uint16x4_t d2 = convolve12_4_x(s4, s5, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+ uint16x4_t d3 = convolve12_4_x(s6, s7, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11;
+ load_s16_8x4(s, src_stride, &s0, &s3, &s6, &s9);
+ load_s16_8x4(s + 8, src_stride, &s1, &s4, &s7, &s10);
+ load_s16_8x4(s + 16, src_stride, &s2, &s5, &s8, &s11);
+
+ uint16x8_t d0 = convolve12_8_x(s0, s1, s2, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+ uint16x8_t d1 = convolve12_8_x(s3, s4, s5, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+ uint16x8_t d2 = convolve12_8_x(s6, s7, s8, y_filter_0_7, y_filter_4_11,
+ offset, permute_tbl, max);
+ uint16x8_t d3 = convolve12_8_x(s9, s10, s11, y_filter_0_7,
+ y_filter_4_11, offset, permute_tbl, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ }
+}
+
+static INLINE uint16x8_t convolve8_8_x(int16x8_t s0[8], int16x8_t filter,
+ int64x2_t offset, uint16x8_t max) {
+ int64x2_t sum[8];
+ sum[0] = aom_sdotq_s16(offset, s0[0], filter);
+ sum[1] = aom_sdotq_s16(offset, s0[1], filter);
+ sum[2] = aom_sdotq_s16(offset, s0[2], filter);
+ sum[3] = aom_sdotq_s16(offset, s0[3], filter);
+ sum[4] = aom_sdotq_s16(offset, s0[4], filter);
+ sum[5] = aom_sdotq_s16(offset, s0[5], filter);
+ sum[6] = aom_sdotq_s16(offset, s0[6], filter);
+ sum[7] = aom_sdotq_s16(offset, s0[7], filter);
+
+ sum[0] = vpaddq_s64(sum[0], sum[1]);
+ sum[2] = vpaddq_s64(sum[2], sum[3]);
+ sum[4] = vpaddq_s64(sum[4], sum[5]);
+ sum[6] = vpaddq_s64(sum[6], sum[7]);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2]));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6]));
+
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS),
+ vqrshrun_n_s32(sum4567, FILTER_BITS));
+
+ return vminq_u16(res, max);
+}
+
+static INLINE void highbd_convolve_x_sr_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr,
+ ConvolveParams *conv_params, int bd) {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+ // This shim allows to do only one rounding shift instead of two.
+ const int64_t offset = 1 << (conv_params->round_0 - 1);
+ const int64x2_t offset_lo = vcombine_s64((int64x1_t)(offset), vdup_n_s64(0));
+
+ const int16x8_t filter = vld1q_s16(y_filter_ptr);
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = convolve8_8_x(s0, filter, offset_lo, max);
+ uint16x8_t d1 = convolve8_8_x(s1, filter, offset_lo, max);
+ uint16x8_t d2 = convolve8_8_x(s2, filter, offset_lo, max);
+ uint16x8_t d3 = convolve8_8_x(s3, filter, offset_lo, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+}
+
+// clang-format off
+DECLARE_ALIGNED(16, static const uint16_t, kDeinterleaveTbl[8]) = {
+ 0, 2, 4, 6, 1, 3, 5, 7,
+};
+// clang-format on
+
+static INLINE uint16x4_t convolve4_4_x(int16x8_t s0, int16x8_t filter,
+ int64x2_t offset,
+ uint16x8x2_t permute_tbl,
+ uint16x4_t max) {
+ int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]);
+ int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]);
+
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS);
+
+ return vmin_u16(res, max);
+}
+
+static INLINE uint16x8_t convolve4_8_x(int16x8_t s0[4], int16x8_t filter,
+ int64x2_t offset, uint16x8_t tbl,
+ uint16x8_t max) {
+ int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0);
+ int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0);
+ int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0);
+ int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0);
+
+ int32x4_t sum0415 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15));
+ int32x4_t sum2637 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37));
+
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0415, FILTER_BITS),
+ vqrshrun_n_s32(sum2637, FILTER_BITS));
+ res = aom_tbl_u16(res, tbl);
+
+ return vminq_u16(res, max);
+}
+
+static INLINE void highbd_convolve_x_sr_4tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr,
+ ConvolveParams *conv_params, int bd) {
+ // This shim allows to do only one rounding shift instead of two.
+ const int64x2_t offset = vdupq_n_s64(1 << (conv_params->round_0 - 1));
+
+ const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
+ const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
+
+ if (width == 4) {
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+ uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
+
+ const int16_t *s = (const int16_t *)(src);
+
+ do {
+ int16x8_t s0, s1, s2, s3;
+ load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
+
+ uint16x4_t d0 = convolve4_4_x(s0, filter, offset, permute_tbl, max);
+ uint16x4_t d1 = convolve4_4_x(s1, filter, offset, permute_tbl, max);
+ uint16x4_t d2 = convolve4_4_x(s2, filter, offset, permute_tbl, max);
+ uint16x4_t d3 = convolve4_4_x(s3, filter, offset, permute_tbl, max);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+ uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
+
+ do {
+ const int16_t *s = (const int16_t *)(src);
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[4], s1[4], s2[4], s3[4];
+ load_s16_8x4(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3]);
+ load_s16_8x4(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3]);
+ load_s16_8x4(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3]);
+ load_s16_8x4(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3]);
+
+ uint16x8_t d0 = convolve4_8_x(s0, filter, offset, idx, max);
+ uint16x8_t d1 = convolve4_8_x(s1, filter, offset, idx, max);
+ uint16x8_t d2 = convolve4_8_x(s2, filter, offset, idx, max);
+ uint16x8_t d3 = convolve4_8_x(s3, filter, offset, idx, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ }
+}
+
+void av1_highbd_convolve_x_sr_sve2(const uint16_t *src, int src_stride,
+ uint16_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_x,
+ const int subpel_x_qn,
+ ConvolveParams *conv_params, int bd) {
+ if (w == 2 || h == 2) {
+ av1_highbd_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, subpel_x_qn, conv_params, bd);
+ return;
+ }
+
+ const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
+
+ if (x_filter_taps == 6) {
+ av1_highbd_convolve_x_sr_neon(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, subpel_x_qn, conv_params,
+ bd);
+ return;
+ }
+
+ const int horiz_offset = filter_params_x->taps / 2 - 1;
+ const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_x, subpel_x_qn & SUBPEL_MASK);
+
+ src -= horiz_offset;
+
+ if (x_filter_taps == 12) {
+ highbd_convolve_x_sr_12tap_sve2(src, src_stride, dst, dst_stride, w, h,
+ x_filter_ptr, conv_params, bd);
+ return;
+ }
+
+ if (x_filter_taps == 8) {
+ highbd_convolve_x_sr_8tap_sve2(src, src_stride, dst, dst_stride, w, h,
+ x_filter_ptr, conv_params, bd);
+ return;
+ }
+
+ highbd_convolve_x_sr_4tap_sve2(src + 2, src_stride, dst, dst_stride, w, h,
+ x_filter_ptr, conv_params, bd);
+}
+
+static INLINE uint16x4_t highbd_convolve12_4_y(int16x8_t s0[2], int16x8_t s1[2],
+ int16x8_t s2[2],
+ int16x8_t filter_0_7,
+ int16x8_t filter_4_11,
+ uint16x4_t max) {
+ int64x2_t sum[2];
+
+ sum[0] = aom_svdot_lane_s16(vdupq_n_s64(0), s0[0], filter_0_7, 0);
+ sum[0] = aom_svdot_lane_s16(sum[0], s1[0], filter_0_7, 1);
+ sum[0] = aom_svdot_lane_s16(sum[0], s2[0], filter_4_11, 1);
+
+ sum[1] = aom_svdot_lane_s16(vdupq_n_s64(0), s0[1], filter_0_7, 0);
+ sum[1] = aom_svdot_lane_s16(sum[1], s1[1], filter_0_7, 1);
+ sum[1] = aom_svdot_lane_s16(sum[1], s2[1], filter_4_11, 1);
+
+ int32x4_t res_s32 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[1]));
+
+ uint16x4_t res = vqrshrun_n_s32(res_s32, FILTER_BITS);
+
+ return vmin_u16(res, max);
+}
+
+static INLINE void highbd_convolve_y_sr_12tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr, int bd) {
+ const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
+ const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+
+ do {
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+ int h = height;
+
+ int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA;
+ load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
+ &s9, &sA);
+ s += 11 * src_stride;
+
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2], s4567[2], s5678[2],
+ s6789[2], s789A[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+ transpose_concat_4x4(s4, s5, s6, s7, s4567);
+ transpose_concat_4x4(s5, s6, s7, s8, s5678);
+ transpose_concat_4x4(s6, s7, s8, s9, s6789);
+ transpose_concat_4x4(s7, s8, s9, sA, s789A);
+
+ do {
+ int16x4_t sB, sC, sD, sE;
+ load_s16_4x4(s, src_stride, &sB, &sC, &sD, &sE);
+
+ int16x8_t s89AB[2], s9ABC[2], sABCD[2], sBCDE[2];
+ transpose_concat_4x4(sB, sC, sD, sE, sBCDE);
+
+ // Use the above transpose and reuse data from the previous loop to get
+ // the rest.
+ aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[0], s89AB);
+ aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[1], s9ABC);
+ aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[2], sABCD);
+
+ uint16x4_t d0 = highbd_convolve12_4_y(s0123, s4567, s89AB, y_filter_0_7,
+ y_filter_4_11, max);
+ uint16x4_t d1 = highbd_convolve12_4_y(s1234, s5678, s9ABC, y_filter_0_7,
+ y_filter_4_11, max);
+ uint16x4_t d2 = highbd_convolve12_4_y(s2345, s6789, sABCD, y_filter_0_7,
+ y_filter_4_11, max);
+ uint16x4_t d3 = highbd_convolve12_4_y(s3456, s789A, sBCDE, y_filter_0_7,
+ y_filter_4_11, max);
+
+ store_u16_4x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s4567[0] = s89AB[0];
+ s4567[1] = s89AB[1];
+ s5678[0] = s9ABC[0];
+ s5678[1] = s9ABC[1];
+ s6789[0] = sABCD[0];
+ s6789[1] = sABCD[1];
+ s789A[0] = sBCDE[0];
+ s789A[1] = sBCDE[1];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 4;
+ dst += 4;
+ width -= 4;
+ } while (width != 0);
+}
+
+static INLINE uint16x4_t highbd_convolve8_4_y(int16x8_t samples_lo[2],
+ int16x8_t samples_hi[2],
+ int16x8_t filter,
+ uint16x4_t max) {
+ int64x2_t sum01 =
+ aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 =
+ aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS);
+ return vmin_u16(res, max);
+}
+
+static INLINE uint16x8_t highbd_convolve8_8_y(int16x8_t samples_lo[4],
+ int16x8_t samples_hi[4],
+ int16x8_t filter,
+ uint16x8_t max) {
+ int64x2_t sum01 =
+ aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 =
+ aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int64x2_t sum45 =
+ aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[2], filter, 0);
+ sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
+
+ int64x2_t sum67 =
+ aom_svdot_lane_s16(vdupq_n_s64(0), samples_lo[3], filter, 0);
+ sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS),
+ vqrshrun_n_s32(sum4567, FILTER_BITS));
+ return vminq_u16(res, max);
+}
+
+void highbd_convolve_y_sr_8tap_sve2(const uint16_t *src, ptrdiff_t src_stride,
+ uint16_t *dst, ptrdiff_t dst_stride,
+ int width, int height,
+ const int16_t *filter_y, int bd) {
+ assert(w >= 4 && h >= 4);
+
+ const int16x8_t y_filter = vld1q_s16(filter_y);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ if (width == 4) {
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+ int16_t *s = (int16_t *)src;
+
+ int16x4_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x4_t s7, s8, s9, s10;
+ load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_4x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x4_t d0 = highbd_convolve8_4_y(s0123, s4567, y_filter, max);
+ uint16x4_t d1 = highbd_convolve8_4_y(s1234, s5678, y_filter, max);
+ uint16x4_t d2 = highbd_convolve8_4_y(s2345, s6789, y_filter, max);
+ uint16x4_t d3 = highbd_convolve8_4_y(s3456, s789A, y_filter, max);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x8_t s7, s8, s9, s10;
+ load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_8x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x8_t d0 = highbd_convolve8_8_y(s0123, s4567, y_filter, max);
+ uint16x8_t d1 = highbd_convolve8_8_y(s1234, s5678, y_filter, max);
+ uint16x8_t d2 = highbd_convolve8_8_y(s2345, s6789, y_filter, max);
+ uint16x8_t d3 = highbd_convolve8_8_y(s3456, s789A, y_filter, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s0123[2] = s4567[2];
+ s0123[3] = s4567[3];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s1234[2] = s5678[2];
+ s1234[3] = s5678[3];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s2345[2] = s6789[2];
+ s2345[3] = s6789[3];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s3456[2] = s789A[2];
+ s3456[3] = s789A[3];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve4_4_y(int16x8_t samples[2],
+ int16x8_t filter,
+ uint16x4_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[0], filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[1], filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ uint16x4_t res = vqrshrun_n_s32(sum0123, FILTER_BITS);
+ return vmin_u16(res, max);
+}
+
+static INLINE uint16x8_t highbd_convolve4_8_y(int16x8_t samples[4],
+ int16x8_t filter,
+ uint16x8_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[0], filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[1], filter, 0);
+ int64x2_t sum45 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[2], filter, 0);
+ int64x2_t sum67 = aom_svdot_lane_s16(vdupq_n_s64(0), samples[3], filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+ uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, FILTER_BITS),
+ vqrshrun_n_s32(sum4567, FILTER_BITS));
+ return vminq_u16(res, max);
+}
+
+void highbd_convolve_y_sr_4tap_sve2(const uint16_t *src, ptrdiff_t src_stride,
+ uint16_t *dst, ptrdiff_t dst_stride,
+ int width, int height,
+ const int16_t *filter_y, int bd) {
+ assert(w >= 4 && h >= 4);
+
+ const int16x8_t y_filter =
+ vcombine_s16(vld1_s16(filter_y + 2), vdup_n_s16(0));
+
+ if (width == 4) {
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+ int16_t *s = (int16_t *)src;
+
+ int16x4_t s0, s1, s2;
+ load_s16_4x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x4_t s3, s4, s5, s6;
+ load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ uint16x4_t d0 = highbd_convolve4_4_y(s0123, y_filter, max);
+ uint16x4_t d1 = highbd_convolve4_4_y(s1234, y_filter, max);
+ uint16x4_t d2 = highbd_convolve4_4_y(s2345, y_filter, max);
+ uint16x4_t d3 = highbd_convolve4_4_y(s3456, y_filter, max);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Shuffle everything up four rows.
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x8_t s3, s4, s5, s6;
+ load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ // This operation combines a conventional transpose and the sample
+ // permute required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ uint16x8_t d0 = highbd_convolve4_8_y(s0123, y_filter, max);
+ uint16x8_t d1 = highbd_convolve4_8_y(s1234, y_filter, max);
+ uint16x8_t d2 = highbd_convolve4_8_y(s2345, y_filter, max);
+ uint16x8_t d3 = highbd_convolve4_8_y(s3456, y_filter, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Shuffle everything up four rows.
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+void av1_highbd_convolve_y_sr_sve2(const uint16_t *src, int src_stride,
+ uint16_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_y,
+ const int subpel_y_qn, int bd) {
+ if (w == 2 || h == 2) {
+ av1_highbd_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h,
+ filter_params_y, subpel_y_qn, bd);
+ return;
+ }
+ const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
+
+ if (y_filter_taps == 6) {
+ av1_highbd_convolve_y_sr_neon(src, src_stride, dst, dst_stride, w, h,
+ filter_params_y, subpel_y_qn, bd);
+ return;
+ }
+
+ const int vert_offset = filter_params_y->taps / 2 - 1;
+ const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_y, subpel_y_qn & SUBPEL_MASK);
+
+ src -= vert_offset * src_stride;
+
+ if (y_filter_taps > 8) {
+ highbd_convolve_y_sr_12tap_sve2(src, src_stride, dst, dst_stride, w, h,
+ y_filter_ptr, bd);
+ return;
+ }
+
+ if (y_filter_taps == 4) {
+ highbd_convolve_y_sr_4tap_sve2(src + 2 * src_stride, src_stride, dst,
+ dst_stride, w, h, y_filter_ptr, bd);
+ return;
+ }
+
+ highbd_convolve_y_sr_8tap_sve2(src, src_stride, dst, dst_stride, w, h,
+ y_filter_ptr, bd);
+}
+
+static INLINE uint16x4_t convolve12_4_2d_h(
+ int16x8_t s0, int16x8_t s1, int16x8_t filter_0_7, int16x8_t filter_4_11,
+ const int64x2_t offset, int32x4_t shift, uint16x8x4_t permute_tbl) {
+ int16x8_t permuted_samples[6];
+ permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]);
+ permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]);
+ permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]);
+ permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]);
+ permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]);
+ permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]);
+
+ int64x2_t sum01 =
+ aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1);
+
+ int64x2_t sum23 =
+ aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ sum0123 = vqrshlq_s32(sum0123, shift);
+ return vqmovun_s32(sum0123);
+}
+
+static INLINE uint16x8_t convolve12_8_2d_h(int16x8_t s0, int16x8_t s1,
+ int16x8_t s2, int16x8_t filter_0_7,
+ int16x8_t filter_4_11,
+ int64x2_t offset, int32x4_t shift,
+ uint16x8x4_t permute_tbl) {
+ int16x8_t permuted_samples[8];
+ permuted_samples[0] = aom_tbl_s16(s0, permute_tbl.val[0]);
+ permuted_samples[1] = aom_tbl_s16(s0, permute_tbl.val[1]);
+ permuted_samples[2] = aom_tbl2_s16(s0, s1, permute_tbl.val[2]);
+ permuted_samples[3] = aom_tbl2_s16(s0, s1, permute_tbl.val[3]);
+ permuted_samples[4] = aom_tbl_s16(s1, permute_tbl.val[0]);
+ permuted_samples[5] = aom_tbl_s16(s1, permute_tbl.val[1]);
+ permuted_samples[6] = aom_tbl2_s16(s1, s2, permute_tbl.val[2]);
+ permuted_samples[7] = aom_tbl2_s16(s1, s2, permute_tbl.val[3]);
+
+ int64x2_t sum01 =
+ aom_svdot_lane_s16(offset, permuted_samples[0], filter_0_7, 0);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[2], filter_0_7, 1);
+ sum01 = aom_svdot_lane_s16(sum01, permuted_samples[4], filter_4_11, 1);
+
+ int64x2_t sum23 =
+ aom_svdot_lane_s16(offset, permuted_samples[1], filter_0_7, 0);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[3], filter_0_7, 1);
+ sum23 = aom_svdot_lane_s16(sum23, permuted_samples[5], filter_4_11, 1);
+
+ int64x2_t sum45 =
+ aom_svdot_lane_s16(offset, permuted_samples[2], filter_0_7, 0);
+ sum45 = aom_svdot_lane_s16(sum45, permuted_samples[4], filter_0_7, 1);
+ sum45 = aom_svdot_lane_s16(sum45, permuted_samples[6], filter_4_11, 1);
+
+ int64x2_t sum67 =
+ aom_svdot_lane_s16(offset, permuted_samples[3], filter_0_7, 0);
+ sum67 = aom_svdot_lane_s16(sum67, permuted_samples[5], filter_0_7, 1);
+ sum67 = aom_svdot_lane_s16(sum67, permuted_samples[7], filter_4_11, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ sum0123 = vqrshlq_s32(sum0123, shift);
+ sum4567 = vqrshlq_s32(sum4567, shift);
+
+ return vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567));
+}
+
+static INLINE void highbd_convolve_2d_sr_horiz_12tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr,
+ ConvolveParams *conv_params, const int x_offset) {
+ const int64x2_t offset = vdupq_n_s64(x_offset);
+ const int32x4_t shift = vdupq_n_s32(-conv_params->round_0);
+
+ const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
+ const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4);
+
+ uint16x8x4_t permute_tbl = vld1q_u16_x4(kDotProdTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 = vreinterpretq_u16_u64(vcombine_u64(
+ vdup_n_u64(0), vdup_n_u64(svcnth() * 0x0001000000000000ULL)));
+ permute_tbl.val[2] = vaddq_u16(permute_tbl.val[2], correction0);
+
+ uint16x8_t correction1 = vreinterpretq_u16_u64(
+ vcombine_u64(vdup_n_u64(svcnth() * 0x0001000100000000ULL),
+ vdup_n_u64(svcnth() * 0x0001000100010000ULL)));
+ permute_tbl.val[3] = vaddq_u16(permute_tbl.val[3], correction1);
+
+ if (width == 4) {
+ const int16_t *s = (const int16_t *)src;
+
+ do {
+ int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
+ load_s16_8x4(s, src_stride, &s0, &s2, &s4, &s6);
+ load_s16_8x4(s + 8, src_stride, &s1, &s3, &s5, &s7);
+
+ uint16x4_t d0 = convolve12_4_2d_h(s0, s1, y_filter_0_7, y_filter_4_11,
+ offset, shift, permute_tbl);
+ uint16x4_t d1 = convolve12_4_2d_h(s2, s3, y_filter_0_7, y_filter_4_11,
+ offset, shift, permute_tbl);
+ uint16x4_t d2 = convolve12_4_2d_h(s4, s5, y_filter_0_7, y_filter_4_11,
+ offset, shift, permute_tbl);
+ uint16x4_t d3 = convolve12_4_2d_h(s6, s7, y_filter_0_7, y_filter_4_11,
+ offset, shift, permute_tbl);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ dst += 4 * dst_stride;
+ s += 4 * src_stride;
+ height -= 4;
+ } while (height > 0);
+ } else {
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11;
+ load_s16_8x4(s, src_stride, &s0, &s3, &s6, &s9);
+ load_s16_8x4(s + 8, src_stride, &s1, &s4, &s7, &s10);
+ load_s16_8x4(s + 16, src_stride, &s2, &s5, &s8, &s11);
+
+ uint16x8_t d0 =
+ convolve12_8_2d_h(s0, s1, s2, y_filter_0_7, y_filter_4_11, offset,
+ shift, permute_tbl);
+ uint16x8_t d1 =
+ convolve12_8_2d_h(s3, s4, s5, y_filter_0_7, y_filter_4_11, offset,
+ shift, permute_tbl);
+ uint16x8_t d2 =
+ convolve12_8_2d_h(s6, s7, s8, y_filter_0_7, y_filter_4_11, offset,
+ shift, permute_tbl);
+ uint16x8_t d3 =
+ convolve12_8_2d_h(s9, s10, s11, y_filter_0_7, y_filter_4_11, offset,
+ shift, permute_tbl);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 0);
+ }
+}
+
+static INLINE uint16x8_t convolve8_8_2d_h(int16x8_t s0[8], int16x8_t filter,
+ int64x2_t offset, int32x4_t shift) {
+ int64x2_t sum[8];
+ sum[0] = aom_sdotq_s16(offset, s0[0], filter);
+ sum[1] = aom_sdotq_s16(offset, s0[1], filter);
+ sum[2] = aom_sdotq_s16(offset, s0[2], filter);
+ sum[3] = aom_sdotq_s16(offset, s0[3], filter);
+ sum[4] = aom_sdotq_s16(offset, s0[4], filter);
+ sum[5] = aom_sdotq_s16(offset, s0[5], filter);
+ sum[6] = aom_sdotq_s16(offset, s0[6], filter);
+ sum[7] = aom_sdotq_s16(offset, s0[7], filter);
+
+ sum[0] = vpaddq_s64(sum[0], sum[1]);
+ sum[2] = vpaddq_s64(sum[2], sum[3]);
+ sum[4] = vpaddq_s64(sum[4], sum[5]);
+ sum[6] = vpaddq_s64(sum[6], sum[7]);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum[0]), vmovn_s64(sum[2]));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum[4]), vmovn_s64(sum[6]));
+
+ sum0123 = vqrshlq_s32(sum0123, shift);
+ sum4567 = vqrshlq_s32(sum4567, shift);
+
+ return vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567));
+}
+
+static INLINE void highbd_convolve_2d_sr_horiz_8tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr,
+ ConvolveParams *conv_params, const int x_offset) {
+ const int64x2_t offset = vdupq_n_s64(x_offset);
+ const int64x2_t offset_lo = vcombine_s64(vget_low_s64(offset), vdup_n_s64(0));
+ const int32x4_t shift = vdupq_n_s32(-conv_params->round_0);
+
+ const int16x8_t filter = vld1q_s16(y_filter_ptr);
+
+ do {
+ const int16_t *s = (const int16_t *)src;
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = convolve8_8_2d_h(s0, filter, offset_lo, shift);
+ uint16x8_t d1 = convolve8_8_2d_h(s1, filter, offset_lo, shift);
+ uint16x8_t d2 = convolve8_8_2d_h(s2, filter, offset_lo, shift);
+ uint16x8_t d3 = convolve8_8_2d_h(s3, filter, offset_lo, shift);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 0);
+}
+
+static INLINE uint16x4_t convolve4_4_2d_h(int16x8_t s0, int16x8_t filter,
+ int64x2_t offset, int32x4_t shift,
+ uint16x8x2_t permute_tbl) {
+ int16x8_t permuted_samples0 = aom_tbl_s16(s0, permute_tbl.val[0]);
+ int16x8_t permuted_samples1 = aom_tbl_s16(s0, permute_tbl.val[1]);
+
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, permuted_samples0, filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, permuted_samples1, filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ sum0123 = vqrshlq_s32(sum0123, shift);
+ return vqmovun_s32(sum0123);
+}
+
+static INLINE uint16x8_t convolve4_8_2d_h(int16x8_t s0[8], int16x8_t filter,
+ int64x2_t offset, int32x4_t shift,
+ uint16x8_t tbl) {
+ int64x2_t sum04 = aom_svdot_lane_s16(offset, s0[0], filter, 0);
+ int64x2_t sum15 = aom_svdot_lane_s16(offset, s0[1], filter, 0);
+ int64x2_t sum26 = aom_svdot_lane_s16(offset, s0[2], filter, 0);
+ int64x2_t sum37 = aom_svdot_lane_s16(offset, s0[3], filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum04), vmovn_s64(sum15));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum26), vmovn_s64(sum37));
+
+ sum0123 = vqrshlq_s32(sum0123, shift);
+ sum4567 = vqrshlq_s32(sum4567, shift);
+
+ uint16x8_t res = vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567));
+ return aom_tbl_u16(res, tbl);
+}
+
+static INLINE void highbd_convolve_2d_sr_horiz_4tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *x_filter_ptr,
+ ConvolveParams *conv_params, const int x_offset) {
+ const int64x2_t offset = vdupq_n_s64(x_offset);
+ const int32x4_t shift = vdupq_n_s32(-conv_params->round_0);
+
+ const int16x4_t x_filter = vld1_s16(x_filter_ptr + 2);
+ const int16x8_t filter = vcombine_s16(x_filter, vdup_n_s16(0));
+
+ if (width == 4) {
+ const int16_t *s = (const int16_t *)(src);
+
+ uint16x8x2_t permute_tbl = vld1q_u16_x2(kDotProdTbl);
+
+ do {
+ int16x8_t s0, s1, s2, s3;
+ load_s16_8x4(s, src_stride, &s0, &s1, &s2, &s3);
+
+ uint16x4_t d0 = convolve4_4_2d_h(s0, filter, offset, shift, permute_tbl);
+ uint16x4_t d1 = convolve4_4_2d_h(s1, filter, offset, shift, permute_tbl);
+ uint16x4_t d2 = convolve4_4_2d_h(s2, filter, offset, shift, permute_tbl);
+ uint16x4_t d3 = convolve4_4_2d_h(s3, filter, offset, shift, permute_tbl);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 0);
+ } else {
+ uint16x8_t idx = vld1q_u16(kDeinterleaveTbl);
+
+ do {
+ const int16_t *s = (const int16_t *)(src);
+ uint16_t *d = dst;
+ int w = width;
+
+ do {
+ int16x8_t s0[8], s1[8], s2[8], s3[8];
+ load_s16_8x8(s + 0 * src_stride, 1, &s0[0], &s0[1], &s0[2], &s0[3],
+ &s0[4], &s0[5], &s0[6], &s0[7]);
+ load_s16_8x8(s + 1 * src_stride, 1, &s1[0], &s1[1], &s1[2], &s1[3],
+ &s1[4], &s1[5], &s1[6], &s1[7]);
+ load_s16_8x8(s + 2 * src_stride, 1, &s2[0], &s2[1], &s2[2], &s2[3],
+ &s2[4], &s2[5], &s2[6], &s2[7]);
+ load_s16_8x8(s + 3 * src_stride, 1, &s3[0], &s3[1], &s3[2], &s3[3],
+ &s3[4], &s3[5], &s3[6], &s3[7]);
+
+ uint16x8_t d0 = convolve4_8_2d_h(s0, filter, offset, shift, idx);
+ uint16x8_t d1 = convolve4_8_2d_h(s1, filter, offset, shift, idx);
+ uint16x8_t d2 = convolve4_8_2d_h(s2, filter, offset, shift, idx);
+ uint16x8_t d3 = convolve4_8_2d_h(s3, filter, offset, shift, idx);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ s += 8;
+ d += 8;
+ w -= 8;
+ } while (w != 0);
+ src += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height > 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve12_4_2d_v(
+ int16x8_t s0[2], int16x8_t s1[2], int16x8_t s2[2], int16x8_t filter_0_7,
+ int16x8_t filter_4_11, int32x4_t shift, int64x2_t offset, uint16x4_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, s0[0], filter_0_7, 0);
+ sum01 = aom_svdot_lane_s16(sum01, s1[0], filter_0_7, 1);
+ sum01 = aom_svdot_lane_s16(sum01, s2[0], filter_4_11, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, s0[1], filter_0_7, 0);
+ sum23 = aom_svdot_lane_s16(sum23, s1[1], filter_0_7, 1);
+ sum23 = aom_svdot_lane_s16(sum23, s2[1], filter_4_11, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ sum0123 = vshlq_s32(sum0123, shift);
+
+ uint16x4_t res = vqmovun_s32(sum0123);
+
+ return vmin_u16(res, max);
+}
+
+static INLINE void highbd_convolve_2d_sr_vert_12tap_sve2(
+ const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
+ int width, int height, const int16_t *y_filter_ptr,
+ ConvolveParams *conv_params, int bd, const int y_offset) {
+ const int64x2_t offset = vdupq_n_s64(y_offset);
+ const int32x4_t shift = vdupq_n_s32(-conv_params->round_1);
+
+ const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
+ const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+
+ do {
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = (uint16_t *)dst;
+ int h = height;
+
+ int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA;
+ load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
+ &s9, &sA);
+ s += 11 * src_stride;
+
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2], s4567[2], s5678[2],
+ s6789[2], s789A[2];
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+ transpose_concat_4x4(s4, s5, s6, s7, s4567);
+ transpose_concat_4x4(s5, s6, s7, s8, s5678);
+ transpose_concat_4x4(s6, s7, s8, s9, s6789);
+ transpose_concat_4x4(s7, s8, s9, sA, s789A);
+
+ do {
+ int16x4_t sB, sC, sD, sE;
+ load_s16_4x4(s, src_stride, &sB, &sC, &sD, &sE);
+
+ int16x8_t s89AB[2], s9ABC[2], sABCD[2], sBCDE[2];
+ transpose_concat_4x4(sB, sC, sD, sE, sBCDE);
+
+ // Use the above transpose and reuse data from the previous loop to get
+ // the rest.
+ aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[0], s89AB);
+ aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[1], s9ABC);
+ aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[2], sABCD);
+
+ uint16x4_t d0 = highbd_convolve12_4_2d_v(
+ s0123, s4567, s89AB, y_filter_0_7, y_filter_4_11, shift, offset, max);
+ uint16x4_t d1 = highbd_convolve12_4_2d_v(
+ s1234, s5678, s9ABC, y_filter_0_7, y_filter_4_11, shift, offset, max);
+ uint16x4_t d2 = highbd_convolve12_4_2d_v(
+ s2345, s6789, sABCD, y_filter_0_7, y_filter_4_11, shift, offset, max);
+ uint16x4_t d3 = highbd_convolve12_4_2d_v(
+ s3456, s789A, sBCDE, y_filter_0_7, y_filter_4_11, shift, offset, max);
+
+ store_u16_4x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s4567[0] = s89AB[0];
+ s4567[1] = s89AB[1];
+ s5678[0] = s9ABC[0];
+ s5678[1] = s9ABC[1];
+ s6789[0] = sABCD[0];
+ s6789[1] = sABCD[1];
+ s789A[0] = sBCDE[0];
+ s789A[1] = sBCDE[1];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 4;
+ dst += 4;
+ width -= 4;
+ } while (width != 0);
+}
+
+static INLINE uint16x4_t highbd_convolve8_4_2d_v(
+ int16x8_t samples_lo[2], int16x8_t samples_hi[2], int16x8_t filter,
+ int32x4_t shift, int64x2_t offset, uint16x4_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ sum0123 = vshlq_s32(sum0123, shift);
+
+ uint16x4_t res = vqmovun_s32(sum0123);
+ return vmin_u16(res, max);
+}
+
+static INLINE uint16x8_t highbd_convolve8_8_2d_v(
+ int16x8_t samples_lo[4], int16x8_t samples_hi[4], int16x8_t filter,
+ int32x4_t shift, int64x2_t offset, uint16x8_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples_lo[0], filter, 0);
+ sum01 = aom_svdot_lane_s16(sum01, samples_hi[0], filter, 1);
+
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples_lo[1], filter, 0);
+ sum23 = aom_svdot_lane_s16(sum23, samples_hi[1], filter, 1);
+
+ int64x2_t sum45 = aom_svdot_lane_s16(offset, samples_lo[2], filter, 0);
+ sum45 = aom_svdot_lane_s16(sum45, samples_hi[2], filter, 1);
+
+ int64x2_t sum67 = aom_svdot_lane_s16(offset, samples_lo[3], filter, 0);
+ sum67 = aom_svdot_lane_s16(sum67, samples_hi[3], filter, 1);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ sum0123 = vshlq_s32(sum0123, shift);
+ sum4567 = vshlq_s32(sum4567, shift);
+
+ uint16x8_t res = vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567));
+ return vminq_u16(res, max);
+}
+
+void highbd_convolve_2d_sr_vert_8tap_sve2(const uint16_t *src,
+ ptrdiff_t src_stride, uint16_t *dst,
+ ptrdiff_t dst_stride, int width,
+ int height, const int16_t *filter_y,
+ ConvolveParams *conv_params, int bd,
+ const int y_offset) {
+ assert(w >= 4 && h >= 4);
+ const int64x2_t offset = vdupq_n_s64(y_offset);
+ const int32x4_t shift = vdupq_n_s32(-conv_params->round_1);
+ const int16x8_t y_filter = vld1q_s16(filter_y);
+
+ uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl);
+ // Scale indices by size of the true vector length to avoid reading from an
+ // 'undefined' portion of a vector on a system with SVE vectors > 128-bit.
+ uint16x8_t correction0 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL));
+ merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0);
+
+ uint16x8_t correction1 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL));
+ merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1);
+
+ uint16x8_t correction2 =
+ vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL));
+ merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2);
+
+ if (width == 4) {
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+ int16_t *s = (int16_t *)src;
+
+ int16x4_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x4_t s7, s8, s9, s10;
+ load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[2], s5678[2], s6789[2], s789A[2];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_4x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x2_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x4_t d0 =
+ highbd_convolve8_4_2d_v(s0123, s4567, y_filter, shift, offset, max);
+ uint16x4_t d1 =
+ highbd_convolve8_4_2d_v(s1234, s5678, y_filter, shift, offset, max);
+ uint16x4_t d2 =
+ highbd_convolve8_4_2d_v(s2345, s6789, y_filter, shift, offset, max);
+ uint16x4_t d3 =
+ highbd_convolve8_4_2d_v(s3456, s789A, y_filter, shift, offset, max);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)src;
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2, s3, s4, s5, s6;
+ load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
+ s += 7 * src_stride;
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ do {
+ int16x8_t s7, s8, s9, s10;
+ load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
+
+ int16x8_t s4567[4], s5678[4], s6789[4], s789A[4];
+ // Transpose and shuffle the 4 lines that were loaded.
+ transpose_concat_8x4(s7, s8, s9, s10, s789A);
+
+ // Merge new data into block from previous iteration.
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[0], s4567);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[1], s5678);
+ aom_tbl2x4_s16(s3456, s789A, merge_block_tbl.val[2], s6789);
+
+ uint16x8_t d0 =
+ highbd_convolve8_8_2d_v(s0123, s4567, y_filter, shift, offset, max);
+ uint16x8_t d1 =
+ highbd_convolve8_8_2d_v(s1234, s5678, y_filter, shift, offset, max);
+ uint16x8_t d2 =
+ highbd_convolve8_8_2d_v(s2345, s6789, y_filter, shift, offset, max);
+ uint16x8_t d3 =
+ highbd_convolve8_8_2d_v(s3456, s789A, y_filter, shift, offset, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Prepare block for next iteration - re-using as much as possible.
+ // Shuffle everything up four rows.
+ s0123[0] = s4567[0];
+ s0123[1] = s4567[1];
+ s0123[2] = s4567[2];
+ s0123[3] = s4567[3];
+ s1234[0] = s5678[0];
+ s1234[1] = s5678[1];
+ s1234[2] = s5678[2];
+ s1234[3] = s5678[3];
+ s2345[0] = s6789[0];
+ s2345[1] = s6789[1];
+ s2345[2] = s6789[2];
+ s2345[3] = s6789[3];
+ s3456[0] = s789A[0];
+ s3456[1] = s789A[1];
+ s3456[2] = s789A[2];
+ s3456[3] = s789A[3];
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+static INLINE uint16x4_t highbd_convolve4_4_2d_v(int16x8_t samples[2],
+ int16x8_t filter,
+ int32x4_t shift,
+ int64x2_t offset,
+ uint16x4_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples[0], filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples[1], filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ sum0123 = vshlq_s32(sum0123, shift);
+
+ uint16x4_t res = vqmovun_s32(sum0123);
+ return vmin_u16(res, max);
+}
+
+static INLINE uint16x8_t highbd_convolve4_8_2d_v(int16x8_t samples[4],
+ int16x8_t filter,
+ int32x4_t shift,
+ int64x2_t offset,
+ uint16x8_t max) {
+ int64x2_t sum01 = aom_svdot_lane_s16(offset, samples[0], filter, 0);
+ int64x2_t sum23 = aom_svdot_lane_s16(offset, samples[1], filter, 0);
+ int64x2_t sum45 = aom_svdot_lane_s16(offset, samples[2], filter, 0);
+ int64x2_t sum67 = aom_svdot_lane_s16(offset, samples[3], filter, 0);
+
+ int32x4_t sum0123 = vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23));
+ int32x4_t sum4567 = vcombine_s32(vmovn_s64(sum45), vmovn_s64(sum67));
+
+ sum0123 = vshlq_s32(sum0123, shift);
+ sum4567 = vshlq_s32(sum4567, shift);
+
+ uint16x8_t res = vcombine_u16(vqmovun_s32(sum0123), vqmovun_s32(sum4567));
+ return vminq_u16(res, max);
+}
+
+void highbd_convolve_2d_sr_vert_4tap_sve2(const uint16_t *src,
+ ptrdiff_t src_stride, uint16_t *dst,
+ ptrdiff_t dst_stride, int width,
+ int height, const int16_t *filter_y,
+ ConvolveParams *conv_params, int bd,
+ const int y_offset) {
+ assert(w >= 4 && h >= 4);
+ const int64x2_t offset = vdupq_n_s64(y_offset);
+ const int32x4_t shift = vdupq_n_s32(-conv_params->round_1);
+
+ const int16x8_t y_filter =
+ vcombine_s16(vld1_s16(filter_y + 2), vdup_n_s16(0));
+
+ if (width == 4) {
+ const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
+ int16_t *s = (int16_t *)(src);
+
+ int16x4_t s0, s1, s2;
+ load_s16_4x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x4_t s3, s4, s5, s6;
+ load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ // This operation combines a conventional transpose and the sample permute
+ // required before computing the dot product.
+ int16x8_t s0123[2], s1234[2], s2345[2], s3456[2];
+ transpose_concat_4x4(s0, s1, s2, s3, s0123);
+ transpose_concat_4x4(s1, s2, s3, s4, s1234);
+ transpose_concat_4x4(s2, s3, s4, s5, s2345);
+ transpose_concat_4x4(s3, s4, s5, s6, s3456);
+
+ uint16x4_t d0 =
+ highbd_convolve4_4_2d_v(s0123, y_filter, shift, offset, max);
+ uint16x4_t d1 =
+ highbd_convolve4_4_2d_v(s1234, y_filter, shift, offset, max);
+ uint16x4_t d2 =
+ highbd_convolve4_4_2d_v(s2345, y_filter, shift, offset, max);
+ uint16x4_t d3 =
+ highbd_convolve4_4_2d_v(s3456, y_filter, shift, offset, max);
+
+ store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
+
+ // Shuffle everything up four rows.
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ dst += 4 * dst_stride;
+ height -= 4;
+ } while (height != 0);
+ } else {
+ const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
+
+ do {
+ int h = height;
+ int16_t *s = (int16_t *)(src);
+ uint16_t *d = dst;
+
+ int16x8_t s0, s1, s2;
+ load_s16_8x3(s, src_stride, &s0, &s1, &s2);
+ s += 3 * src_stride;
+
+ do {
+ int16x8_t s3, s4, s5, s6;
+ load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6);
+
+ // This operation combines a conventional transpose and the sample
+ // permute required before computing the dot product.
+ int16x8_t s0123[4], s1234[4], s2345[4], s3456[4];
+ transpose_concat_8x4(s0, s1, s2, s3, s0123);
+ transpose_concat_8x4(s1, s2, s3, s4, s1234);
+ transpose_concat_8x4(s2, s3, s4, s5, s2345);
+ transpose_concat_8x4(s3, s4, s5, s6, s3456);
+
+ uint16x8_t d0 =
+ highbd_convolve4_8_2d_v(s0123, y_filter, shift, offset, max);
+ uint16x8_t d1 =
+ highbd_convolve4_8_2d_v(s1234, y_filter, shift, offset, max);
+ uint16x8_t d2 =
+ highbd_convolve4_8_2d_v(s2345, y_filter, shift, offset, max);
+ uint16x8_t d3 =
+ highbd_convolve4_8_2d_v(s3456, y_filter, shift, offset, max);
+
+ store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
+
+ // Shuffle everything up four rows.
+ s0 = s4;
+ s1 = s5;
+ s2 = s6;
+
+ s += 4 * src_stride;
+ d += 4 * dst_stride;
+ h -= 4;
+ } while (h != 0);
+ src += 8;
+ dst += 8;
+ width -= 8;
+ } while (width != 0);
+ }
+}
+
+void av1_highbd_convolve_2d_sr_sve2(const uint16_t *src, int src_stride,
+ uint16_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y,
+ const int subpel_x_qn,
+ const int subpel_y_qn,
+ ConvolveParams *conv_params, int bd) {
+ if (w == 2 || h == 2) {
+ av1_highbd_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, filter_params_y, subpel_x_qn,
+ subpel_y_qn, conv_params, bd);
+ return;
+ }
+
+ DECLARE_ALIGNED(16, uint16_t,
+ im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
+ const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
+ const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
+
+ if (x_filter_taps == 6 || y_filter_taps == 6) {
+ av1_highbd_convolve_2d_sr_neon(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, filter_params_y,
+ subpel_x_qn, subpel_y_qn, conv_params, bd);
+ return;
+ }
+
+ const int clamped_x_taps = x_filter_taps < 4 ? 4 : x_filter_taps;
+ const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps;
+
+ const int im_stride = MAX_SB_SIZE;
+ const int vert_offset = clamped_y_taps / 2 - 1;
+ const int horiz_offset = clamped_x_taps / 2 - 1;
+ const int x_offset = (1 << (bd + FILTER_BITS - 1));
+ const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
+ // The extra shim of (1 << (conv_params->round_1 - 1)) allows us to do a
+ // simple shift left instead of a rounding saturating shift left.
+ const int y_offset =
+ (1 << (conv_params->round_1 - 1)) - (1 << (y_offset_bits - 1));
+
+ const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
+
+ const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_x, subpel_x_qn & SUBPEL_MASK);
+ const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
+ filter_params_y, subpel_y_qn & SUBPEL_MASK);
+ const int im_h = h + clamped_y_taps - 1;
+
+ if (x_filter_taps > 8) {
+ highbd_convolve_2d_sr_horiz_12tap_sve2(src_ptr, src_stride, im_block,
+ im_stride, w, im_h, x_filter_ptr,
+ conv_params, x_offset);
+
+ highbd_convolve_2d_sr_vert_12tap_sve2(im_block, im_stride, dst, dst_stride,
+ w, h, y_filter_ptr, conv_params, bd,
+ y_offset);
+ return;
+ }
+
+ if (x_filter_taps <= 4) {
+ highbd_convolve_2d_sr_horiz_4tap_sve2(src_ptr, src_stride, im_block,
+ im_stride, w, im_h, x_filter_ptr,
+ conv_params, x_offset);
+ } else {
+ highbd_convolve_2d_sr_horiz_8tap_sve2(src_ptr, src_stride, im_block,
+ im_stride, w, im_h, x_filter_ptr,
+ conv_params, x_offset);
+ }
+
+ if (y_filter_taps <= 4) {
+ highbd_convolve_2d_sr_vert_4tap_sve2(im_block, im_stride, dst, dst_stride,
+ w, h, y_filter_ptr, conv_params, bd,
+ y_offset);
+ } else {
+ highbd_convolve_2d_sr_vert_8tap_sve2(im_block, im_stride, dst, dst_stride,
+ w, h, y_filter_ptr, conv_params, bd,
+ y_offset);
+ }
+}
diff --git a/third_party/aom/av1/common/arm/highbd_convolve_sve2.h b/third_party/aom/av1/common/arm/highbd_convolve_sve2.h
new file mode 100644
index 0000000000..05e23deef4
--- /dev/null
+++ b/third_party/aom/av1/common/arm/highbd_convolve_sve2.h
@@ -0,0 +1,97 @@
+/*
+ * Copyright (c) 2023, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AV1_COMMON_ARM_HIGHBD_CONVOLVE_SVE2_H_
+#define AOM_AV1_COMMON_ARM_HIGHBD_CONVOLVE_SVE2_H_
+
+#include <arm_neon.h>
+
+#include "aom_dsp/arm/aom_neon_sve2_bridge.h"
+
+// clang-format off
+DECLARE_ALIGNED(16, static const uint16_t, kDotProdMergeBlockTbl[24]) = {
+ // Shift left and insert new last column in transposed 4x4 block.
+ 1, 2, 3, 0, 5, 6, 7, 4,
+ // Shift left and insert two new columns in transposed 4x4 block.
+ 2, 3, 0, 1, 6, 7, 4, 5,
+ // Shift left and insert three new columns in transposed 4x4 block.
+ 3, 0, 1, 2, 7, 4, 5, 6,
+};
+// clang-format on
+
+static INLINE void transpose_concat_4x4(int16x4_t s0, int16x4_t s1,
+ int16x4_t s2, int16x4_t s3,
+ int16x8_t res[2]) {
+ // Transpose 16-bit elements and concatenate result rows as follows:
+ // s0: 00, 01, 02, 03
+ // s1: 10, 11, 12, 13
+ // s2: 20, 21, 22, 23
+ // s3: 30, 31, 32, 33
+ //
+ // res[0]: 00 10 20 30 01 11 21 31
+ // res[1]: 02 12 22 32 03 13 23 33
+
+ int16x8_t s0q = vcombine_s16(s0, vdup_n_s16(0));
+ int16x8_t s1q = vcombine_s16(s1, vdup_n_s16(0));
+ int16x8_t s2q = vcombine_s16(s2, vdup_n_s16(0));
+ int16x8_t s3q = vcombine_s16(s3, vdup_n_s16(0));
+
+ int32x4_t s01 = vreinterpretq_s32_s16(vzip1q_s16(s0q, s1q));
+ int32x4_t s23 = vreinterpretq_s32_s16(vzip1q_s16(s2q, s3q));
+
+ int32x4x2_t s0123 = vzipq_s32(s01, s23);
+
+ res[0] = vreinterpretq_s16_s32(s0123.val[0]);
+ res[1] = vreinterpretq_s16_s32(s0123.val[1]);
+}
+
+static INLINE void transpose_concat_8x4(int16x8_t s0, int16x8_t s1,
+ int16x8_t s2, int16x8_t s3,
+ int16x8_t res[4]) {
+ // Transpose 16-bit elements and concatenate result rows as follows:
+ // s0: 00, 01, 02, 03, 04, 05, 06, 07
+ // s1: 10, 11, 12, 13, 14, 15, 16, 17
+ // s2: 20, 21, 22, 23, 24, 25, 26, 27
+ // s3: 30, 31, 32, 33, 34, 35, 36, 37
+ //
+ // res[0]: 00 10 20 30 01 11 21 31
+ // res[1]: 02 12 22 32 03 13 23 33
+ // res[2]: 04 14 24 34 05 15 25 35
+ // res[3]: 06 16 26 36 07 17 27 37
+
+ int16x8x2_t tr01_16 = vzipq_s16(s0, s1);
+ int16x8x2_t tr23_16 = vzipq_s16(s2, s3);
+ int32x4x2_t tr01_32 = vzipq_s32(vreinterpretq_s32_s16(tr01_16.val[0]),
+ vreinterpretq_s32_s16(tr23_16.val[0]));
+ int32x4x2_t tr23_32 = vzipq_s32(vreinterpretq_s32_s16(tr01_16.val[1]),
+ vreinterpretq_s32_s16(tr23_16.val[1]));
+
+ res[0] = vreinterpretq_s16_s32(tr01_32.val[0]);
+ res[1] = vreinterpretq_s16_s32(tr01_32.val[1]);
+ res[2] = vreinterpretq_s16_s32(tr23_32.val[0]);
+ res[3] = vreinterpretq_s16_s32(tr23_32.val[1]);
+}
+
+static INLINE void aom_tbl2x4_s16(int16x8_t t0[4], int16x8_t t1[4],
+ uint16x8_t tbl, int16x8_t res[4]) {
+ res[0] = aom_tbl2_s16(t0[0], t1[0], tbl);
+ res[1] = aom_tbl2_s16(t0[1], t1[1], tbl);
+ res[2] = aom_tbl2_s16(t0[2], t1[2], tbl);
+ res[3] = aom_tbl2_s16(t0[3], t1[3], tbl);
+}
+
+static INLINE void aom_tbl2x2_s16(int16x8_t t0[2], int16x8_t t1[2],
+ uint16x8_t tbl, int16x8_t res[2]) {
+ res[0] = aom_tbl2_s16(t0[0], t1[0], tbl);
+ res[1] = aom_tbl2_s16(t0[1], t1[1], tbl);
+}
+
+#endif // AOM_AV1_COMMON_ARM_HIGHBD_CONVOLVE_SVE2_H_
diff --git a/third_party/aom/av1/common/arm/highbd_warp_plane_neon.c b/third_party/aom/av1/common/arm/highbd_warp_plane_neon.c
index c6f1e3ad92..89647bc921 100644
--- a/third_party/aom/av1/common/arm/highbd_warp_plane_neon.c
+++ b/third_party/aom/av1/common/arm/highbd_warp_plane_neon.c
@@ -23,8 +23,8 @@
#include "config/av1_rtcd.h"
#include "highbd_warp_plane_neon.h"
-static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd,
- int sx, int alpha) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd, int sx, int alpha) {
int16x8_t f[4];
load_filters_4(f, sx, alpha);
@@ -57,8 +57,8 @@ static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res), vdup_n_s16(0));
}
-static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd,
- int sx, int alpha) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd, int sx, int alpha) {
int16x8_t f[8];
load_filters_8(f, sx, alpha);
@@ -111,8 +111,8 @@ static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res0), vmovn_s32(res1));
}
-static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd,
- int sx) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd, int sx) {
int16x8_t f = load_filters_1(sx);
int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(in.val[0]),
@@ -144,8 +144,8 @@ static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res), vdup_n_s16(0));
}
-static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd,
- int sx) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd, int sx) {
int16x8_t f = load_filters_1(sx);
int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(in.val[0]),
@@ -197,7 +197,8 @@ static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res0), vmovn_s32(res1));
}
-static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy) {
+static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp,
+ int sy) {
const int16x8_t f = load_filters_1(sy);
const int16x4_t f0123 = vget_low_s16(f);
const int16x4_t f4567 = vget_high_s16(f);
@@ -213,7 +214,8 @@ static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy) {
return m0123;
}
-static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy) {
+static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp,
+ int sy) {
const int16x8_t f = load_filters_1(sy);
const int16x4_t f0123 = vget_low_s16(f);
const int16x4_t f4567 = vget_high_s16(f);
@@ -238,8 +240,8 @@ static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy) {
return (int32x4x2_t){ { m0123, m4567 } };
}
-static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy,
- int gamma) {
+static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp,
+ int sy, int gamma) {
int16x8_t s0, s1, s2, s3;
transpose_elems_s16_4x8(
vget_low_s16(tmp[0]), vget_low_s16(tmp[1]), vget_low_s16(tmp[2]),
@@ -262,8 +264,8 @@ static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy,
return horizontal_add_4d_s32x4(m0123);
}
-static INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp, int sy,
- int gamma) {
+static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp,
+ int sy, int gamma) {
int16x8_t s0 = tmp[0];
int16x8_t s1 = tmp[1];
int16x8_t s2 = tmp[2];
diff --git a/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h b/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h
index 3b8982898e..48af4a707b 100644
--- a/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h
+++ b/third_party/aom/av1/common/arm/highbd_warp_plane_neon.h
@@ -23,29 +23,31 @@
#include "av1/common/warped_motion.h"
#include "config/av1_rtcd.h"
-static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd,
- int sx, int alpha);
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd, int sx, int alpha);
-static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd,
- int sx, int alpha);
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd, int sx, int alpha);
-static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd,
- int sx);
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd, int sx);
-static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd,
- int sx);
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd, int sx);
-static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy);
+static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp,
+ int sy);
-static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy);
+static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp,
+ int sy);
-static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy,
- int gamma);
+static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp,
+ int sy, int gamma);
-static INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp, int sy,
- int gamma);
+static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp,
+ int sy, int gamma);
-static INLINE int16x8_t load_filters_1(int ofs) {
+static AOM_FORCE_INLINE int16x8_t load_filters_1(int ofs) {
const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS);
const int16_t *base =
@@ -53,7 +55,8 @@ static INLINE int16x8_t load_filters_1(int ofs) {
return vld1q_s16(base + ofs0 * 8);
}
-static INLINE void load_filters_4(int16x8_t out[], int ofs, int stride) {
+static AOM_FORCE_INLINE void load_filters_4(int16x8_t out[], int ofs,
+ int stride) {
const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
@@ -67,7 +70,8 @@ static INLINE void load_filters_4(int16x8_t out[], int ofs, int stride) {
out[3] = vld1q_s16(base + ofs3 * 8);
}
-static INLINE void load_filters_8(int16x8_t out[], int ofs, int stride) {
+static AOM_FORCE_INLINE void load_filters_8(int16x8_t out[], int ofs,
+ int stride) {
const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
@@ -89,16 +93,18 @@ static INLINE void load_filters_8(int16x8_t out[], int ofs, int stride) {
out[7] = vld1q_s16(base + ofs7 * 8);
}
-static INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val, int bd) {
+static AOM_FORCE_INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val,
+ int bd) {
const int limit = (1 << bd) - 1;
return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit)));
}
-static INLINE void warp_affine_horizontal(const uint16_t *ref, int width,
- int height, int stride, int p_width,
- int16_t alpha, int16_t beta, int iy4,
- int sx4, int ix4, int16x8_t tmp[],
- int bd) {
+static AOM_FORCE_INLINE void warp_affine_horizontal(const uint16_t *ref,
+ int width, int height,
+ int stride, int p_width,
+ int16_t alpha, int16_t beta,
+ int iy4, int sx4, int ix4,
+ int16x8_t tmp[], int bd) {
const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
if (ix4 <= -7) {
@@ -197,7 +203,7 @@ static INLINE void warp_affine_horizontal(const uint16_t *ref, int width,
}
}
-static INLINE void highbd_vertical_filter_4x1_f4(
+static AOM_FORCE_INLINE void highbd_vertical_filter_4x1_f4(
uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
@@ -253,7 +259,7 @@ static INLINE void highbd_vertical_filter_4x1_f4(
vst1_u16(dst16, res0);
}
-static INLINE void highbd_vertical_filter_8x1_f8(
+static AOM_FORCE_INLINE void highbd_vertical_filter_8x1_f8(
uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
@@ -328,7 +334,7 @@ static INLINE void highbd_vertical_filter_8x1_f8(
vst1_u16(dst16 + 4, res1);
}
-static INLINE void warp_affine_vertical(
+static AOM_FORCE_INLINE void warp_affine_vertical(
uint16_t *pred, int p_width, int p_height, int p_stride, int bd,
uint16_t *dst, int dst_stride, bool is_compound, bool do_average,
bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta,
@@ -354,7 +360,7 @@ static INLINE void warp_affine_vertical(
}
}
-static INLINE void highbd_warp_affine_common(
+static AOM_FORCE_INLINE void highbd_warp_affine_common(
const int32_t *mat, const uint16_t *ref, int width, int height, int stride,
uint16_t *pred, int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y, int bd,
diff --git a/third_party/aom/av1/common/arm/highbd_warp_plane_sve.c b/third_party/aom/av1/common/arm/highbd_warp_plane_sve.c
index 7a14f21846..87e033fd00 100644
--- a/third_party/aom/av1/common/arm/highbd_warp_plane_sve.c
+++ b/third_party/aom/av1/common/arm/highbd_warp_plane_sve.c
@@ -15,7 +15,7 @@
#include <arm_neon_sve_bridge.h>
#include "aom_dsp/aom_dsp_common.h"
-#include "aom_dsp/arm/dot_sve.h"
+#include "aom_dsp/arm/aom_neon_sve_bridge.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
@@ -24,8 +24,8 @@
#include "config/av1_rtcd.h"
#include "highbd_warp_plane_neon.h"
-static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd,
- int sx, int alpha) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd, int sx, int alpha) {
int16x8_t f[4];
load_filters_4(f, sx, alpha);
@@ -55,8 +55,8 @@ static INLINE int16x8_t highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res), vdup_n_s16(0));
}
-static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd,
- int sx, int alpha) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd, int sx, int alpha) {
int16x8_t f[8];
load_filters_8(f, sx, alpha);
@@ -103,8 +103,8 @@ static INLINE int16x8_t highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res0), vmovn_s32(res1));
}
-static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd,
- int sx) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd, int sx) {
int16x8_t f = load_filters_1(sx);
int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(in.val[0]),
@@ -133,8 +133,8 @@ static INLINE int16x8_t highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res), vdup_n_s16(0));
}
-static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd,
- int sx) {
+static AOM_FORCE_INLINE int16x8_t
+highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd, int sx) {
int16x8_t f = load_filters_1(sx);
int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(in.val[0]),
@@ -180,7 +180,8 @@ static INLINE int16x8_t highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd,
return vcombine_s16(vmovn_s32(res0), vmovn_s32(res1));
}
-static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy) {
+static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp,
+ int sy) {
const int16x8_t f = load_filters_1(sy);
const int16x4_t f0123 = vget_low_s16(f);
const int16x4_t f4567 = vget_high_s16(f);
@@ -197,7 +198,8 @@ static INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp, int sy) {
return m0123;
}
-static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy) {
+static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp,
+ int sy) {
const int16x8_t f = load_filters_1(sy);
const int16x4_t f0123 = vget_low_s16(f);
const int16x4_t f4567 = vget_high_s16(f);
@@ -223,8 +225,8 @@ static INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp, int sy) {
return (int32x4x2_t){ { m0123, m4567 } };
}
-static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy,
- int gamma) {
+static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp,
+ int sy, int gamma) {
int16x8_t s0, s1, s2, s3;
transpose_elems_s16_4x8(
vget_low_s16(tmp[0]), vget_low_s16(tmp[1]), vget_low_s16(tmp[2]),
@@ -244,8 +246,8 @@ static INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp, int sy,
return vcombine_s32(vmovn_s64(m01), vmovn_s64(m23));
}
-static INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp, int sy,
- int gamma) {
+static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp,
+ int sy, int gamma) {
int16x8_t s0 = tmp[0];
int16x8_t s1 = tmp[1];
int16x8_t s2 = tmp[2];
diff --git a/third_party/aom/av1/common/arm/warp_plane_neon.c b/third_party/aom/av1/common/arm/warp_plane_neon.c
index 4723154398..546aa2965b 100644
--- a/third_party/aom/av1/common/arm/warp_plane_neon.c
+++ b/third_party/aom/av1/common/arm/warp_plane_neon.c
@@ -11,8 +11,8 @@
#include "warp_plane_neon.h"
-static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
- int alpha) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in,
+ int sx, int alpha) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
// Loading the 8 filter taps
@@ -39,8 +39,8 @@ static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
- int alpha) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in,
+ int sx, int alpha) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
// Loading the 8 filter taps
@@ -75,7 +75,8 @@ static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in,
+ int sx) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
int16x8_t f_s16 =
@@ -101,7 +102,8 @@ static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx) {
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in,
+ int sx) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
int16x8_t f_s16 =
@@ -135,8 +137,8 @@ static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx) {
return vreinterpretq_s16_u16(res);
}
-static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
- int sy) {
+static AOM_FORCE_INLINE void vertical_filter_4x1_f1(const int16x8_t *src,
+ int32x4_t *res, int sy) {
int16x4_t s0 = vget_low_s16(src[0]);
int16x4_t s1 = vget_low_s16(src[1]);
int16x4_t s2 = vget_low_s16(src[2]);
@@ -161,8 +163,9 @@ static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
*res = m0123;
}
-static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
- int sy, int gamma) {
+static AOM_FORCE_INLINE void vertical_filter_4x1_f4(const int16x8_t *src,
+ int32x4_t *res, int sy,
+ int gamma) {
int16x8_t s0, s1, s2, s3;
transpose_elems_s16_4x8(
vget_low_s16(src[0]), vget_low_s16(src[1]), vget_low_s16(src[2]),
@@ -186,9 +189,10 @@ static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
*res = horizontal_add_4d_s32x4(m0123_pairs);
}
-static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy) {
+static AOM_FORCE_INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high,
+ int sy) {
int16x8_t s0 = src[0];
int16x8_t s1 = src[1];
int16x8_t s2 = src[2];
@@ -223,10 +227,10 @@ static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
*res_high = m4567;
}
-static INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy,
- int gamma) {
+static AOM_FORCE_INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high, int sy,
+ int gamma) {
int16x8_t s0 = src[0];
int16x8_t s1 = src[1];
int16x8_t s2 = src[2];
diff --git a/third_party/aom/av1/common/arm/warp_plane_neon.h b/third_party/aom/av1/common/arm/warp_plane_neon.h
index 5afd72f4ab..eece007ef3 100644
--- a/third_party/aom/av1/common/arm/warp_plane_neon.h
+++ b/third_party/aom/av1/common/arm/warp_plane_neon.h
@@ -24,32 +24,37 @@
#include "av1/common/warped_motion.h"
#include "av1/common/scale.h"
-static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
- int alpha);
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in,
+ int sx, int alpha);
-static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
- int alpha);
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in,
+ int sx, int alpha);
-static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx);
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in,
+ int sx);
-static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx);
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in,
+ int sx);
-static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
- int sy);
+static AOM_FORCE_INLINE void vertical_filter_4x1_f1(const int16x8_t *src,
+ int32x4_t *res, int sy);
-static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
- int sy, int gamma);
+static AOM_FORCE_INLINE void vertical_filter_4x1_f4(const int16x8_t *src,
+ int32x4_t *res, int sy,
+ int gamma);
-static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy);
+static AOM_FORCE_INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high,
+ int sy);
-static INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy,
- int gamma);
+static AOM_FORCE_INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high, int sy,
+ int gamma);
-static INLINE void load_filters_4(int16x8_t out[], int offset, int stride) {
+static AOM_FORCE_INLINE void load_filters_4(int16x8_t out[], int offset,
+ int stride) {
out[0] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 0 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[1] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 1 * stride) >>
@@ -60,7 +65,8 @@ static INLINE void load_filters_4(int16x8_t out[], int offset, int stride) {
WARPEDDIFF_PREC_BITS)));
}
-static INLINE void load_filters_8(int16x8_t out[], int offset, int stride) {
+static AOM_FORCE_INLINE void load_filters_8(int16x8_t out[], int offset,
+ int stride) {
out[0] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 0 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[1] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 1 * stride) >>
@@ -79,16 +85,14 @@ static INLINE void load_filters_8(int16x8_t out[], int offset, int stride) {
WARPEDDIFF_PREC_BITS)));
}
-static INLINE int clamp_iy(int iy, int height) {
+static AOM_FORCE_INLINE int clamp_iy(int iy, int height) {
return clamp(iy, 0, height - 1);
}
-static INLINE void warp_affine_horizontal(const uint8_t *ref, int width,
- int height, int stride, int p_width,
- int p_height, int16_t alpha,
- int16_t beta, const int64_t x4,
- const int64_t y4, const int i,
- int16x8_t tmp[]) {
+static AOM_FORCE_INLINE void warp_affine_horizontal(
+ const uint8_t *ref, int width, int height, int stride, int p_width,
+ int p_height, int16_t alpha, int16_t beta, const int64_t x4,
+ const int64_t y4, const int i, int16x8_t tmp[]) {
const int bd = 8;
const int reduce_bits_horiz = ROUND0_BITS;
const int height_limit = AOMMIN(8, p_height - i) + 7;
@@ -197,7 +201,7 @@ static INLINE void warp_affine_horizontal(const uint8_t *ref, int width,
}
}
-static INLINE void warp_affine_vertical(
+static AOM_FORCE_INLINE void warp_affine_vertical(
uint8_t *pred, int p_width, int p_height, int p_stride, int is_compound,
uint16_t *dst, int dst_stride, int do_average, int use_dist_wtd_comp_avg,
int16_t gamma, int16_t delta, const int64_t y4, const int i, const int j,
@@ -325,7 +329,7 @@ static INLINE void warp_affine_vertical(
}
}
-static INLINE void av1_warp_affine_common(
+static AOM_FORCE_INLINE void av1_warp_affine_common(
const int32_t *mat, const uint8_t *ref, int width, int height, int stride,
uint8_t *pred, int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
diff --git a/third_party/aom/av1/common/arm/warp_plane_neon_i8mm.c b/third_party/aom/av1/common/arm/warp_plane_neon_i8mm.c
index 39e3ad99f4..22a1be17b5 100644
--- a/third_party/aom/av1/common/arm/warp_plane_neon_i8mm.c
+++ b/third_party/aom/av1/common/arm/warp_plane_neon_i8mm.c
@@ -17,8 +17,8 @@ DECLARE_ALIGNED(16, static const uint8_t, usdot_permute_idx[48]) = {
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
-static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
- int alpha) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in,
+ int sx, int alpha) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
// Loading the 8 filter taps
@@ -45,8 +45,8 @@ static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
- int alpha) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in,
+ int sx, int alpha) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
// Loading the 8 filter taps
@@ -83,7 +83,8 @@ static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in,
+ int sx) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
int16x8_t f_s16 =
@@ -112,7 +113,8 @@ static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx) {
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in,
+ int sx) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
int16x8_t f_s16 =
@@ -149,8 +151,8 @@ static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx) {
return vreinterpretq_s16_u16(res);
}
-static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
- int sy) {
+static AOM_FORCE_INLINE void vertical_filter_4x1_f1(const int16x8_t *src,
+ int32x4_t *res, int sy) {
int16x4_t s0 = vget_low_s16(src[0]);
int16x4_t s1 = vget_low_s16(src[1]);
int16x4_t s2 = vget_low_s16(src[2]);
@@ -175,8 +177,9 @@ static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
*res = m0123;
}
-static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
- int sy, int gamma) {
+static AOM_FORCE_INLINE void vertical_filter_4x1_f4(const int16x8_t *src,
+ int32x4_t *res, int sy,
+ int gamma) {
int16x8_t s0, s1, s2, s3;
transpose_elems_s16_4x8(
vget_low_s16(src[0]), vget_low_s16(src[1]), vget_low_s16(src[2]),
@@ -200,9 +203,10 @@ static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
*res = horizontal_add_4d_s32x4(m0123_pairs);
}
-static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy) {
+static AOM_FORCE_INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high,
+ int sy) {
int16x8_t s0 = src[0];
int16x8_t s1 = src[1];
int16x8_t s2 = src[2];
@@ -237,10 +241,10 @@ static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
*res_high = m4567;
}
-static INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy,
- int gamma) {
+static AOM_FORCE_INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high, int sy,
+ int gamma) {
int16x8_t s0 = src[0];
int16x8_t s1 = src[1];
int16x8_t s2 = src[2];
diff --git a/third_party/aom/av1/common/arm/warp_plane_sve.c b/third_party/aom/av1/common/arm/warp_plane_sve.c
index 8a4bf5747b..c70b066174 100644
--- a/third_party/aom/av1/common/arm/warp_plane_sve.c
+++ b/third_party/aom/av1/common/arm/warp_plane_sve.c
@@ -11,7 +11,7 @@
#include <arm_neon.h>
-#include "aom_dsp/arm/dot_sve.h"
+#include "aom_dsp/arm/aom_neon_sve_bridge.h"
#include "warp_plane_neon.h"
DECLARE_ALIGNED(16, static const uint8_t, usdot_permute_idx[48]) = {
@@ -20,8 +20,8 @@ DECLARE_ALIGNED(16, static const uint8_t, usdot_permute_idx[48]) = {
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
-static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
- int alpha) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in,
+ int sx, int alpha) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
// Loading the 8 filter taps
@@ -48,8 +48,8 @@ static INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, int sx,
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
- int alpha) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in,
+ int sx, int alpha) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
// Loading the 8 filter taps
@@ -86,7 +86,8 @@ static INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, int sx,
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in,
+ int sx) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
int16x8_t f_s16 =
@@ -115,7 +116,8 @@ static INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, int sx) {
return vreinterpretq_s16_u16(res);
}
-static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx) {
+static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in,
+ int sx) {
const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1));
int16x8_t f_s16 =
@@ -152,8 +154,8 @@ static INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, int sx) {
return vreinterpretq_s16_u16(res);
}
-static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
- int sy) {
+static AOM_FORCE_INLINE void vertical_filter_4x1_f1(const int16x8_t *src,
+ int32x4_t *res, int sy) {
int16x4_t s0 = vget_low_s16(src[0]);
int16x4_t s1 = vget_low_s16(src[1]);
int16x4_t s2 = vget_low_s16(src[2]);
@@ -178,8 +180,9 @@ static INLINE void vertical_filter_4x1_f1(const int16x8_t *src, int32x4_t *res,
*res = m0123;
}
-static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
- int sy, int gamma) {
+static AOM_FORCE_INLINE void vertical_filter_4x1_f4(const int16x8_t *src,
+ int32x4_t *res, int sy,
+ int gamma) {
int16x8_t s0, s1, s2, s3;
transpose_elems_s16_4x8(
vget_low_s16(src[0]), vget_low_s16(src[1]), vget_low_s16(src[2]),
@@ -200,9 +203,10 @@ static INLINE void vertical_filter_4x1_f4(const int16x8_t *src, int32x4_t *res,
*res = vcombine_s32(vmovn_s64(m01), vmovn_s64(m23));
}
-static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy) {
+static AOM_FORCE_INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high,
+ int sy) {
int16x8_t s0 = src[0];
int16x8_t s1 = src[1];
int16x8_t s2 = src[2];
@@ -237,10 +241,10 @@ static INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
*res_high = m4567;
}
-static INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
- int32x4_t *res_low,
- int32x4_t *res_high, int sy,
- int gamma) {
+static AOM_FORCE_INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
+ int32x4_t *res_low,
+ int32x4_t *res_high, int sy,
+ int gamma) {
int16x8_t s0 = src[0];
int16x8_t s1 = src[1];
int16x8_t s2 = src[2];
diff --git a/third_party/aom/av1/common/av1_common_int.h b/third_party/aom/av1/common/av1_common_int.h
index 4c0cb99d2b..4e14c4a8be 100644
--- a/third_party/aom/av1/common/av1_common_int.h
+++ b/third_party/aom/av1/common/av1_common_int.h
@@ -17,7 +17,7 @@
#include "aom/internal/aom_codec_internal.h"
#include "aom_dsp/flow_estimation/corner_detect.h"
-#include "aom_util/aom_thread.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
diff --git a/third_party/aom/av1/common/av1_rtcd_defs.pl b/third_party/aom/av1/common/av1_rtcd_defs.pl
index ef999fbba2..c0831330d1 100644
--- a/third_party/aom/av1/common/av1_rtcd_defs.pl
+++ b/third_party/aom/av1/common/av1_rtcd_defs.pl
@@ -77,6 +77,16 @@ EOF
}
forward_decls qw/av1_common_forward_decls/;
+# Fallbacks for Valgrind support
+# For normal use, we require SSE4.1. However, 32-bit Valgrind does not support
+# SSE4.1, so we include fallbacks for some critical functions to improve
+# performance
+$sse2_x86 = $ssse3_x86 = '';
+if ($opts{arch} eq "x86") {
+ $sse2_x86 = 'sse2';
+ $ssse3_x86 = 'ssse3';
+}
+
# functions that are 64 bit only.
$mmx_x86_64 = $sse2_x86_64 = $ssse3_x86_64 = $avx_x86_64 = $avx2_x86_64 = '';
if ($opts{arch} eq "x86_64") {
@@ -345,7 +355,7 @@ if (aom_config("CONFIG_AV1_ENCODER") eq "yes") {
#fwd txfm
add_proto qw/void av1_lowbd_fwd_txfm/, "const int16_t *src_diff, tran_low_t *coeff, int diff_stride, TxfmParam *txfm_param";
- specialize qw/av1_lowbd_fwd_txfm sse2 sse4_1 avx2 neon/;
+ specialize qw/av1_lowbd_fwd_txfm sse4_1 avx2 neon/, $sse2_x86;
add_proto qw/void av1_fwd_txfm2d_4x8/, "const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd";
specialize qw/av1_fwd_txfm2d_4x8 sse4_1 neon/;
@@ -436,9 +446,9 @@ if (aom_config("CONFIG_AV1_ENCODER") eq "yes") {
specialize qw/av1_txb_init_levels sse4_1 avx2 neon/;
add_proto qw/uint64_t av1_wedge_sse_from_residuals/, "const int16_t *r1, const int16_t *d, const uint8_t *m, int N";
- specialize qw/av1_wedge_sse_from_residuals sse2 avx2 neon/;
+ specialize qw/av1_wedge_sse_from_residuals sse2 avx2 neon sve/;
add_proto qw/int8_t av1_wedge_sign_from_residuals/, "const int16_t *ds, const uint8_t *m, int N, int64_t limit";
- specialize qw/av1_wedge_sign_from_residuals sse2 avx2 neon/;
+ specialize qw/av1_wedge_sign_from_residuals sse2 avx2 neon sve/;
add_proto qw/void av1_wedge_compute_delta_squares/, "int16_t *d, const int16_t *a, const int16_t *b, int N";
specialize qw/av1_wedge_compute_delta_squares sse2 avx2 neon/;
@@ -521,21 +531,21 @@ add_proto qw/void cdef_copy_rect8_16bit_to_16bit/, "uint16_t *dst, int dstride,
# structs as arguments, which makes the v256 type of the intrinsics
# hard to support, so optimizations for this target are disabled.
if ($opts{config} !~ /libs-x86-win32-vs.*/) {
- specialize qw/cdef_find_dir sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_find_dir_dual sse2 ssse3 sse4_1 avx2 neon/;
+ specialize qw/cdef_find_dir sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_find_dir_dual sse4_1 avx2 neon/, "$ssse3_x86";
- specialize qw/cdef_filter_8_0 sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_filter_8_1 sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_filter_8_2 sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_filter_8_3 sse2 ssse3 sse4_1 avx2 neon/;
+ specialize qw/cdef_filter_8_0 sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_filter_8_1 sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_filter_8_2 sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_filter_8_3 sse4_1 avx2 neon/, "$ssse3_x86";
- specialize qw/cdef_filter_16_0 sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_filter_16_1 sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_filter_16_2 sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_filter_16_3 sse2 ssse3 sse4_1 avx2 neon/;
+ specialize qw/cdef_filter_16_0 sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_filter_16_1 sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_filter_16_2 sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_filter_16_3 sse4_1 avx2 neon/, "$ssse3_x86";
- specialize qw/cdef_copy_rect8_8bit_to_16bit sse2 ssse3 sse4_1 avx2 neon/;
- specialize qw/cdef_copy_rect8_16bit_to_16bit sse2 ssse3 sse4_1 avx2 neon/;
+ specialize qw/cdef_copy_rect8_8bit_to_16bit sse4_1 avx2 neon/, "$ssse3_x86";
+ specialize qw/cdef_copy_rect8_16bit_to_16bit sse4_1 avx2 neon/, "$ssse3_x86";
}
# WARPED_MOTION / GLOBAL_MOTION functions
@@ -591,20 +601,20 @@ if(aom_config("CONFIG_AV1_HIGHBITDEPTH") eq "yes") {
specialize qw/av1_convolve_y_sr sse2 avx2 neon/;
specialize qw/av1_convolve_y_sr_intrabc neon/;
specialize qw/av1_convolve_2d_scale sse4_1/;
- specialize qw/av1_dist_wtd_convolve_2d sse2 ssse3 avx2 neon neon_dotprod neon_i8mm/;
+ specialize qw/av1_dist_wtd_convolve_2d ssse3 avx2 neon neon_dotprod neon_i8mm/;
specialize qw/av1_dist_wtd_convolve_2d_copy sse2 avx2 neon/;
specialize qw/av1_dist_wtd_convolve_x sse2 avx2 neon neon_dotprod neon_i8mm/;
specialize qw/av1_dist_wtd_convolve_y sse2 avx2 neon/;
if(aom_config("CONFIG_AV1_HIGHBITDEPTH") eq "yes") {
- specialize qw/av1_highbd_dist_wtd_convolve_2d sse4_1 avx2 neon/;
- specialize qw/av1_highbd_dist_wtd_convolve_x sse4_1 avx2 neon/;
- specialize qw/av1_highbd_dist_wtd_convolve_y sse4_1 avx2 neon/;
+ specialize qw/av1_highbd_dist_wtd_convolve_2d sse4_1 avx2 neon sve2/;
+ specialize qw/av1_highbd_dist_wtd_convolve_x sse4_1 avx2 neon sve2/;
+ specialize qw/av1_highbd_dist_wtd_convolve_y sse4_1 avx2 neon sve2/;
specialize qw/av1_highbd_dist_wtd_convolve_2d_copy sse4_1 avx2 neon/;
- specialize qw/av1_highbd_convolve_2d_sr ssse3 avx2 neon/;
+ specialize qw/av1_highbd_convolve_2d_sr ssse3 avx2 neon sve2/;
specialize qw/av1_highbd_convolve_2d_sr_intrabc neon/;
- specialize qw/av1_highbd_convolve_x_sr ssse3 avx2 neon/;
+ specialize qw/av1_highbd_convolve_x_sr ssse3 avx2 neon sve2/;
specialize qw/av1_highbd_convolve_x_sr_intrabc neon/;
- specialize qw/av1_highbd_convolve_y_sr ssse3 avx2 neon/;
+ specialize qw/av1_highbd_convolve_y_sr ssse3 avx2 neon sve2/;
specialize qw/av1_highbd_convolve_y_sr_intrabc neon/;
specialize qw/av1_highbd_convolve_2d_scale sse4_1 neon/;
}
diff --git a/third_party/aom/av1/common/cdef.c b/third_party/aom/av1/common/cdef.c
index 12e9545441..5cec940a8e 100644
--- a/third_party/aom/av1/common/cdef.c
+++ b/third_party/aom/av1/common/cdef.c
@@ -10,15 +10,19 @@
*/
#include <assert.h>
-#include <math.h>
+#include <stddef.h>
#include <string.h>
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cdef.h"
#include "av1/common/cdef_block.h"
+#include "av1/common/common.h"
+#include "av1/common/common_data.h"
+#include "av1/common/enums.h"
#include "av1/common/reconinter.h"
#include "av1/common/thread_common.h"
@@ -92,7 +96,7 @@ void av1_cdef_copy_sb8_16_lowbd(uint16_t *const dst, int dstride,
const uint8_t *src, int src_voffset,
int src_hoffset, int sstride, int vsize,
int hsize) {
- const uint8_t *base = &src[src_voffset * sstride + src_hoffset];
+ const uint8_t *base = &src[src_voffset * (ptrdiff_t)sstride + src_hoffset];
cdef_copy_rect8_8bit_to_16bit(dst, dstride, base, sstride, hsize, vsize);
}
@@ -101,7 +105,7 @@ void av1_cdef_copy_sb8_16_highbd(uint16_t *const dst, int dstride,
int src_hoffset, int sstride, int vsize,
int hsize) {
const uint16_t *base =
- &CONVERT_TO_SHORTPTR(src)[src_voffset * sstride + src_hoffset];
+ &CONVERT_TO_SHORTPTR(src)[src_voffset * (ptrdiff_t)sstride + src_hoffset];
cdef_copy_rect8_16bit_to_16bit(dst, dstride, base, sstride, hsize, vsize);
}
@@ -247,7 +251,8 @@ static void cdef_prepare_fb(const AV1_COMMON *const cm, CdefBlockInfo *fb_info,
static INLINE void cdef_filter_fb(CdefBlockInfo *const fb_info, int plane,
uint8_t use_highbitdepth) {
- int offset = fb_info->dst_stride * fb_info->roffset + fb_info->coffset;
+ ptrdiff_t offset =
+ (ptrdiff_t)fb_info->dst_stride * fb_info->roffset + fb_info->coffset;
if (use_highbitdepth) {
av1_cdef_filter_fb(
NULL, CONVERT_TO_SHORTPTR(fb_info->dst + offset), fb_info->dst_stride,
diff --git a/third_party/aom/av1/common/entropymode.h b/third_party/aom/av1/common/entropymode.h
index 09cd6bd1e9..028bd21ae3 100644
--- a/third_party/aom/av1/common/entropymode.h
+++ b/third_party/aom/av1/common/entropymode.h
@@ -12,6 +12,7 @@
#ifndef AOM_AV1_COMMON_ENTROPYMODE_H_
#define AOM_AV1_COMMON_ENTROPYMODE_H_
+#include "aom_ports/bitops.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymv.h"
#include "av1/common/filter.h"
@@ -192,13 +193,7 @@ void av1_setup_past_independence(struct AV1Common *cm);
// Returns (int)ceil(log2(n)).
static INLINE int av1_ceil_log2(int n) {
if (n < 2) return 0;
- int i = 1;
- unsigned int p = 2;
- while (p < (unsigned int)n) {
- i++;
- p = p << 1;
- }
- return i;
+ return get_msb(n - 1) + 1;
}
// Returns the context for palette color index at row 'r' and column 'c',
diff --git a/third_party/aom/av1/common/quant_common.c b/third_party/aom/av1/common/quant_common.c
index b0976287ef..58eb113370 100644
--- a/third_party/aom/av1/common/quant_common.c
+++ b/third_party/aom/av1/common/quant_common.c
@@ -9,10 +9,15 @@
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
+#include "config/aom_config.h"
+
+#include "aom/aom_frame_buffer.h"
+#include "aom_scale/yv12config.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
+#include "av1/common/filter.h"
#include "av1/common/quant_common.h"
#include "av1/common/seg_common.h"
@@ -274,13 +279,16 @@ const qm_val_t *av1_get_qmatrix(const CommonQuantParams *quant_params,
: quant_params->gqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size];
}
+#if CONFIG_QUANT_MATRIX || CONFIG_AV1_DECODER
#define QM_TOTAL_SIZE 3344
// We only use wt_matrix_ref[q] and iwt_matrix_ref[q]
// for q = 0, ..., NUM_QM_LEVELS - 2.
static const qm_val_t wt_matrix_ref[NUM_QM_LEVELS - 1][2][QM_TOTAL_SIZE];
static const qm_val_t iwt_matrix_ref[NUM_QM_LEVELS - 1][2][QM_TOTAL_SIZE];
+#endif
void av1_qm_init(CommonQuantParams *quant_params, int num_planes) {
+#if CONFIG_QUANT_MATRIX || CONFIG_AV1_DECODER
for (int q = 0; q < NUM_QM_LEVELS; ++q) {
for (int c = 0; c < num_planes; ++c) {
int current = 0;
@@ -306,6 +314,10 @@ void av1_qm_init(CommonQuantParams *quant_params, int num_planes) {
}
}
}
+#else
+ (void)quant_params;
+ (void)num_planes;
+#endif // CONFIG_QUANT_MATRIX || CONFIG_AV1_DECODER
}
/* Provide 15 sets of quantization matrices for chroma and luma
@@ -320,6 +332,8 @@ void av1_qm_init(CommonQuantParams *quant_params, int num_planes) {
distances. Matrices for QM level 15 are omitted because they are
not used.
*/
+
+#if CONFIG_QUANT_MATRIX || CONFIG_AV1_DECODER
static const qm_val_t iwt_matrix_ref[NUM_QM_LEVELS - 1][2][QM_TOTAL_SIZE] = {
{
{ /* Luma */
@@ -12873,4 +12887,6 @@ static const qm_val_t wt_matrix_ref[NUM_QM_LEVELS - 1][2][QM_TOTAL_SIZE] = {
33, 33, 32, 32, 32, 32, 34, 33, 33, 33, 32, 32, 32, 32, 34, 33, 33, 33,
32, 32, 32, 32 },
},
-}; \ No newline at end of file
+};
+
+#endif // CONFIG_QUANT_MATRIX || CONFIG_AV1_DECODER
diff --git a/third_party/aom/av1/common/reconintra.c b/third_party/aom/av1/common/reconintra.c
index f68af18cb1..497863e117 100644
--- a/third_party/aom/av1/common/reconintra.c
+++ b/third_party/aom/av1/common/reconintra.c
@@ -1196,7 +1196,8 @@ static void build_directional_and_filter_intra_predictors(
const int need_right = p_angle < 90;
const int need_bottom = p_angle > 180;
if (p_angle != 90 && p_angle != 180) {
- const int ab_le = need_above_left ? 1 : 0;
+ assert(need_above_left);
+ const int ab_le = 1;
if (need_above && need_left && (txwpx + txhpx >= 24)) {
filter_intra_edge_corner(above_row, left_col);
}
@@ -1500,7 +1501,8 @@ static void highbd_build_directional_and_filter_intra_predictors(
const int need_right = p_angle < 90;
const int need_bottom = p_angle > 180;
if (p_angle != 90 && p_angle != 180) {
- const int ab_le = need_above_left ? 1 : 0;
+ assert(need_above_left);
+ const int ab_le = 1;
if (need_above && need_left && (txwpx + txhpx >= 24)) {
highbd_filter_intra_edge_corner(above_row, left_col);
}
diff --git a/third_party/aom/av1/common/resize.c b/third_party/aom/av1/common/resize.c
index 1b348836a5..441323ab1f 100644
--- a/third_party/aom/av1/common/resize.c
+++ b/third_party/aom/av1/common/resize.c
@@ -524,7 +524,7 @@ static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) {
}
}
-bool av1_resize_plane(const uint8_t *const input, int height, int width,
+bool av1_resize_plane(const uint8_t *input, int height, int width,
int in_stride, uint8_t *output, int height2, int width2,
int out_stride) {
int i;
@@ -881,7 +881,7 @@ static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len,
}
}
-void av1_highbd_resize_plane(const uint8_t *const input, int height, int width,
+void av1_highbd_resize_plane(const uint8_t *input, int height, int width,
int in_stride, uint8_t *output, int height2,
int width2, int out_stride, int bd) {
int i;
@@ -980,10 +980,9 @@ static bool highbd_upscale_normative_rect(const uint8_t *const input,
}
#endif // CONFIG_AV1_HIGHBITDEPTH
-void av1_resize_frame420(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
- int uv_stride, int height, int width, uint8_t *oy,
- int oy_stride, uint8_t *ou, uint8_t *ov,
+void av1_resize_frame420(const uint8_t *y, int y_stride, const uint8_t *u,
+ const uint8_t *v, int uv_stride, int height, int width,
+ uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
int ouv_stride, int oheight, int owidth) {
if (!av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
oy_stride))
@@ -996,10 +995,9 @@ void av1_resize_frame420(const uint8_t *const y, int y_stride,
abort();
}
-bool av1_resize_frame422(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
- int uv_stride, int height, int width, uint8_t *oy,
- int oy_stride, uint8_t *ou, uint8_t *ov,
+bool av1_resize_frame422(const uint8_t *y, int y_stride, const uint8_t *u,
+ const uint8_t *v, int uv_stride, int height, int width,
+ uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
int ouv_stride, int oheight, int owidth) {
if (!av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
oy_stride))
@@ -1013,10 +1011,9 @@ bool av1_resize_frame422(const uint8_t *const y, int y_stride,
return true;
}
-bool av1_resize_frame444(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
- int uv_stride, int height, int width, uint8_t *oy,
- int oy_stride, uint8_t *ou, uint8_t *ov,
+bool av1_resize_frame444(const uint8_t *y, int y_stride, const uint8_t *u,
+ const uint8_t *v, int uv_stride, int height, int width,
+ uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
int ouv_stride, int oheight, int owidth) {
if (!av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
oy_stride))
@@ -1031,8 +1028,8 @@ bool av1_resize_frame444(const uint8_t *const y, int y_stride,
}
#if CONFIG_AV1_HIGHBITDEPTH
-void av1_highbd_resize_frame420(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
+void av1_highbd_resize_frame420(const uint8_t *y, int y_stride,
+ const uint8_t *u, const uint8_t *v,
int uv_stride, int height, int width,
uint8_t *oy, int oy_stride, uint8_t *ou,
uint8_t *ov, int ouv_stride, int oheight,
@@ -1045,8 +1042,8 @@ void av1_highbd_resize_frame420(const uint8_t *const y, int y_stride,
owidth / 2, ouv_stride, bd);
}
-void av1_highbd_resize_frame422(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
+void av1_highbd_resize_frame422(const uint8_t *y, int y_stride,
+ const uint8_t *u, const uint8_t *v,
int uv_stride, int height, int width,
uint8_t *oy, int oy_stride, uint8_t *ou,
uint8_t *ov, int ouv_stride, int oheight,
@@ -1059,8 +1056,8 @@ void av1_highbd_resize_frame422(const uint8_t *const y, int y_stride,
owidth / 2, ouv_stride, bd);
}
-void av1_highbd_resize_frame444(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
+void av1_highbd_resize_frame444(const uint8_t *y, int y_stride,
+ const uint8_t *u, const uint8_t *v,
int uv_stride, int height, int width,
uint8_t *oy, int oy_stride, uint8_t *ou,
uint8_t *ov, int ouv_stride, int oheight,
@@ -1126,7 +1123,7 @@ void av1_resize_and_extend_frame_c(const YV12_BUFFER_CONFIG *src,
bool av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int bd,
- const int num_planes) {
+ int num_planes) {
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
@@ -1246,8 +1243,7 @@ void av1_upscale_normative_and_extend_frame(const AV1_COMMON *cm,
YV12_BUFFER_CONFIG *av1_realloc_and_scale_if_required(
AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
const InterpFilter filter, const int phase, const bool use_optimized_scaler,
- const bool for_psnr, const int border_in_pixels,
- const int num_pyramid_levels) {
+ const bool for_psnr, const int border_in_pixels, const bool alloc_pyramid) {
// If scaling is performed for the sole purpose of calculating PSNR, then our
// target dimensions are superres upscaled width/height. Otherwise our target
// dimensions are coded width/height.
@@ -1267,7 +1263,7 @@ YV12_BUFFER_CONFIG *av1_realloc_and_scale_if_required(
scaled, scaled_width, scaled_height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
border_in_pixels, cm->features.byte_alignment, NULL, NULL, NULL,
- num_pyramid_levels, 0))
+ alloc_pyramid, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled buffer");
@@ -1363,7 +1359,7 @@ static void copy_buffer_config(const YV12_BUFFER_CONFIG *const src,
// TODO(afergs): aom_ vs av1_ functions? Which can I use?
// Upscale decoded image.
void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool,
- int num_pyramid_levels) {
+ bool alloc_pyramid) {
const int num_planes = av1_num_planes(cm);
if (!av1_superres_scaled(cm)) return;
const SequenceHeader *const seq_params = cm->seq_params;
@@ -1378,7 +1374,7 @@ void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool,
if (aom_alloc_frame_buffer(
&copy_buffer, aligned_width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
- AOM_BORDER_IN_PIXELS, byte_alignment, 0, 0))
+ AOM_BORDER_IN_PIXELS, byte_alignment, false, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate copy buffer for superres upscaling");
@@ -1411,7 +1407,7 @@ void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool,
cm->superres_upscaled_height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
AOM_BORDER_IN_PIXELS, byte_alignment, fb, cb, cb_priv,
- num_pyramid_levels, 0)) {
+ alloc_pyramid, 0)) {
unlock_buffer_pool(pool);
aom_internal_error(
cm->error, AOM_CODEC_MEM_ERROR,
@@ -1428,7 +1424,7 @@ void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool,
frame_to_show, cm->superres_upscaled_width,
cm->superres_upscaled_height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
- AOM_BORDER_IN_PIXELS, byte_alignment, num_pyramid_levels, 0))
+ AOM_BORDER_IN_PIXELS, byte_alignment, alloc_pyramid, 0))
aom_internal_error(
cm->error, AOM_CODEC_MEM_ERROR,
"Failed to reallocate current frame buffer for superres upscaling");
diff --git a/third_party/aom/av1/common/resize.h b/third_party/aom/av1/common/resize.h
index 0ba3108f72..d573a538bf 100644
--- a/third_party/aom/av1/common/resize.h
+++ b/third_party/aom/av1/common/resize.h
@@ -20,44 +20,41 @@
extern "C" {
#endif
-bool av1_resize_plane(const uint8_t *const input, int height, int width,
+bool av1_resize_plane(const uint8_t *input, int height, int width,
int in_stride, uint8_t *output, int height2, int width2,
int out_stride);
// TODO(aomedia:3228): In libaom 4.0.0, remove av1_resize_frame420 from
// av1/exports_com and delete this function.
-void av1_resize_frame420(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
- int uv_stride, int height, int width, uint8_t *oy,
- int oy_stride, uint8_t *ou, uint8_t *ov,
+void av1_resize_frame420(const uint8_t *y, int y_stride, const uint8_t *u,
+ const uint8_t *v, int uv_stride, int height, int width,
+ uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
int ouv_stride, int oheight, int owidth);
-bool av1_resize_frame422(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
- int uv_stride, int height, int width, uint8_t *oy,
- int oy_stride, uint8_t *ou, uint8_t *ov,
+bool av1_resize_frame422(const uint8_t *y, int y_stride, const uint8_t *u,
+ const uint8_t *v, int uv_stride, int height, int width,
+ uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
int ouv_stride, int oheight, int owidth);
-bool av1_resize_frame444(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
- int uv_stride, int height, int width, uint8_t *oy,
- int oy_stride, uint8_t *ou, uint8_t *ov,
+bool av1_resize_frame444(const uint8_t *y, int y_stride, const uint8_t *u,
+ const uint8_t *v, int uv_stride, int height, int width,
+ uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
int ouv_stride, int oheight, int owidth);
-void av1_highbd_resize_plane(const uint8_t *const input, int height, int width,
+void av1_highbd_resize_plane(const uint8_t *input, int height, int width,
int in_stride, uint8_t *output, int height2,
int width2, int out_stride, int bd);
-void av1_highbd_resize_frame420(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
+void av1_highbd_resize_frame420(const uint8_t *y, int y_stride,
+ const uint8_t *u, const uint8_t *v,
int uv_stride, int height, int width,
uint8_t *oy, int oy_stride, uint8_t *ou,
uint8_t *ov, int ouv_stride, int oheight,
int owidth, int bd);
-void av1_highbd_resize_frame422(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
+void av1_highbd_resize_frame422(const uint8_t *y, int y_stride,
+ const uint8_t *u, const uint8_t *v,
int uv_stride, int height, int width,
uint8_t *oy, int oy_stride, uint8_t *ou,
uint8_t *ov, int ouv_stride, int oheight,
int owidth, int bd);
-void av1_highbd_resize_frame444(const uint8_t *const y, int y_stride,
- const uint8_t *const u, const uint8_t *const v,
+void av1_highbd_resize_frame444(const uint8_t *y, int y_stride,
+ const uint8_t *u, const uint8_t *v,
int uv_stride, int height, int width,
uint8_t *oy, int oy_stride, uint8_t *ou,
uint8_t *ov, int ouv_stride, int oheight,
@@ -73,12 +70,11 @@ void av1_upscale_normative_and_extend_frame(const AV1_COMMON *cm,
YV12_BUFFER_CONFIG *av1_realloc_and_scale_if_required(
AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
const InterpFilter filter, const int phase, const bool use_optimized_scaler,
- const bool for_psnr, const int border_in_pixels,
- const int num_pyramid_levels);
+ const bool for_psnr, const int border_in_pixels, const bool alloc_pyramid);
bool av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int bd,
- const int num_planes);
+ int num_planes);
// Calculates the scaled dimensions from the given original dimensions and the
// resize scale denominator.
@@ -95,7 +91,7 @@ void av1_calculate_scaled_superres_size(int *width, int *height,
void av1_calculate_unscaled_superres_size(int *width, int *height, int denom);
void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool,
- int num_pyramid_levels);
+ bool alloc_pyramid);
// Returns 1 if a superres upscaled frame is scaled and 0 otherwise.
static INLINE int av1_superres_scaled(const AV1_COMMON *cm) {
diff --git a/third_party/aom/av1/common/restoration.c b/third_party/aom/av1/common/restoration.c
index 0be126fa65..335fdc8c2a 100644
--- a/third_party/aom/av1/common/restoration.c
+++ b/third_party/aom/av1/common/restoration.c
@@ -11,20 +11,24 @@
*/
#include <math.h>
+#include <stddef.h>
#include "config/aom_config.h"
-#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
+#include "aom/internal/aom_codec_internal.h"
#include "aom_mem/aom_mem.h"
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_util/aom_pthread.h"
+
#include "av1/common/av1_common_int.h"
+#include "av1/common/convolve.h"
+#include "av1/common/enums.h"
#include "av1/common/resize.h"
#include "av1/common/restoration.h"
#include "av1/common/thread_common.h"
-#include "aom_dsp/aom_dsp_common.h"
-#include "aom_mem/aom_mem.h"
-
-#include "aom_ports/mem.h"
// The 's' values are calculated based on original 'r' and 'e' values in the
// spec using GenSgrprojVtable().
@@ -115,8 +119,9 @@ void av1_loop_restoration_precal(void) {
#endif
}
-static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
- int border_horz, int border_vert) {
+static void extend_frame_lowbd(uint8_t *data, int width, int height,
+ ptrdiff_t stride, int border_horz,
+ int border_vert) {
uint8_t *data_p;
int i;
for (i = 0; i < height; ++i) {
@@ -136,7 +141,8 @@ static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
#if CONFIG_AV1_HIGHBITDEPTH
static void extend_frame_highbd(uint16_t *data, int width, int height,
- int stride, int border_horz, int border_vert) {
+ ptrdiff_t stride, int border_horz,
+ int border_vert) {
uint16_t *data_p;
int i, j;
for (i = 0; i < height; ++i) {
@@ -988,8 +994,10 @@ void av1_loop_restoration_filter_unit(
int unit_h = limits->v_end - limits->v_start;
int unit_w = limits->h_end - limits->h_start;
- uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
- uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;
+ uint8_t *data8_tl =
+ data8 + limits->v_start * (ptrdiff_t)stride + limits->h_start;
+ uint8_t *dst8_tl =
+ dst8 + limits->v_start * (ptrdiff_t)dst_stride + limits->h_start;
if (unit_rtype == RESTORE_NONE) {
copy_rest_unit(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride,
@@ -1074,7 +1082,8 @@ void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
if (aom_realloc_frame_buffer(
lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
- cm->features.byte_alignment, NULL, NULL, NULL, 0, 0) != AOM_CODEC_OK)
+ cm->features.byte_alignment, NULL, NULL, NULL, false,
+ 0) != AOM_CODEC_OK)
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate restoration dst buffer");
@@ -1349,7 +1358,7 @@ static void save_deblock_boundary_lines(
const int is_uv = plane > 0;
const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
const int src_stride = frame->strides[is_uv] << use_highbd;
- const uint8_t *src_rows = src_buf + row * src_stride;
+ const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
: boundaries->stripe_boundary_below;
@@ -1404,7 +1413,7 @@ static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
const int is_uv = plane > 0;
const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
const int src_stride = frame->strides[is_uv] << use_highbd;
- const uint8_t *src_rows = src_buf + row * src_stride;
+ const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
: boundaries->stripe_boundary_below;
diff --git a/third_party/aom/av1/common/thread_common.c b/third_party/aom/av1/common/thread_common.c
index 45695147ff..8a137cc9f7 100644
--- a/third_party/aom/av1/common/thread_common.c
+++ b/third_party/aom/av1/common/thread_common.c
@@ -14,12 +14,19 @@
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/txfm_common.h"
#include "aom_mem/aom_mem.h"
+#include "aom_util/aom_pthread.h"
+#include "aom_util/aom_thread.h"
#include "av1/common/av1_loopfilter.h"
+#include "av1/common/blockd.h"
+#include "av1/common/cdef.h"
#include "av1/common/entropymode.h"
+#include "av1/common/enums.h"
#include "av1/common/thread_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
+#include "av1/common/restoration.h"
// Set up nsync by width.
static INLINE int get_sync_range(int width) {
diff --git a/third_party/aom/av1/common/thread_common.h b/third_party/aom/av1/common/thread_common.h
index 675687dc98..7e681f322b 100644
--- a/third_party/aom/av1/common/thread_common.h
+++ b/third_party/aom/av1/common/thread_common.h
@@ -16,6 +16,7 @@
#include "av1/common/av1_loopfilter.h"
#include "av1/common/cdef.h"
+#include "aom_util/aom_pthread.h"
#include "aom_util/aom_thread.h"
#ifdef __cplusplus
diff --git a/third_party/aom/av1/common/tile_common.c b/third_party/aom/av1/common/tile_common.c
index b964f259b8..45a189d69a 100644
--- a/third_party/aom/av1/common/tile_common.c
+++ b/third_party/aom/av1/common/tile_common.c
@@ -177,46 +177,16 @@ int av1_get_sb_cols_in_tile(const AV1_COMMON *cm, const TileInfo *tile) {
cm->seq_params->mib_size_log2);
}
-PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm,
- int is_uv) {
- PixelRect r;
-
- // Calculate position in the Y plane
- r.left = tile_info->mi_col_start * MI_SIZE;
- r.right = tile_info->mi_col_end * MI_SIZE;
- r.top = tile_info->mi_row_start * MI_SIZE;
- r.bottom = tile_info->mi_row_end * MI_SIZE;
-
- // If upscaling is enabled, the tile limits need scaling to match the
- // upscaled frame where the restoration units live. To do this, scale up the
- // top-left and bottom-right of the tile.
- if (av1_superres_scaled(cm)) {
- av1_calculate_unscaled_superres_size(&r.left, &r.top,
- cm->superres_scale_denominator);
- av1_calculate_unscaled_superres_size(&r.right, &r.bottom,
- cm->superres_scale_denominator);
- }
-
- const int frame_w = cm->superres_upscaled_width;
- const int frame_h = cm->superres_upscaled_height;
-
- // Make sure we don't fall off the bottom-right of the frame.
- r.right = AOMMIN(r.right, frame_w);
- r.bottom = AOMMIN(r.bottom, frame_h);
-
- // Convert to coordinates in the appropriate plane
- const int ss_x = is_uv && cm->seq_params->subsampling_x;
- const int ss_y = is_uv && cm->seq_params->subsampling_y;
-
- r.left = ROUND_POWER_OF_TWO(r.left, ss_x);
- r.right = ROUND_POWER_OF_TWO(r.right, ss_x);
- r.top = ROUND_POWER_OF_TWO(r.top, ss_y);
- r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y);
-
- return r;
-}
-
-void av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) {
+// Section 7.3.1 of the AV1 spec says, on pages 200-201:
+// It is a requirement of bitstream conformance that the following conditions
+// are met:
+// ...
+// * TileHeight is equal to (use_128x128_superblock ? 128 : 64) for all
+// tiles (i.e. the tile is exactly one superblock high)
+// * TileWidth is identical for all tiles and is an integer multiple of
+// TileHeight (i.e. the tile is an integer number of superblocks wide)
+// ...
+bool av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) {
const CommonTileParams *const tiles = &cm->tiles;
if (tiles->uniform_spacing) {
*w = tiles->width;
@@ -226,7 +196,10 @@ void av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) {
const int tile_width_sb =
tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
const int tile_w = tile_width_sb * cm->seq_params->mib_size;
- assert(i == 0 || tile_w == *w); // ensure all tiles have same dimension
+ // ensure all tiles have same dimension
+ if (i != 0 && tile_w != *w) {
+ return false;
+ }
*w = tile_w;
}
@@ -234,10 +207,14 @@ void av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) {
const int tile_height_sb =
tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
const int tile_h = tile_height_sb * cm->seq_params->mib_size;
- assert(i == 0 || tile_h == *h); // ensure all tiles have same dimension
+ // ensure all tiles have same dimension
+ if (i != 0 && tile_h != *h) {
+ return false;
+ }
*h = tile_h;
}
}
+ return true;
}
int av1_is_min_tile_width_satisfied(const AV1_COMMON *cm) {
diff --git a/third_party/aom/av1/common/tile_common.h b/third_party/aom/av1/common/tile_common.h
index 5383ae940b..12228c9e94 100644
--- a/third_party/aom/av1/common/tile_common.h
+++ b/third_party/aom/av1/common/tile_common.h
@@ -12,13 +12,14 @@
#ifndef AOM_AV1_COMMON_TILE_COMMON_H_
#define AOM_AV1_COMMON_TILE_COMMON_H_
+#include <stdbool.h>
+
+#include "config/aom_config.h"
+
#ifdef __cplusplus
extern "C" {
#endif
-#include "config/aom_config.h"
-#include "aom_dsp/rect.h"
-
struct AV1Common;
struct SequenceHeader;
struct CommonTileParams;
@@ -43,10 +44,6 @@ void av1_tile_set_col(TileInfo *tile, const struct AV1Common *cm, int col);
int av1_get_sb_rows_in_tile(const struct AV1Common *cm, const TileInfo *tile);
int av1_get_sb_cols_in_tile(const struct AV1Common *cm, const TileInfo *tile);
-// Return the pixel extents of the given tile
-PixelRect av1_get_tile_rect(const TileInfo *tile_info,
- const struct AV1Common *cm, int is_uv);
-
// Define tile maximum width and area
// There is no maximum height since height is limited by area and width limits
// The minimum tile width or height is fixed at one superblock
@@ -56,7 +53,9 @@ PixelRect av1_get_tile_rect(const TileInfo *tile_info,
#define MAX_TILE_AREA_LEVEL_7_AND_ABOVE (4096 * 4608)
#endif
-void av1_get_uniform_tile_size(const struct AV1Common *cm, int *w, int *h);
+// Gets the width and height (in units of MI_SIZE) of the tiles in a tile list.
+// Returns true on success, false on failure.
+bool av1_get_uniform_tile_size(const struct AV1Common *cm, int *w, int *h);
void av1_get_tile_limits(struct AV1Common *const cm);
void av1_calculate_tile_cols(const struct SequenceHeader *const seq_params,
int cm_mi_rows, int cm_mi_cols,
diff --git a/third_party/aom/av1/common/x86/cdef_block_sse2.c b/third_party/aom/av1/common/x86/cdef_block_sse2.c
deleted file mode 100644
index 5ab7ffa2ff..0000000000
--- a/third_party/aom/av1/common/x86/cdef_block_sse2.c
+++ /dev/null
@@ -1,40 +0,0 @@
-/*
- * Copyright (c) 2016, Alliance for Open Media. All rights reserved
- *
- * This source code is subject to the terms of the BSD 2 Clause License and
- * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
- * was not distributed with this source code in the LICENSE file, you can
- * obtain it at www.aomedia.org/license/software. If the Alliance for Open
- * Media Patent License 1.0 was not distributed with this source code in the
- * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
- */
-
-#include "aom_dsp/aom_simd.h"
-#define SIMD_FUNC(name) name##_sse2
-#include "av1/common/cdef_block_simd.h"
-
-void cdef_find_dir_dual_sse2(const uint16_t *img1, const uint16_t *img2,
- int stride, int32_t *var_out_1st,
- int32_t *var_out_2nd, int coeff_shift,
- int *out_dir_1st_8x8, int *out_dir_2nd_8x8) {
- // Process first 8x8.
- *out_dir_1st_8x8 = cdef_find_dir(img1, stride, var_out_1st, coeff_shift);
-
- // Process second 8x8.
- *out_dir_2nd_8x8 = cdef_find_dir(img2, stride, var_out_2nd, coeff_shift);
-}
-
-void cdef_copy_rect8_8bit_to_16bit_sse2(uint16_t *dst, int dstride,
- const uint8_t *src, int sstride,
- int width, int height) {
- int j = 0;
- for (int i = 0; i < height; i++) {
- for (j = 0; j < (width & ~0x7); j += 8) {
- v64 row = v64_load_unaligned(&src[i * sstride + j]);
- v128_store_unaligned(&dst[i * dstride + j], v128_unpack_u8_s16(row));
- }
- for (; j < width; j++) {
- dst[i * dstride + j] = src[i * sstride + j];
- }
- }
-}
diff --git a/third_party/aom/av1/common/x86/cdef_block_ssse3.c b/third_party/aom/av1/common/x86/cdef_block_ssse3.c
index 0fb36eb6e0..14eb6c9e31 100644
--- a/third_party/aom/av1/common/x86/cdef_block_ssse3.c
+++ b/third_party/aom/av1/common/x86/cdef_block_ssse3.c
@@ -9,6 +9,17 @@
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
+// Include SSSE3 CDEF code only for 32-bit x86, to support Valgrind.
+// For normal use, we require SSE4.1, so cdef_*_sse4_1 will be used instead of
+// these functions. However, 32-bit Valgrind does not support SSE4.1, so we
+// include a fallback to SSSE3 to improve performance
+
+#include "config/aom_config.h"
+
+#if !AOM_ARCH_X86
+#error "cdef_block_ssse3.c is included for compatibility with 32-bit x86 only"
+#endif // !AOM_ARCH_X86
+
#include "aom_dsp/aom_simd.h"
#define SIMD_FUNC(name) name##_ssse3
#include "av1/common/cdef_block_simd.h"
diff --git a/third_party/aom/av1/common/x86/convolve_2d_avx2.c b/third_party/aom/av1/common/x86/convolve_2d_avx2.c
index 1b39a0a8d5..d4c1169cc3 100644
--- a/third_party/aom/av1/common/x86/convolve_2d_avx2.c
+++ b/third_party/aom/av1/common/x86/convolve_2d_avx2.c
@@ -21,13 +21,11 @@
#include "av1/common/convolve.h"
-void av1_convolve_2d_sr_general_avx2(const uint8_t *src, int src_stride,
- uint8_t *dst, int dst_stride, int w, int h,
- const InterpFilterParams *filter_params_x,
- const InterpFilterParams *filter_params_y,
- const int subpel_x_qn,
- const int subpel_y_qn,
- ConvolveParams *conv_params) {
+static void convolve_2d_sr_general_avx2(
+ const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
+ int h, const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y, const int subpel_x_qn,
+ const int subpel_y_qn, ConvolveParams *conv_params) {
if (filter_params_x->taps > 8) {
const int bd = 8;
int im_stride = 8, i;
@@ -150,9 +148,9 @@ void av1_convolve_2d_sr_avx2(
const bool use_general = (tap_x == 12 || tap_y == 12);
if (use_general) {
- av1_convolve_2d_sr_general_avx2(src, src_stride, dst, dst_stride, w, h,
- filter_params_x, filter_params_y,
- subpel_x_q4, subpel_y_q4, conv_params);
+ convolve_2d_sr_general_avx2(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, filter_params_y, subpel_x_q4,
+ subpel_y_q4, conv_params);
} else {
av1_convolve_2d_sr_specialized_avx2(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y,
diff --git a/third_party/aom/av1/common/x86/convolve_2d_sse2.c b/third_party/aom/av1/common/x86/convolve_2d_sse2.c
index 1b85f37294..68971eacc1 100644
--- a/third_party/aom/av1/common/x86/convolve_2d_sse2.c
+++ b/third_party/aom/av1/common/x86/convolve_2d_sse2.c
@@ -19,12 +19,11 @@
#include "aom_dsp/x86/convolve_common_intrin.h"
#include "av1/common/convolve.h"
-void av1_convolve_2d_sr_12tap_sse2(const uint8_t *src, int src_stride,
- uint8_t *dst, int dst_stride, int w, int h,
- const InterpFilterParams *filter_params_x,
- const InterpFilterParams *filter_params_y,
- const int subpel_x_qn, const int subpel_y_qn,
- ConvolveParams *conv_params) {
+static void convolve_2d_sr_12tap_sse2(
+ const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
+ int h, const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y, const int subpel_x_qn,
+ const int subpel_y_qn, ConvolveParams *conv_params) {
const int bd = 8;
DECLARE_ALIGNED(16, int16_t,
@@ -231,9 +230,9 @@ void av1_convolve_2d_sr_sse2(const uint8_t *src, int src_stride, uint8_t *dst,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params);
} else {
- av1_convolve_2d_sr_12tap_sse2(src, src_stride, dst, dst_stride, w, h,
- filter_params_x, filter_params_y,
- subpel_x_qn, subpel_y_qn, conv_params);
+ convolve_2d_sr_12tap_sse2(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, filter_params_y, subpel_x_qn,
+ subpel_y_qn, conv_params);
}
} else {
const int bd = 8;
diff --git a/third_party/aom/av1/common/x86/convolve_sse2.c b/third_party/aom/av1/common/x86/convolve_sse2.c
index 012e75c1ae..6383567a48 100644
--- a/third_party/aom/av1/common/x86/convolve_sse2.c
+++ b/third_party/aom/av1/common/x86/convolve_sse2.c
@@ -75,10 +75,10 @@ static INLINE __m128i convolve_hi_y(const __m128i *const s,
return convolve(ss, coeffs);
}
-void av1_convolve_y_sr_12tap_sse2(const uint8_t *src, int src_stride,
- uint8_t *dst, int dst_stride, int w, int h,
- const InterpFilterParams *filter_params_y,
- int subpel_y_qn) {
+static void convolve_y_sr_12tap_sse2(const uint8_t *src, int src_stride,
+ uint8_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_y,
+ int subpel_y_qn) {
const int fo_vert = filter_params_y->taps / 2 - 1;
const uint8_t *src_ptr = src - fo_vert * src_stride;
const __m128i round_const = _mm_set1_epi32((1 << FILTER_BITS) >> 1);
@@ -185,8 +185,8 @@ void av1_convolve_y_sr_sse2(const uint8_t *src, int src_stride, uint8_t *dst,
av1_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn);
} else {
- av1_convolve_y_sr_12tap_sse2(src, src_stride, dst, dst_stride, w, h,
- filter_params_y, subpel_y_qn);
+ convolve_y_sr_12tap_sse2(src, src_stride, dst, dst_stride, w, h,
+ filter_params_y, subpel_y_qn);
}
} else {
const int fo_vert = filter_params_y->taps / 2 - 1;
@@ -337,11 +337,11 @@ void av1_convolve_y_sr_sse2(const uint8_t *src, int src_stride, uint8_t *dst,
}
}
-void av1_convolve_x_sr_12tap_sse2(const uint8_t *src, int src_stride,
- uint8_t *dst, int dst_stride, int w, int h,
- const InterpFilterParams *filter_params_x,
- int subpel_x_qn,
- ConvolveParams *conv_params) {
+static void convolve_x_sr_12tap_sse2(const uint8_t *src, int src_stride,
+ uint8_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_x,
+ int subpel_x_qn,
+ ConvolveParams *conv_params) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - fo_horiz;
const int bits = FILTER_BITS - conv_params->round_0;
@@ -402,8 +402,8 @@ void av1_convolve_x_sr_sse2(const uint8_t *src, int src_stride, uint8_t *dst,
av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params);
} else {
- av1_convolve_x_sr_12tap_sse2(src, src_stride, dst, dst_stride, w, h,
- filter_params_x, subpel_x_qn, conv_params);
+ convolve_x_sr_12tap_sse2(src, src_stride, dst, dst_stride, w, h,
+ filter_params_x, subpel_x_qn, conv_params);
}
} else {
const int fo_horiz = filter_params_x->taps / 2 - 1;
diff --git a/third_party/aom/av1/common/x86/jnt_convolve_sse2.c b/third_party/aom/av1/common/x86/jnt_convolve_sse2.c
index 8c5d9918fb..d5d2db7455 100644
--- a/third_party/aom/av1/common/x86/jnt_convolve_sse2.c
+++ b/third_party/aom/av1/common/x86/jnt_convolve_sse2.c
@@ -375,232 +375,3 @@ void av1_dist_wtd_convolve_y_sse2(const uint8_t *src, int src_stride,
} while (j < w);
}
}
-
-void av1_dist_wtd_convolve_2d_sse2(const uint8_t *src, int src_stride,
- uint8_t *dst0, int dst_stride0, int w, int h,
- const InterpFilterParams *filter_params_x,
- const InterpFilterParams *filter_params_y,
- const int subpel_x_qn, const int subpel_y_qn,
- ConvolveParams *conv_params) {
- CONV_BUF_TYPE *dst = conv_params->dst;
- int dst_stride = conv_params->dst_stride;
- const int bd = 8;
-
- DECLARE_ALIGNED(16, int16_t,
- im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]);
- int im_h = h + filter_params_y->taps - 1;
- int im_stride = MAX_SB_SIZE;
- int i, j;
- const int fo_vert = filter_params_y->taps / 2 - 1;
- const int fo_horiz = filter_params_x->taps / 2 - 1;
- const int do_average = conv_params->do_average;
- const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg;
- const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz;
-
- const __m128i zero = _mm_setzero_si128();
-
- const int w0 = conv_params->fwd_offset;
- const int w1 = conv_params->bck_offset;
- const __m128i wt0 = _mm_set1_epi16(w0);
- const __m128i wt1 = _mm_set1_epi16(w1);
- const __m128i wt = _mm_unpacklo_epi16(wt0, wt1);
-
- const int offset_0 =
- bd + 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
- const int offset = (1 << offset_0) + (1 << (offset_0 - 1));
- const __m128i offset_const = _mm_set1_epi16(offset);
- const int rounding_shift =
- 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
- const __m128i rounding_const = _mm_set1_epi16((1 << rounding_shift) >> 1);
-
- /* Horizontal filter */
- {
- const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
- filter_params_x, subpel_x_qn & SUBPEL_MASK);
- const __m128i coeffs_x = _mm_loadu_si128((__m128i *)x_filter);
-
- // coeffs 0 1 0 1 2 3 2 3
- const __m128i tmp_0 = _mm_unpacklo_epi32(coeffs_x, coeffs_x);
- // coeffs 4 5 4 5 6 7 6 7
- const __m128i tmp_1 = _mm_unpackhi_epi32(coeffs_x, coeffs_x);
-
- // coeffs 0 1 0 1 0 1 0 1
- const __m128i coeff_01 = _mm_unpacklo_epi64(tmp_0, tmp_0);
- // coeffs 2 3 2 3 2 3 2 3
- const __m128i coeff_23 = _mm_unpackhi_epi64(tmp_0, tmp_0);
- // coeffs 4 5 4 5 4 5 4 5
- const __m128i coeff_45 = _mm_unpacklo_epi64(tmp_1, tmp_1);
- // coeffs 6 7 6 7 6 7 6 7
- const __m128i coeff_67 = _mm_unpackhi_epi64(tmp_1, tmp_1);
-
- const __m128i round_const = _mm_set1_epi32(
- ((1 << conv_params->round_0) >> 1) + (1 << (bd + FILTER_BITS - 1)));
- const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_0);
-
- for (i = 0; i < im_h; ++i) {
- for (j = 0; j < w; j += 8) {
- __m128i temp_lo, temp_hi;
- const __m128i data =
- _mm_loadu_si128((__m128i *)&src_ptr[i * src_stride + j]);
-
- const __m128i src_lo = _mm_unpacklo_epi8(data, zero);
- const __m128i src_hi = _mm_unpackhi_epi8(data, zero);
-
- // Filter even-index pixels
- const __m128i res_0 = _mm_madd_epi16(src_lo, coeff_01);
- temp_lo = _mm_srli_si128(src_lo, 4);
- temp_hi = _mm_slli_si128(src_hi, 12);
- const __m128i src_2 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_2 = _mm_madd_epi16(src_2, coeff_23);
- temp_lo = _mm_srli_si128(src_lo, 8);
- temp_hi = _mm_slli_si128(src_hi, 8);
- const __m128i src_4 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_4 = _mm_madd_epi16(src_4, coeff_45);
- temp_lo = _mm_srli_si128(src_lo, 12);
- temp_hi = _mm_slli_si128(src_hi, 4);
- const __m128i src_6 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_6 = _mm_madd_epi16(src_6, coeff_67);
-
- __m128i res_even = _mm_add_epi32(_mm_add_epi32(res_0, res_4),
- _mm_add_epi32(res_2, res_6));
- res_even =
- _mm_sra_epi32(_mm_add_epi32(res_even, round_const), round_shift);
-
- // Filter odd-index pixels
- temp_lo = _mm_srli_si128(src_lo, 2);
- temp_hi = _mm_slli_si128(src_hi, 14);
- const __m128i src_1 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_1 = _mm_madd_epi16(src_1, coeff_01);
- temp_lo = _mm_srli_si128(src_lo, 6);
- temp_hi = _mm_slli_si128(src_hi, 10);
- const __m128i src_3 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_3 = _mm_madd_epi16(src_3, coeff_23);
- temp_lo = _mm_srli_si128(src_lo, 10);
- temp_hi = _mm_slli_si128(src_hi, 6);
- const __m128i src_5 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_5 = _mm_madd_epi16(src_5, coeff_45);
- temp_lo = _mm_srli_si128(src_lo, 14);
- temp_hi = _mm_slli_si128(src_hi, 2);
- const __m128i src_7 = _mm_or_si128(temp_hi, temp_lo);
- const __m128i res_7 = _mm_madd_epi16(src_7, coeff_67);
-
- __m128i res_odd = _mm_add_epi32(_mm_add_epi32(res_1, res_5),
- _mm_add_epi32(res_3, res_7));
- res_odd =
- _mm_sra_epi32(_mm_add_epi32(res_odd, round_const), round_shift);
-
- // Pack in the column order 0, 2, 4, 6, 1, 3, 5, 7
- __m128i res = _mm_packs_epi32(res_even, res_odd);
- _mm_store_si128((__m128i *)&im_block[i * im_stride + j], res);
- }
- }
- }
-
- /* Vertical filter */
- {
- const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
- filter_params_y, subpel_y_qn & SUBPEL_MASK);
- const __m128i coeffs_y = _mm_loadu_si128((__m128i *)y_filter);
-
- // coeffs 0 1 0 1 2 3 2 3
- const __m128i tmp_0 = _mm_unpacklo_epi32(coeffs_y, coeffs_y);
- // coeffs 4 5 4 5 6 7 6 7
- const __m128i tmp_1 = _mm_unpackhi_epi32(coeffs_y, coeffs_y);
-
- // coeffs 0 1 0 1 0 1 0 1
- const __m128i coeff_01 = _mm_unpacklo_epi64(tmp_0, tmp_0);
- // coeffs 2 3 2 3 2 3 2 3
- const __m128i coeff_23 = _mm_unpackhi_epi64(tmp_0, tmp_0);
- // coeffs 4 5 4 5 4 5 4 5
- const __m128i coeff_45 = _mm_unpacklo_epi64(tmp_1, tmp_1);
- // coeffs 6 7 6 7 6 7 6 7
- const __m128i coeff_67 = _mm_unpackhi_epi64(tmp_1, tmp_1);
-
- const __m128i round_const = _mm_set1_epi32(
- ((1 << conv_params->round_1) >> 1) -
- (1 << (bd + 2 * FILTER_BITS - conv_params->round_0 - 1)));
- const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1);
-
- for (i = 0; i < h; ++i) {
- for (j = 0; j < w; j += 8) {
- // Filter even-index pixels
- const int16_t *data = &im_block[i * im_stride + j];
- const __m128i src_0 =
- _mm_unpacklo_epi16(*(__m128i *)(data + 0 * im_stride),
- *(__m128i *)(data + 1 * im_stride));
- const __m128i src_2 =
- _mm_unpacklo_epi16(*(__m128i *)(data + 2 * im_stride),
- *(__m128i *)(data + 3 * im_stride));
- const __m128i src_4 =
- _mm_unpacklo_epi16(*(__m128i *)(data + 4 * im_stride),
- *(__m128i *)(data + 5 * im_stride));
- const __m128i src_6 =
- _mm_unpacklo_epi16(*(__m128i *)(data + 6 * im_stride),
- *(__m128i *)(data + 7 * im_stride));
-
- const __m128i res_0 = _mm_madd_epi16(src_0, coeff_01);
- const __m128i res_2 = _mm_madd_epi16(src_2, coeff_23);
- const __m128i res_4 = _mm_madd_epi16(src_4, coeff_45);
- const __m128i res_6 = _mm_madd_epi16(src_6, coeff_67);
-
- const __m128i res_even = _mm_add_epi32(_mm_add_epi32(res_0, res_2),
- _mm_add_epi32(res_4, res_6));
-
- // Filter odd-index pixels
- const __m128i src_1 =
- _mm_unpackhi_epi16(*(__m128i *)(data + 0 * im_stride),
- *(__m128i *)(data + 1 * im_stride));
- const __m128i src_3 =
- _mm_unpackhi_epi16(*(__m128i *)(data + 2 * im_stride),
- *(__m128i *)(data + 3 * im_stride));
- const __m128i src_5 =
- _mm_unpackhi_epi16(*(__m128i *)(data + 4 * im_stride),
- *(__m128i *)(data + 5 * im_stride));
- const __m128i src_7 =
- _mm_unpackhi_epi16(*(__m128i *)(data + 6 * im_stride),
- *(__m128i *)(data + 7 * im_stride));
-
- const __m128i res_1 = _mm_madd_epi16(src_1, coeff_01);
- const __m128i res_3 = _mm_madd_epi16(src_3, coeff_23);
- const __m128i res_5 = _mm_madd_epi16(src_5, coeff_45);
- const __m128i res_7 = _mm_madd_epi16(src_7, coeff_67);
-
- const __m128i res_odd = _mm_add_epi32(_mm_add_epi32(res_1, res_3),
- _mm_add_epi32(res_5, res_7));
-
- // Rearrange pixels back into the order 0 ... 7
- const __m128i res_lo = _mm_unpacklo_epi32(res_even, res_odd);
- const __m128i res_hi = _mm_unpackhi_epi32(res_even, res_odd);
-
- const __m128i res_lo_round =
- _mm_sra_epi32(_mm_add_epi32(res_lo, round_const), round_shift);
- const __m128i res_hi_round =
- _mm_sra_epi32(_mm_add_epi32(res_hi, round_const), round_shift);
-
- const __m128i res_16b = _mm_packs_epi32(res_lo_round, res_hi_round);
- const __m128i res_unsigned = _mm_add_epi16(res_16b, offset_const);
-
- // Accumulate values into the destination buffer
- if (do_average) {
- const __m128i data_ref_0 =
- _mm_loadu_si128((__m128i *)(&dst[i * dst_stride + j]));
-
- const __m128i comp_avg_res =
- comp_avg(&data_ref_0, &res_unsigned, &wt, use_dist_wtd_comp_avg);
-
- const __m128i round_result = convolve_rounding(
- &comp_avg_res, &offset_const, &rounding_const, rounding_shift);
-
- const __m128i res_8 = _mm_packus_epi16(round_result, round_result);
-
- if (w > 4)
- _mm_storel_epi64((__m128i *)(&dst0[i * dst_stride0 + j]), res_8);
- else
- *(int *)(&dst0[i * dst_stride0 + j]) = _mm_cvtsi128_si32(res_8);
- } else {
- _mm_store_si128((__m128i *)(&dst[i * dst_stride + j]), res_unsigned);
- }
- }
- }
- }
-}
diff --git a/third_party/aom/av1/decoder/decodeframe.c b/third_party/aom/av1/decoder/decodeframe.c
index bb09347e1c..c027308ff3 100644
--- a/third_party/aom/av1/decoder/decodeframe.c
+++ b/third_party/aom/av1/decoder/decodeframe.c
@@ -14,20 +14,23 @@
#include <stddef.h>
#include "config/aom_config.h"
-#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
-#include "config/av1_rtcd.h"
#include "aom/aom_codec.h"
+#include "aom/aom_image.h"
+#include "aom/internal/aom_codec_internal.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_reader.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
+#include "aom_dsp/txfm_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
+#include "aom_scale/yv12config.h"
+#include "aom_util/aom_pthread.h"
#include "aom_util/aom_thread.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
@@ -35,33 +38,41 @@
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/alloccommon.h"
+#include "av1/common/av1_common_int.h"
+#include "av1/common/blockd.h"
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
-#if CONFIG_INSPECTION
-#include "av1/decoder/inspection.h"
-#endif
+#include "av1/common/common_data.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
+#include "av1/common/enums.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/idct.h"
+#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
+#include "av1/common/obmc.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/resize.h"
+#include "av1/common/restoration.h"
+#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
-#include "av1/common/obmc.h"
+
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodetxb.h"
#include "av1/decoder/detokenize.h"
+#if CONFIG_INSPECTION
+#include "av1/decoder/inspection.h"
+#endif
#define ACCT_STR __func__
@@ -1935,8 +1946,8 @@ static AOM_INLINE void setup_buffer_pool(AV1_COMMON *cm) {
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment,
- &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, 0,
- 0)) {
+ &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv,
+ false, 0)) {
unlock_buffer_pool(pool);
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
@@ -2293,7 +2304,11 @@ static const uint8_t *get_ls_tile_buffers(
const int tile_col_size_bytes = pbi->tile_col_size_bytes;
const int tile_size_bytes = pbi->tile_size_bytes;
int tile_width, tile_height;
- av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
+ if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
+ aom_internal_error(
+ &pbi->error, AOM_CODEC_CORRUPT_FRAME,
+ "Not all the tiles in the tile list have the same size.");
+ }
const int tile_copy_mode =
((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0;
// Read tile column sizes for all columns (we need the last tile buffer)
@@ -2302,8 +2317,16 @@ static const uint8_t *get_ls_tile_buffers(
size_t tile_col_size;
if (!is_last) {
+ if (tile_col_size_bytes > data_end - data) {
+ aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
+ "Not enough data to read tile_col_size");
+ }
tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
data += tile_col_size_bytes;
+ if (tile_col_size > (size_t)(data_end - data)) {
+ aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
+ "tile_col_data_end[%d] is out of bound", c);
+ }
tile_col_data_end[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
@@ -3871,8 +3894,8 @@ static AOM_INLINE void read_bitdepth(
#endif
}
-void av1_read_film_grain_params(AV1_COMMON *cm,
- struct aom_read_bit_buffer *rb) {
+static void read_film_grain_params(AV1_COMMON *cm,
+ struct aom_read_bit_buffer *rb) {
aom_film_grain_t *pars = &cm->film_grain_params;
const SequenceHeader *const seq_params = cm->seq_params;
@@ -4040,7 +4063,7 @@ static AOM_INLINE void read_film_grain(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
if (cm->seq_params->film_grain_params_present &&
(cm->show_frame || cm->showable_frame)) {
- av1_read_film_grain_params(cm, rb);
+ read_film_grain_params(cm, rb);
} else {
memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
}
@@ -4768,7 +4791,7 @@ static int read_uncompressed_header(AV1Decoder *pbi,
seq_params->max_frame_height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
AOM_BORDER_IN_PIXELS, features->byte_alignment,
- &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, 0,
+ &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, false,
0)) {
decrease_ref_count(buf, pool);
unlock_buffer_pool(pool);
diff --git a/third_party/aom/av1/decoder/decodemv.h b/third_party/aom/av1/decoder/decodemv.h
index 3d8629c9a5..7e77c030f8 100644
--- a/third_party/aom/av1/decoder/decodemv.h
+++ b/third_party/aom/av1/decoder/decodemv.h
@@ -20,6 +20,8 @@
extern "C" {
#endif
+int av1_neg_deinterleave(int diff, int ref, int max);
+
void av1_read_mode_info(AV1Decoder *const pbi, DecoderCodingBlock *dcb,
aom_reader *r, int x_mis, int y_mis);
diff --git a/third_party/aom/av1/decoder/decoder.c b/third_party/aom/av1/decoder/decoder.c
index 32e94840be..a886ed469c 100644
--- a/third_party/aom/av1/decoder/decoder.c
+++ b/third_party/aom/av1/decoder/decoder.c
@@ -21,6 +21,7 @@
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_scale/aom_scale.h"
+#include "aom_util/aom_pthread.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
diff --git a/third_party/aom/av1/decoder/dthread.h b/third_party/aom/av1/decoder/dthread.h
index f82b9d8ccf..b0f6fda829 100644
--- a/third_party/aom/av1/decoder/dthread.h
+++ b/third_party/aom/av1/decoder/dthread.h
@@ -14,7 +14,6 @@
#include "config/aom_config.h"
-#include "aom_util/aom_thread.h"
#include "aom/internal/aom_codec_internal.h"
#ifdef __cplusplus
diff --git a/third_party/aom/av1/decoder/obu.c b/third_party/aom/av1/decoder/obu.c
index 0e31ce9404..e0b2d87c32 100644
--- a/third_party/aom/av1/decoder/obu.c
+++ b/third_party/aom/av1/decoder/obu.c
@@ -367,16 +367,13 @@ static uint32_t read_one_tile_group_obu(
return header_size + tg_payload_size;
}
-static void alloc_tile_list_buffer(AV1Decoder *pbi) {
+static void alloc_tile_list_buffer(AV1Decoder *pbi, int tile_width_in_pixels,
+ int tile_height_in_pixels) {
// The resolution of the output frame is read out from the bitstream. The data
// are stored in the order of Y plane, U plane and V plane. As an example, for
// image format 4:2:0, the output frame of U plane and V plane is 1/4 of the
// output frame.
AV1_COMMON *const cm = &pbi->common;
- int tile_width, tile_height;
- av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
- const int tile_width_in_pixels = tile_width * MI_SIZE;
- const int tile_height_in_pixels = tile_height * MI_SIZE;
const int output_frame_width =
(pbi->output_frame_width_in_tiles_minus_1 + 1) * tile_width_in_pixels;
const int output_frame_height =
@@ -396,7 +393,7 @@ static void alloc_tile_list_buffer(AV1Decoder *pbi) {
cm->seq_params->subsampling_y,
(cm->seq_params->use_highbitdepth &&
(cm->seq_params->bit_depth > AOM_BITS_8)),
- 0, cm->features.byte_alignment, 0, 0))
+ 0, cm->features.byte_alignment, false, 0))
aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate the tile list output buffer");
}
@@ -424,13 +421,10 @@ static void yv12_tile_copy(const YV12_BUFFER_CONFIG *src, int hstart1,
return;
}
-static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi,
- int tile_idx) {
+static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi, int tile_idx,
+ int tile_width_in_pixels,
+ int tile_height_in_pixels) {
AV1_COMMON *const cm = &pbi->common;
- int tile_width, tile_height;
- av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
- const int tile_width_in_pixels = tile_width * MI_SIZE;
- const int tile_height_in_pixels = tile_height * MI_SIZE;
const int ssy = cm->seq_params->subsampling_y;
const int ssx = cm->seq_params->subsampling_x;
const int num_planes = av1_num_planes(cm);
@@ -501,13 +495,31 @@ static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi,
pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8);
pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8);
pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16);
+
+ // The output frame is used to store the decoded tile list. The decoded tile
+ // list has to fit into 1 output frame.
+ if ((pbi->tile_count_minus_1 + 1) >
+ (pbi->output_frame_width_in_tiles_minus_1 + 1) *
+ (pbi->output_frame_height_in_tiles_minus_1 + 1)) {
+ pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME;
+ return 0;
+ }
+
if (pbi->tile_count_minus_1 > MAX_TILES - 1) {
pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return 0;
}
+ int tile_width, tile_height;
+ if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
+ pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME;
+ return 0;
+ }
+ const int tile_width_in_pixels = tile_width * MI_SIZE;
+ const int tile_height_in_pixels = tile_height * MI_SIZE;
+
// Allocate output frame buffer for the tile list.
- alloc_tile_list_buffer(pbi);
+ alloc_tile_list_buffer(pbi, tile_width_in_pixels, tile_height_in_pixels);
uint32_t tile_list_info_bytes = 4;
tile_list_payload_size += tile_list_info_bytes;
@@ -558,7 +570,8 @@ static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi,
assert(data <= data_end);
// Copy the decoded tile to the tile list output buffer.
- copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx);
+ copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx, tile_width_in_pixels,
+ tile_height_in_pixels);
tile_idx++;
}
diff --git a/third_party/aom/av1/encoder/allintra_vis.c b/third_party/aom/av1/encoder/allintra_vis.c
index 8dcef5fc85..87becb80ef 100644
--- a/third_party/aom/av1/encoder/allintra_vis.c
+++ b/third_party/aom/av1/encoder/allintra_vis.c
@@ -13,6 +13,8 @@
#include "config/aom_config.h"
+#include "aom_util/aom_pthread.h"
+
#if CONFIG_TFLITE
#include "tensorflow/lite/c/c_api.h"
#include "av1/encoder/deltaq4_model.c"
@@ -588,7 +590,7 @@ void av1_set_mb_wiener_variance(AV1_COMP *cpi) {
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
- NULL, cpi->image_pyramid_levels, 0))
+ NULL, cpi->alloc_pyramid, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
av1_alloc_mb_wiener_var_pred_buf(&cpi->common, &cpi->td);
diff --git a/third_party/aom/av1/encoder/aq_cyclicrefresh.c b/third_party/aom/av1/encoder/aq_cyclicrefresh.c
index f48ff11e51..1aa8dde323 100644
--- a/third_party/aom/av1/encoder/aq_cyclicrefresh.c
+++ b/third_party/aom/av1/encoder/aq_cyclicrefresh.c
@@ -15,6 +15,7 @@
#include "av1/common/pred_common.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/aq_cyclicrefresh.h"
+#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
@@ -295,6 +296,7 @@ static void cyclic_refresh_update_map(AV1_COMP *const cpi) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
unsigned char *const seg_map = cpi->enc_seg.map;
+ unsigned char *const active_map_4x4 = cpi->active_map.map;
int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
int xmis, ymis, x, y;
uint64_t sb_sad = 0;
@@ -302,7 +304,12 @@ static void cyclic_refresh_update_map(AV1_COMP *const cpi) {
uint64_t thresh_sad = INT64_MAX;
const int mi_rows = mi_params->mi_rows, mi_cols = mi_params->mi_cols;
const int mi_stride = mi_cols;
- memset(seg_map, CR_SEGMENT_ID_BASE, mi_rows * mi_cols);
+ // Don't set seg_map to 0 if active_maps is enabled. Active_maps will set
+ // seg_map to either 7 or 0 (AM_SEGMENT_ID_INACTIVE/ACTIVE), and cyclic
+ // refresh set below (segment 1 or 2) will only be set for ACTIVE blocks.
+ if (!cpi->active_map.enabled) {
+ memset(seg_map, CR_SEGMENT_ID_BASE, mi_rows * mi_cols);
+ }
sb_cols = (mi_cols + cm->seq_params->mib_size - 1) / cm->seq_params->mib_size;
sb_rows = (mi_rows + cm->seq_params->mib_size - 1) / cm->seq_params->mib_size;
sbs_in_frame = sb_cols * sb_rows;
@@ -357,7 +364,10 @@ static void cyclic_refresh_update_map(AV1_COMP *const cpi) {
// for possible boost/refresh (segment 1). The segment id may get
// reset to 0 later if block gets coded anything other than low motion.
// If the block_sad (sb_sad) is very low label it for refresh anyway.
- if (cr->map[bl_index2] == 0 || sb_sad < thresh_sad_low) {
+ // If active_maps is enabled, only allow for setting on ACTIVE blocks.
+ if ((cr->map[bl_index2] == 0 || sb_sad < thresh_sad_low) &&
+ (!cpi->active_map.enabled ||
+ active_map_4x4[bl_index2] == AM_SEGMENT_ID_ACTIVE)) {
sum_map += 4;
} else if (cr->map[bl_index2] < 0) {
cr->map[bl_index2]++;
@@ -380,7 +390,8 @@ static void cyclic_refresh_update_map(AV1_COMP *const cpi) {
cr->sb_index = i;
if (cr->target_num_seg_blocks == 0) {
// Disable segmentation, seg_map is already set to 0 above.
- av1_disable_segmentation(&cm->seg);
+ // Don't disable if active_map is being used.
+ if (!cpi->active_map.enabled) av1_disable_segmentation(&cm->seg);
}
}
@@ -423,8 +434,6 @@ void av1_cyclic_refresh_update_parameters(AV1_COMP *const cpi) {
// function av1_cyclic_reset_segment_skip(). Skipping over
// 4x4 will therefore have small bdrate loss (~0.2%), so
// we use it only for speed > 9 for now.
- // Also if loop-filter deltas is applied via segment, then
- // we need to set cr->skip_over4x4 = 1.
cr->skip_over4x4 = (cpi->oxcf.speed > 9) ? 1 : 0;
// should we enable cyclic refresh on this frame.
@@ -450,6 +459,15 @@ void av1_cyclic_refresh_update_parameters(AV1_COMP *const cpi) {
else
cr->percent_refresh = 10 + cr->percent_refresh_adjustment;
+ if (cpi->active_map.enabled) {
+ // Scale down the percent_refresh to target the active blocks only.
+ cr->percent_refresh =
+ cr->percent_refresh * (100 - cpi->rc.percent_blocks_inactive) / 100;
+ if (cr->percent_refresh == 0) {
+ cr->apply_cyclic_refresh = 0;
+ }
+ }
+
cr->max_qdelta_perc = 60;
cr->time_for_refresh = 0;
cr->use_block_sad_scene_det =
@@ -543,10 +561,14 @@ void av1_cyclic_refresh_setup(AV1_COMP *const cpi) {
if (resolution_change) av1_cyclic_refresh_reset_resize(cpi);
if (!cr->apply_cyclic_refresh) {
- // Set segmentation map to 0 and disable.
- unsigned char *const seg_map = cpi->enc_seg.map;
- memset(seg_map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
- av1_disable_segmentation(&cm->seg);
+ // Don't disable and set seg_map to 0 if active_maps is enabled, unless
+ // whole frame is set as inactive (since we only apply cyclic_refresh to
+ // active blocks).
+ if (!cpi->active_map.enabled || cpi->rc.percent_blocks_inactive == 100) {
+ unsigned char *const seg_map = cpi->enc_seg.map;
+ memset(seg_map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
+ av1_disable_segmentation(&cm->seg);
+ }
if (frame_is_intra_only(cm) || scene_change_detected ||
cpi->ppi->rtc_ref.bias_recovery_frame) {
cr->sb_index = 0;
@@ -574,9 +596,11 @@ void av1_cyclic_refresh_setup(AV1_COMP *const cpi) {
cr->thresh_rate_sb = INT64_MAX;
}
// Set up segmentation.
- // Clear down the segment map.
av1_enable_segmentation(&cm->seg);
- av1_clearall_segfeatures(seg);
+ if (!cpi->active_map.enabled) {
+ // Clear down the segment map, only if active_maps is not enabled.
+ av1_clearall_segfeatures(seg);
+ }
// Note: setting temporal_update has no effect, as the seg-map coding method
// (temporal or spatial) is determined in
@@ -644,6 +668,10 @@ void av1_cyclic_refresh_reset_resize(AV1_COMP *const cpi) {
int av1_cyclic_refresh_disable_lf_cdef(AV1_COMP *const cpi) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
const int qindex = cpi->common.quant_params.base_qindex;
+ if (cpi->active_map.enabled &&
+ cpi->rc.percent_blocks_inactive >
+ cpi->sf.rt_sf.thresh_active_maps_skip_lf_cdef)
+ return 1;
if (cpi->rc.frames_since_key > 30 && cr->percent_refresh > 0 &&
cr->counter_encode_maxq_scene_change > 300 / cr->percent_refresh &&
cpi->rc.frame_source_sad < 1000 &&
diff --git a/third_party/aom/av1/encoder/arm/neon/av1_error_sve.c b/third_party/aom/av1/encoder/arm/neon/av1_error_sve.c
index 63aad0b785..52803a9838 100644
--- a/third_party/aom/av1/encoder/arm/neon/av1_error_sve.c
+++ b/third_party/aom/av1/encoder/arm/neon/av1_error_sve.c
@@ -14,7 +14,7 @@
#include "config/aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
-#include "aom_dsp/arm/dot_sve.h"
+#include "aom_dsp/arm/aom_neon_sve_bridge.h"
#include "aom_dsp/arm/mem_neon.h"
int64_t av1_block_error_sve(const tran_low_t *coeff, const tran_low_t *dqcoeff,
diff --git a/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c b/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
index 5a52e701a2..919521fec7 100644
--- a/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
+++ b/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
@@ -23,7 +23,15 @@
#define SSE_STRIDE (BW + 4)
// clang-format off
+// Table used to pad the first and last columns and apply the sliding window.
+DECLARE_ALIGNED(16, static const uint8_t, kLoadPad[4][16]) = {
+ { 2, 2, 2, 3, 4, 255, 255, 255, 255, 2, 2, 3, 4, 5, 255, 255 },
+ { 255, 255, 2, 3, 4, 5, 6, 255, 255, 255, 255, 3, 4, 5, 6, 7 },
+ { 0, 1, 2, 3, 4, 255, 255, 255, 255, 1, 2, 3, 4, 5, 255, 255 },
+ { 255, 255, 2, 3, 4, 5, 5, 255, 255, 255, 255, 3, 4, 5, 5, 5 }
+};
+// For columns that don't need to be padded it's just a simple mask.
DECLARE_ALIGNED(16, static const uint8_t, kSlidingWindowMask[]) = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00,
@@ -56,22 +64,6 @@ static INLINE void get_abs_diff(const uint8_t *frame1, const uint32_t stride1,
} while (++i < block_height);
}
-static INLINE uint8x16_t load_and_pad(const uint8_t *src, const uint32_t col,
- const uint32_t block_width) {
- uint8x8_t s = vld1_u8(src);
-
- if (col == 0) {
- const uint8_t lane2 = vget_lane_u8(s, 2);
- s = vset_lane_u8(lane2, s, 0);
- s = vset_lane_u8(lane2, s, 1);
- } else if (col >= block_width - 4) {
- const uint8_t lane5 = vget_lane_u8(s, 5);
- s = vset_lane_u8(lane5, s, 6);
- s = vset_lane_u8(lane5, s, 7);
- }
- return vcombine_u8(s, s);
-}
-
static void apply_temporal_filter(
const uint8_t *frame, const unsigned int stride, const uint32_t block_width,
const uint32_t block_height, const int *subblock_mses,
@@ -84,6 +76,10 @@ static void apply_temporal_filter(
uint32_t acc_5x5_neon[BH][BW];
const uint8x16x2_t vmask = vld1q_u8_x2(kSlidingWindowMask);
+ const uint8x16_t pad_tbl0 = vld1q_u8(kLoadPad[0]);
+ const uint8x16_t pad_tbl1 = vld1q_u8(kLoadPad[1]);
+ const uint8x16_t pad_tbl2 = vld1q_u8(kLoadPad[2]);
+ const uint8x16_t pad_tbl3 = vld1q_u8(kLoadPad[3]);
// Traverse 4 columns at a time - first and last two columns need padding.
for (uint32_t col = 0; col < block_width; col += 4) {
@@ -92,9 +88,18 @@ static void apply_temporal_filter(
// Load, pad (for first and last two columns) and mask 3 rows from the top.
for (int i = 2; i < 5; i++) {
- const uint8x16_t s = load_and_pad(src, col, block_width);
- vsrc[i][0] = vandq_u8(s, vmask.val[0]);
- vsrc[i][1] = vandq_u8(s, vmask.val[1]);
+ uint8x8_t s = vld1_u8(src);
+ uint8x16_t s_dup = vcombine_u8(s, s);
+ if (col == 0) {
+ vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl0);
+ vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl1);
+ } else if (col >= block_width - 4) {
+ vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl2);
+ vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl3);
+ } else {
+ vsrc[i][0] = vandq_u8(s_dup, vmask.val[0]);
+ vsrc[i][1] = vandq_u8(s_dup, vmask.val[1]);
+ }
src += SSE_STRIDE;
}
@@ -130,9 +135,18 @@ static void apply_temporal_filter(
if (row <= block_height - 4) {
// Load next row into the bottom of the sliding window.
- uint8x16_t s = load_and_pad(src, col, block_width);
- vsrc[4][0] = vandq_u8(s, vmask.val[0]);
- vsrc[4][1] = vandq_u8(s, vmask.val[1]);
+ uint8x8_t s = vld1_u8(src);
+ uint8x16_t s_dup = vcombine_u8(s, s);
+ if (col == 0) {
+ vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl0);
+ vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl1);
+ } else if (col >= block_width - 4) {
+ vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl2);
+ vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl3);
+ } else {
+ vsrc[4][0] = vandq_u8(s_dup, vmask.val[0]);
+ vsrc[4][1] = vandq_u8(s_dup, vmask.val[1]);
+ }
src += SSE_STRIDE;
} else {
// Pad the bottom 2 rows.
diff --git a/third_party/aom/av1/encoder/arm/neon/wedge_utils_sve.c b/third_party/aom/av1/encoder/arm/neon/wedge_utils_sve.c
new file mode 100644
index 0000000000..521601a3f3
--- /dev/null
+++ b/third_party/aom/av1/encoder/arm/neon/wedge_utils_sve.c
@@ -0,0 +1,92 @@
+/*
+ * Copyright (c) 2024, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <arm_neon.h>
+#include <assert.h>
+
+#include "aom_dsp/arm/aom_neon_sve_bridge.h"
+#include "aom_dsp/arm/sum_neon.h"
+#include "av1/common/reconinter.h"
+
+uint64_t av1_wedge_sse_from_residuals_sve(const int16_t *r1, const int16_t *d,
+ const uint8_t *m, int N) {
+ assert(N % 64 == 0);
+
+ // Predicate pattern with first 8 elements true.
+ const svbool_t pattern = svptrue_pat_b16(SV_VL8);
+ int64x2_t sse[2] = { vdupq_n_s64(0), vdupq_n_s64(0) };
+
+ int i = 0;
+ do {
+ int32x4_t sum[4];
+ int16x8_t sum_s16[2];
+
+ const int16x8_t r1_l = vld1q_s16(r1 + i);
+ const int16x8_t r1_h = vld1q_s16(r1 + i + 8);
+ const int16x8_t d_l = vld1q_s16(d + i);
+ const int16x8_t d_h = vld1q_s16(d + i + 8);
+
+ // Use a zero-extending load to widen the vector elements.
+ const int16x8_t m_l = svget_neonq_s16(svld1ub_s16(pattern, m + i));
+ const int16x8_t m_h = svget_neonq_s16(svld1ub_s16(pattern, m + i + 8));
+
+ sum[0] = vshll_n_s16(vget_low_s16(r1_l), WEDGE_WEIGHT_BITS);
+ sum[1] = vshll_n_s16(vget_high_s16(r1_l), WEDGE_WEIGHT_BITS);
+ sum[2] = vshll_n_s16(vget_low_s16(r1_h), WEDGE_WEIGHT_BITS);
+ sum[3] = vshll_n_s16(vget_high_s16(r1_h), WEDGE_WEIGHT_BITS);
+
+ sum[0] = vmlal_s16(sum[0], vget_low_s16(m_l), vget_low_s16(d_l));
+ sum[1] = vmlal_s16(sum[1], vget_high_s16(m_l), vget_high_s16(d_l));
+ sum[2] = vmlal_s16(sum[2], vget_low_s16(m_h), vget_low_s16(d_h));
+ sum[3] = vmlal_s16(sum[3], vget_high_s16(m_h), vget_high_s16(d_h));
+
+ sum_s16[0] = vcombine_s16(vqmovn_s32(sum[0]), vqmovn_s32(sum[1]));
+ sum_s16[1] = vcombine_s16(vqmovn_s32(sum[2]), vqmovn_s32(sum[3]));
+
+ sse[0] = aom_sdotq_s16(sse[0], sum_s16[0], sum_s16[0]);
+ sse[1] = aom_sdotq_s16(sse[1], sum_s16[1], sum_s16[1]);
+
+ i += 16;
+ } while (i < N);
+
+ const uint64_t csse =
+ (uint64_t)horizontal_add_s64x2(vaddq_s64(sse[0], sse[1]));
+ return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS);
+}
+
+int8_t av1_wedge_sign_from_residuals_sve(const int16_t *ds, const uint8_t *m,
+ int N, int64_t limit) {
+ assert(N % 16 == 0);
+
+ // Predicate pattern with first 8 elements true.
+ svbool_t pattern = svptrue_pat_b16(SV_VL8);
+ int64x2_t acc_l = vdupq_n_s64(0);
+ int64x2_t acc_h = vdupq_n_s64(0);
+
+ do {
+ const int16x8_t ds_l = vld1q_s16(ds);
+ const int16x8_t ds_h = vld1q_s16(ds + 8);
+
+ // Use a zero-extending load to widen the vector elements.
+ const int16x8_t m_l = svget_neonq_s16(svld1ub_s16(pattern, m));
+ const int16x8_t m_h = svget_neonq_s16(svld1ub_s16(pattern, m + 8));
+
+ acc_l = aom_sdotq_s16(acc_l, ds_l, m_l);
+ acc_h = aom_sdotq_s16(acc_h, ds_h, m_h);
+
+ ds += 16;
+ m += 16;
+ N -= 16;
+ } while (N != 0);
+
+ const int64x2_t sum = vaddq_s64(acc_l, acc_h);
+ return horizontal_add_s64x2(sum) > limit;
+}
diff --git a/third_party/aom/av1/encoder/av1_temporal_denoiser.c b/third_party/aom/av1/encoder/av1_temporal_denoiser.c
index 3012df6311..d4a1625612 100644
--- a/third_party/aom/av1/encoder/av1_temporal_denoiser.c
+++ b/third_party/aom/av1/encoder/av1_temporal_denoiser.c
@@ -489,7 +489,7 @@ static int av1_denoiser_realloc_svc_helper(AV1_COMMON *cm,
&denoiser->running_avg_y[fb_idx], cm->width, cm->height,
cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
@@ -577,7 +577,7 @@ int av1_denoiser_alloc(AV1_COMMON *cm, struct SVC *svc, AV1_DENOISER *denoiser,
fail = aom_alloc_frame_buffer(
&denoiser->running_avg_y[i + denoiser->num_ref_frames * layer],
denoise_width, denoise_height, ssx, ssy, use_highbitdepth, border,
- legacy_byte_alignment, 0, 0);
+ legacy_byte_alignment, false, 0);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
@@ -589,7 +589,7 @@ int av1_denoiser_alloc(AV1_COMMON *cm, struct SVC *svc, AV1_DENOISER *denoiser,
fail = aom_alloc_frame_buffer(
&denoiser->mc_running_avg_y[layer], denoise_width, denoise_height, ssx,
- ssy, use_highbitdepth, border, legacy_byte_alignment, 0, 0);
+ ssy, use_highbitdepth, border, legacy_byte_alignment, false, 0);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
@@ -600,7 +600,7 @@ int av1_denoiser_alloc(AV1_COMMON *cm, struct SVC *svc, AV1_DENOISER *denoiser,
// layer.
fail = aom_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy,
use_highbitdepth, border, legacy_byte_alignment,
- 0, 0);
+ false, 0);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
diff --git a/third_party/aom/av1/encoder/bitstream.c b/third_party/aom/av1/encoder/bitstream.c
index 219784fedf..9981871147 100644
--- a/third_party/aom/av1/encoder/bitstream.c
+++ b/third_party/aom/av1/encoder/bitstream.c
@@ -3391,8 +3391,8 @@ int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
return AOM_CODEC_OK;
}
-size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
- uint8_t *data) {
+static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size,
+ uint8_t *data) {
const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
const size_t move_dst_offset = length_field_size + obu_header_size;
const size_t move_src_offset = obu_header_size;
@@ -3581,7 +3581,7 @@ static void write_large_scale_tile_obu_size(
*total_size += lst_obu->tg_hdr_size;
const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
const size_t length_field_size =
- av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
+ obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
AOM_CODEC_OK)
assert(0);
@@ -3806,7 +3806,7 @@ void av1_write_last_tile_info(
const uint32_t obu_payload_size =
(uint32_t)(*curr_tg_data_size) - obu_header_size;
const size_t length_field_size =
- av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
+ obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
curr_tg_start) != AOM_CODEC_OK) {
assert(0);
@@ -4015,8 +4015,8 @@ static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
// to pack the smaller bitstream of such frames. This function computes the
// number of required number of workers based on setup time overhead and job
// dispatch time overhead for given tiles and available workers.
-int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
- int avail_workers, bool pack_bs_mt_enabled) {
+static int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
+ int avail_workers, bool pack_bs_mt_enabled) {
if (!pack_bs_mt_enabled) return 1;
uint64_t frame_abs_sum_level = 0;
@@ -4141,8 +4141,7 @@ static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
OBU_METADATA, 0, dst);
obu_payload_size =
av1_write_metadata_obu(current_metadata, dst + obu_header_size);
- length_field_size =
- av1_obu_memmove(obu_header_size, obu_payload_size, dst);
+ length_field_size = obu_memmove(obu_header_size, obu_payload_size, dst);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
AOM_CODEC_OK) {
const size_t obu_size = obu_header_size + obu_payload_size;
@@ -4192,7 +4191,7 @@ int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
obu_payload_size =
av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
const size_t length_field_size =
- av1_obu_memmove(obu_header_size, obu_payload_size, data);
+ obu_memmove(obu_header_size, obu_payload_size, data);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
@@ -4217,7 +4216,7 @@ int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
data + obu_header_size, 1);
- length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
+ length_field = obu_memmove(obu_header_size, obu_payload_size, data);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
diff --git a/third_party/aom/av1/encoder/bitstream.h b/third_party/aom/av1/encoder/bitstream.h
index 12e8a630db..d037039593 100644
--- a/third_party/aom/av1/encoder/bitstream.h
+++ b/third_party/aom/av1/encoder/bitstream.h
@@ -21,6 +21,7 @@ extern "C" {
#include "av1/common/enums.h"
#include "av1/encoder/level.h"
#include "aom_dsp/bitwriter.h"
+#include "aom_util/aom_pthread.h"
struct aom_write_bit_buffer;
struct AV1_COMP;
diff --git a/third_party/aom/av1/encoder/block.h b/third_party/aom/av1/encoder/block.h
index 33d2d8c2a0..1baf3f942e 100644
--- a/third_party/aom/av1/encoder/block.h
+++ b/third_party/aom/av1/encoder/block.h
@@ -1348,6 +1348,9 @@ typedef struct macroblock {
//! Motion vector from superblock MV derived from int_pro_motion() in
// the variance_partitioning.
int_mv sb_me_mv;
+ //! Flag to indicate if a fixed partition should be used, only if the
+ // speed feature rt_sf->use_fast_fixed_part is enabled.
+ int sb_force_fixed_part;
//! SSE of the current predictor.
unsigned int pred_sse[REF_FRAMES];
//! Prediction for ML based partition.
diff --git a/third_party/aom/av1/encoder/cnn.c b/third_party/aom/av1/encoder/cnn.c
index 598b362753..b019ace685 100644
--- a/third_party/aom/av1/encoder/cnn.c
+++ b/third_party/aom/av1/encoder/cnn.c
@@ -138,14 +138,16 @@ static bool concat_tensor(const TENSOR *src, TENSOR *dst) {
return true;
}
-int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) {
+#ifndef NDEBUG
+static int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) {
return (t1->width == t2->width && t1->height == t2->height);
}
-int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) {
+static int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) {
return (t1->channels == t2->channels && t1->width == t2->width &&
t1->height == t2->height);
}
+#endif // NDEBUG
void av1_find_cnn_layer_output_size(int in_width, int in_height,
const CNN_LAYER_CONFIG *layer_config,
@@ -189,8 +191,8 @@ void av1_find_cnn_layer_output_size(int in_width, int in_height,
}
}
-void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config,
- int channels_per_branch[]) {
+static void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config,
+ int channels_per_branch[]) {
int branch = layer_config->branch;
const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
diff --git a/third_party/aom/av1/encoder/encode_strategy.c b/third_party/aom/av1/encoder/encode_strategy.c
index 35ca83c3f4..db77dc0e3c 100644
--- a/third_party/aom/av1/encoder/encode_strategy.c
+++ b/third_party/aom/av1/encoder/encode_strategy.c
@@ -712,20 +712,6 @@ int av1_get_refresh_frame_flags(
}
#if !CONFIG_REALTIME_ONLY
-void setup_mi(AV1_COMP *const cpi, YV12_BUFFER_CONFIG *src) {
- AV1_COMMON *const cm = &cpi->common;
- const int num_planes = av1_num_planes(cm);
- MACROBLOCK *const x = &cpi->td.mb;
- MACROBLOCKD *const xd = &x->e_mbd;
-
- av1_setup_src_planes(x, src, 0, 0, num_planes, cm->seq_params->sb_size);
-
- av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
- cm->seq_params->subsampling_y, num_planes);
-
- set_mi_offsets(&cm->mi_params, xd, 0, 0);
-}
-
// Apply temporal filtering to source frames and encode the filtered frame.
// If the current frame does not require filtering, this function is identical
// to av1_encode() except that tpl is not performed.
@@ -819,7 +805,7 @@ static int denoise_and_encode(AV1_COMP *const cpi, uint8_t *const dest,
oxcf->frm_dim_cfg.height, cm->seq_params->subsampling_x,
cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
- NULL, cpi->image_pyramid_levels, 0);
+ NULL, cpi->alloc_pyramid, 0);
if (ret)
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate tf_buf_second_arf");
@@ -923,7 +909,7 @@ static int denoise_and_encode(AV1_COMP *const cpi, uint8_t *const dest,
if (apply_filtering && is_psnr_calc_enabled(cpi)) {
cpi->source = av1_realloc_and_scale_if_required(
cm, source_buffer, &cpi->scaled_source, cm->features.interp_filter, 0,
- false, true, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels);
+ false, true, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
cpi->unscaled_source = source_buffer;
}
#if CONFIG_COLLECT_COMPONENT_TIMING
@@ -1702,8 +1688,7 @@ int av1_encode_strategy(AV1_COMP *const cpi, size_t *const size,
// This is used in rtc temporal filter case. Use true source in the PSNR
// calculation.
- if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf &&
- cpi->common.current_frame.frame_type != KEY_FRAME) {
+ if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf) {
assert(cpi->orig_source.buffer_alloc_sz > 0);
cpi->source = &cpi->orig_source;
}
@@ -1758,9 +1743,9 @@ int av1_encode_strategy(AV1_COMP *const cpi, size_t *const size,
cpi->svc.temporal_layer_id == 0 &&
cpi->unscaled_source->y_width == cpi->svc.source_last_TL0.y_width &&
cpi->unscaled_source->y_height == cpi->svc.source_last_TL0.y_height) {
- aom_yv12_copy_y(cpi->unscaled_source, &cpi->svc.source_last_TL0);
- aom_yv12_copy_u(cpi->unscaled_source, &cpi->svc.source_last_TL0);
- aom_yv12_copy_v(cpi->unscaled_source, &cpi->svc.source_last_TL0);
+ aom_yv12_copy_y(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1);
+ aom_yv12_copy_u(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1);
+ aom_yv12_copy_v(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1);
}
return AOM_CODEC_OK;
diff --git a/third_party/aom/av1/encoder/encodeframe.c b/third_party/aom/av1/encoder/encodeframe.c
index e2213a8355..a9214f77c2 100644
--- a/third_party/aom/av1/encoder/encodeframe.c
+++ b/third_party/aom/av1/encoder/encodeframe.c
@@ -23,7 +23,7 @@
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
-
+#include "aom_util/aom_pthread.h"
#if CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_MISMATCH_DEBUG
@@ -536,8 +536,8 @@ static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td,
#endif
// Set the partition
if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip ||
- (sf->rt_sf.use_fast_fixed_part &&
- x->content_state_sb.source_sad_nonrd < kMedSad)) {
+ (sf->rt_sf.use_fast_fixed_part && x->sb_force_fixed_part == 1 &&
+ !frame_is_intra_only(cm))) {
// set a fixed-size partition
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
BLOCK_SIZE bsize_select = sf->part_sf.fixed_partition_size;
@@ -1054,8 +1054,13 @@ static AOM_INLINE bool is_calc_src_content_needed(AV1_COMP *cpi,
// The threshold is determined based on kLowSad and kHighSad threshold and
// test results.
- const uint64_t thresh_low = 15000;
- const uint64_t thresh_high = 40000;
+ uint64_t thresh_low = 15000;
+ uint64_t thresh_high = 40000;
+
+ if (cpi->sf.rt_sf.increase_source_sad_thresh) {
+ thresh_low = thresh_low << 1;
+ thresh_high = thresh_high << 1;
+ }
if (avg_64x64_blk_sad > thresh_low && avg_64x64_blk_sad < thresh_high) {
do_calc_src_content = false;
@@ -1203,6 +1208,7 @@ static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td,
x->sb_me_block = 0;
x->sb_me_partition = 0;
x->sb_me_mv.as_int = 0;
+ x->sb_force_fixed_part = 1;
if (cpi->oxcf.mode == ALLINTRA) {
x->intra_sb_rdmult_modifier = 128;
@@ -1231,7 +1237,7 @@ static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td,
// Grade the temporal variation of the sb, the grade will be used to decide
// fast mode search strategy for coding blocks
- grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col);
+ if (!seg_skip) grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col);
// encode the superblock
if (use_nonrd_mode) {
@@ -2337,7 +2343,7 @@ void av1_encode_frame(AV1_COMP *cpi) {
// a source or a ref frame should have an image pyramid allocated.
// Check here so that issues can be caught early in debug mode
#if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY
- if (cpi->image_pyramid_levels > 0) {
+ if (cpi->alloc_pyramid) {
assert(cpi->source->y_pyramid);
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
diff --git a/third_party/aom/av1/encoder/encodeframe_utils.c b/third_party/aom/av1/encoder/encodeframe_utils.c
index 949837184a..a8e4a88396 100644
--- a/third_party/aom/av1/encoder/encodeframe_utils.c
+++ b/third_party/aom/av1/encoder/encodeframe_utils.c
@@ -15,6 +15,7 @@
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe_utils.h"
+#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/rdopt.h"
void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
@@ -306,6 +307,7 @@ void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
+ mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE &&
!cpi->rc.rtc_external_ratectrl) {
av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
ctx->rd_stats.rate, ctx->rd_stats.dist,
@@ -1431,6 +1433,10 @@ void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
x->content_state_sb.low_sumdiff = 1;
+ if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) &&
+ !x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff)
+ x->sb_force_fixed_part = 0;
+
if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad ||
cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1)
return;
diff --git a/third_party/aom/av1/encoder/encoder.c b/third_party/aom/av1/encoder/encoder.c
index fe053af5cc..1ddbfda08b 100644
--- a/third_party/aom/av1/encoder/encoder.c
+++ b/third_party/aom/av1/encoder/encoder.c
@@ -35,6 +35,7 @@
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_scale/aom_scale.h"
+#include "aom_util/aom_pthread.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
@@ -152,24 +153,33 @@ int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
unsigned char *const active_map_4x4 = cpi->active_map.map;
const int mi_rows = mi_params->mi_rows;
const int mi_cols = mi_params->mi_cols;
- const int row_scale = mi_size_high_log2[BLOCK_16X16];
- const int col_scale = mi_size_wide_log2[BLOCK_16X16];
cpi->active_map.update = 0;
- assert(mi_rows % 2 == 0);
- assert(mi_cols % 2 == 0);
+ cpi->rc.percent_blocks_inactive = 0;
+ assert(mi_rows % 2 == 0 && mi_rows > 0);
+ assert(mi_cols % 2 == 0 && mi_cols > 0);
if (new_map_16x16) {
- for (int r = 0; r < (mi_rows >> row_scale); ++r) {
- for (int c = 0; c < (mi_cols >> col_scale); ++c) {
- const uint8_t val = new_map_16x16[r * cols + c]
+ int num_samples = 0;
+ int num_blocks_inactive = 0;
+ for (int r = 0; r < mi_rows; r += 4) {
+ for (int c = 0; c < mi_cols; c += 4) {
+ const uint8_t val = new_map_16x16[(r >> 2) * cols + (c >> 2)]
? AM_SEGMENT_ID_ACTIVE
: AM_SEGMENT_ID_INACTIVE;
- active_map_4x4[(2 * r + 0) * mi_cols + (c + 0)] = val;
- active_map_4x4[(2 * r + 0) * mi_cols + (c + 1)] = val;
- active_map_4x4[(2 * r + 1) * mi_cols + (c + 0)] = val;
- active_map_4x4[(2 * r + 1) * mi_cols + (c + 1)] = val;
+ num_samples++;
+ if (val == AM_SEGMENT_ID_INACTIVE) num_blocks_inactive++;
+ const int row_max = AOMMIN(4, mi_rows - r);
+ const int col_max = AOMMIN(4, mi_cols - c);
+ for (int x = 0; x < row_max; ++x) {
+ for (int y = 0; y < col_max; ++y) {
+ active_map_4x4[(r + x) * mi_cols + (c + y)] = val;
+ }
+ }
}
}
cpi->active_map.enabled = 1;
+ cpi->active_map.update = 1;
+ cpi->rc.percent_blocks_inactive =
+ (num_blocks_inactive * 100) / num_samples;
}
return 0;
}
@@ -943,14 +953,9 @@ void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf,
#if CONFIG_REALTIME_ONLY
assert(!oxcf->tool_cfg.enable_global_motion);
- cpi->image_pyramid_levels = 0;
+ cpi->alloc_pyramid = false;
#else
- if (oxcf->tool_cfg.enable_global_motion) {
- cpi->image_pyramid_levels =
- global_motion_pyr_levels[default_global_motion_method];
- } else {
- cpi->image_pyramid_levels = 0;
- }
+ cpi->alloc_pyramid = oxcf->tool_cfg.enable_global_motion;
#endif // CONFIG_REALTIME_ONLY
}
@@ -2208,7 +2213,7 @@ void av1_set_frame_size(AV1_COMP *cpi, int width, int height) {
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
- NULL, cpi->image_pyramid_levels, 0))
+ NULL, cpi->alloc_pyramid, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
@@ -2389,7 +2394,10 @@ static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) {
const int use_loopfilter =
is_loopfilter_used(cm) && !cpi->mt_info.pipeline_lpf_mt_with_enc;
- const int use_cdef = is_cdef_used(cm);
+ const int use_cdef =
+ is_cdef_used(cm) && (!cpi->active_map.enabled ||
+ cpi->rc.percent_blocks_inactive <=
+ cpi->sf.rt_sf.thresh_active_maps_skip_lf_cdef);
const int use_superres = av1_superres_scaled(cm);
const int use_restoration = is_restoration_used(cm);
@@ -2498,7 +2506,8 @@ static int encode_without_recode(AV1_COMP *cpi) {
&cpi->svc.source_last_TL0, cpi->oxcf.frm_dim_cfg.width,
cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
- cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0)) {
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false,
+ 0)) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate buffer for source_last_TL0");
}
@@ -2547,7 +2556,7 @@ static int encode_without_recode(AV1_COMP *cpi) {
cpi->source = av1_realloc_and_scale_if_required(
cm, unscaled, &cpi->scaled_source, filter_scaler, phase_scaler, true,
- false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels);
+ false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
if (frame_is_intra_only(cm) || resize_pending != 0) {
const int current_size =
(cm->mi_params.mi_rows * cm->mi_params.mi_cols) >> 2;
@@ -2570,7 +2579,7 @@ static int encode_without_recode(AV1_COMP *cpi) {
cpi->last_source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source, filter_scaler,
phase_scaler, true, false, cpi->oxcf.border_in_pixels,
- cpi->image_pyramid_levels);
+ cpi->alloc_pyramid);
}
if (cpi->sf.rt_sf.use_temporal_noise_estimate) {
@@ -2647,12 +2656,8 @@ static int encode_without_recode(AV1_COMP *cpi) {
av1_setup_frame(cpi);
}
}
-
- if (q_cfg->aq_mode == CYCLIC_REFRESH_AQ) {
- suppress_active_map(cpi);
- av1_cyclic_refresh_setup(cpi);
- }
av1_apply_active_map(cpi);
+ if (q_cfg->aq_mode == CYCLIC_REFRESH_AQ) av1_cyclic_refresh_setup(cpi);
if (cm->seg.enabled) {
if (!cm->seg.update_data && cm->prev_frame) {
segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
@@ -2667,26 +2672,26 @@ static int encode_without_recode(AV1_COMP *cpi) {
cm->cur_frame->seg.enabled = cm->seg.enabled;
// This is for rtc temporal filtering case.
- if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf &&
- cm->current_frame.frame_type != KEY_FRAME) {
+ if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf) {
const SequenceHeader *seq_params = cm->seq_params;
if (cpi->orig_source.buffer_alloc_sz == 0 ||
- cpi->last_source->y_width != cpi->source->y_width ||
- cpi->last_source->y_height != cpi->source->y_height) {
+ cpi->rc.prev_coded_width != cpi->oxcf.frm_dim_cfg.width ||
+ cpi->rc.prev_coded_height != cpi->oxcf.frm_dim_cfg.height) {
// Allocate a source buffer to store the true source for psnr calculation.
if (aom_alloc_frame_buffer(
&cpi->orig_source, cpi->oxcf.frm_dim_cfg.width,
cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
- cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0))
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false,
+ 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled buffer");
}
- aom_yv12_copy_y(cpi->source, &cpi->orig_source);
- aom_yv12_copy_u(cpi->source, &cpi->orig_source);
- aom_yv12_copy_v(cpi->source, &cpi->orig_source);
+ aom_yv12_copy_y(cpi->source, &cpi->orig_source, 1);
+ aom_yv12_copy_u(cpi->source, &cpi->orig_source, 1);
+ aom_yv12_copy_v(cpi->source, &cpi->orig_source, 1);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
@@ -2725,9 +2730,9 @@ static int encode_without_recode(AV1_COMP *cpi) {
(cm->width != cpi->unscaled_source->y_crop_width ||
cm->height != cpi->unscaled_source->y_crop_height)) {
cpi->scaled_last_source_available = 1;
- aom_yv12_copy_y(&cpi->scaled_source, &cpi->scaled_last_source);
- aom_yv12_copy_u(&cpi->scaled_source, &cpi->scaled_last_source);
- aom_yv12_copy_v(&cpi->scaled_source, &cpi->scaled_last_source);
+ aom_yv12_copy_y(&cpi->scaled_source, &cpi->scaled_last_source, 1);
+ aom_yv12_copy_u(&cpi->scaled_source, &cpi->scaled_last_source, 1);
+ aom_yv12_copy_v(&cpi->scaled_source, &cpi->scaled_last_source, 1);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
@@ -2846,7 +2851,7 @@ static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) {
}
cpi->source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_source, &cpi->scaled_source, EIGHTTAP_REGULAR, 0,
- false, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels);
+ false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
#if CONFIG_TUNE_BUTTERAUGLI
if (oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
@@ -2866,7 +2871,7 @@ static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) {
cpi->last_source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
EIGHTTAP_REGULAR, 0, false, false, cpi->oxcf.border_in_pixels,
- cpi->image_pyramid_levels);
+ cpi->alloc_pyramid);
}
int scale_references = 0;
@@ -4042,7 +4047,7 @@ int av1_encode(AV1_COMP *const cpi, uint8_t *const dest,
}
#if CONFIG_DENOISE
-static int apply_denoise_2d(AV1_COMP *cpi, YV12_BUFFER_CONFIG *sd,
+static int apply_denoise_2d(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *sd,
int block_size, float noise_level,
int64_t time_stamp, int64_t end_time) {
AV1_COMMON *const cm = &cpi->common;
@@ -4077,7 +4082,7 @@ static int apply_denoise_2d(AV1_COMP *cpi, YV12_BUFFER_CONFIG *sd,
#endif
int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
- YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+ const YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = cm->seq_params;
@@ -4139,8 +4144,7 @@ int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
#endif // CONFIG_DENOISE
if (av1_lookahead_push(cpi->ppi->lookahead, sd, time_stamp, end_time,
- use_highbitdepth, cpi->image_pyramid_levels,
- frame_flags)) {
+ use_highbitdepth, cpi->alloc_pyramid, frame_flags)) {
aom_set_error(cm->error, AOM_CODEC_ERROR, "av1_lookahead_push() failed");
res = -1;
}
diff --git a/third_party/aom/av1/encoder/encoder.h b/third_party/aom/av1/encoder/encoder.h
index e87ab9be1f..4de5d426ce 100644
--- a/third_party/aom/av1/encoder/encoder.h
+++ b/third_party/aom/av1/encoder/encoder.h
@@ -21,6 +21,7 @@
#include "config/aom_config.h"
#include "aom/aomcx.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
@@ -3631,10 +3632,10 @@ typedef struct AV1_COMP {
unsigned int zeromv_skip_thresh_exit_part[BLOCK_SIZES_ALL];
/*!
- * Number of downsampling pyramid levels to allocate for each frame
+ * Should we allocate a downsampling pyramid for each frame buffer?
* This is currently only used for global motion
*/
- int image_pyramid_levels;
+ bool alloc_pyramid;
#if CONFIG_SALIENCY_MAP
/*!
@@ -3808,7 +3809,7 @@ int av1_init_parallel_frame_context(const AV1_COMP_DATA *const first_cpi_data,
* copy of the pointer.
*/
int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
- YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+ const YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time_stamp);
/*!\brief Encode a frame
@@ -4310,7 +4311,7 @@ static AOM_INLINE int is_psnr_calc_enabled(const AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
return cpi->ppi->b_calculate_psnr && !is_stat_generation_stage(cpi) &&
- cm->show_frame;
+ cm->show_frame && !cpi->is_dropped_frame;
}
static INLINE int is_frame_resize_pending(const AV1_COMP *const cpi) {
diff --git a/third_party/aom/av1/encoder/encoder_alloc.h b/third_party/aom/av1/encoder/encoder_alloc.h
index ce48496d48..f24d4b0a10 100644
--- a/third_party/aom/av1/encoder/encoder_alloc.h
+++ b/third_party/aom/av1/encoder/encoder_alloc.h
@@ -439,8 +439,7 @@ static AOM_INLINE YV12_BUFFER_CONFIG *realloc_and_scale_source(
&cpi->scaled_source, scaled_width, scaled_height,
cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
- cm->features.byte_alignment, NULL, NULL, NULL,
- cpi->image_pyramid_levels, 0))
+ cm->features.byte_alignment, NULL, NULL, NULL, cpi->alloc_pyramid, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
assert(cpi->scaled_source.y_crop_width == scaled_width);
diff --git a/third_party/aom/av1/encoder/encoder_utils.c b/third_party/aom/av1/encoder/encoder_utils.c
index c35873d207..1f81a530c9 100644
--- a/third_party/aom/av1/encoder/encoder_utils.c
+++ b/third_party/aom/av1/encoder/encoder_utils.c
@@ -9,8 +9,11 @@
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
+#include <string.h>
+
#include "aom/aomcx.h"
+#include "av1/common/av1_common_int.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
@@ -421,11 +424,13 @@ void av1_apply_active_map(AV1_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->enc_seg.map;
const unsigned char *const active_map = cpi->active_map.map;
- int i;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
- if (frame_is_intra_only(&cpi->common)) {
+ // Disable the active_maps on intra_only frames or if the
+ // input map for the current frame has no inactive blocks.
+ if (frame_is_intra_only(&cpi->common) ||
+ cpi->rc.percent_blocks_inactive == 0) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
@@ -434,8 +439,7 @@ void av1_apply_active_map(AV1_COMP *cpi) {
if (cpi->active_map.enabled) {
const int num_mis =
cpi->common.mi_params.mi_rows * cpi->common.mi_params.mi_cols;
- for (i = 0; i < num_mis; ++i)
- if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
+ memcpy(seg_map, active_map, sizeof(active_map[0]) * num_mis);
av1_enable_segmentation(seg);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
@@ -725,7 +729,7 @@ void av1_scale_references(AV1_COMP *cpi, const InterpFilter filter,
RefCntBuffer *ref_fb = get_ref_frame_buf(cm, ref_frame);
if (aom_yv12_realloc_with_new_border(
&ref_fb->buf, AOM_BORDER_IN_PIXELS,
- cm->features.byte_alignment, cpi->image_pyramid_levels,
+ cm->features.byte_alignment, cpi->alloc_pyramid,
num_planes) != 0) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
@@ -749,7 +753,7 @@ void av1_scale_references(AV1_COMP *cpi, const InterpFilter filter,
&new_fb->buf, cm->width, cm->height,
cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
- cm->features.byte_alignment, NULL, NULL, NULL, 0, 0)) {
+ cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) {
if (force_scaling) {
// Release the reference acquired in the get_free_fb() call above.
--new_fb->ref_count;
@@ -1087,12 +1091,12 @@ void av1_determine_sc_tools_with_encoding(AV1_COMP *cpi, const int q_orig) {
cpi->source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter,
- 0, false, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels);
+ 0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
if (cpi->unscaled_last_source != NULL) {
cpi->last_source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels,
- cpi->image_pyramid_levels);
+ cpi->alloc_pyramid);
}
av1_setup_frame(cpi);
diff --git a/third_party/aom/av1/encoder/encodetxb.c b/third_party/aom/av1/encoder/encodetxb.c
index 5fe2a497c7..701c5489fe 100644
--- a/third_party/aom/av1/encoder/encodetxb.c
+++ b/third_party/aom/av1/encoder/encodetxb.c
@@ -134,14 +134,14 @@ int av1_get_eob_pos_token(const int eob, int *const extra) {
}
#if CONFIG_ENTROPY_STATS
-void av1_update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size,
- TX_CLASS tx_class, PLANE_TYPE plane,
- FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts,
- uint8_t allow_update_cdf) {
+static void update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size,
+ TX_CLASS tx_class, PLANE_TYPE plane,
+ FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts,
+ uint8_t allow_update_cdf) {
#else
-void av1_update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class,
- PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx,
- uint8_t allow_update_cdf) {
+static void update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class,
+ PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx,
+ uint8_t allow_update_cdf) {
#endif
int eob_extra;
const int eob_pt = av1_get_eob_pos_token(eob, &eob_extra);
@@ -623,11 +623,11 @@ void av1_update_and_record_txb_context(int plane, int block, int blk_row,
td->rd_counts.tx_type_used[tx_size][tx_type]++;
#if CONFIG_ENTROPY_STATS
- av1_update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
- td->counts, allow_update_cdf);
+ update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
+ td->counts, allow_update_cdf);
#else
- av1_update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx,
- allow_update_cdf);
+ update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx,
+ allow_update_cdf);
#endif
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
@@ -785,8 +785,8 @@ void av1_record_txb_context(int plane, int block, int blk_row, int blk_col,
#if CONFIG_ENTROPY_STATS
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
- av1_update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
- td->counts, 0 /*allow_update_cdf*/);
+ update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
+ td->counts, 0 /*allow_update_cdf*/);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class,
diff --git a/third_party/aom/av1/encoder/ethread.c b/third_party/aom/av1/encoder/ethread.c
index d6a806d504..755535ba51 100644
--- a/third_party/aom/av1/encoder/ethread.c
+++ b/third_party/aom/av1/encoder/ethread.c
@@ -12,6 +12,8 @@
#include <assert.h>
#include <stdbool.h>
+#include "aom_util/aom_pthread.h"
+
#include "av1/common/warped_motion.h"
#include "av1/common/thread_common.h"
@@ -1415,7 +1417,7 @@ static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi,
int num_workers = ppi->p_mt_info.p_num_workers;
int had_error = 0;
// Points to error in the earliest display order frame in the parallel set.
- const struct aom_internal_error_info *error;
+ const struct aom_internal_error_info *error = NULL;
// Encoding ends.
for (int i = num_workers - 1; i >= 0; --i) {
@@ -2227,8 +2229,8 @@ void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
}
// Allocate memory for tpl row synchronization.
-void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
- int mb_rows) {
+static void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
+ int mb_rows) {
tpl_sync->rows = mb_rows;
#if CONFIG_MULTITHREAD
{
diff --git a/third_party/aom/av1/encoder/firstpass.c b/third_party/aom/av1/encoder/firstpass.c
index e20b6c177e..b94a50714a 100644
--- a/third_party/aom/av1/encoder/firstpass.c
+++ b/third_party/aom/av1/encoder/firstpass.c
@@ -22,6 +22,7 @@
#include "aom_ports/mem.h"
#include "aom_scale/aom_scale.h"
#include "aom_scale/yv12config.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/entropymv.h"
#include "av1/common/quant_common.h"
diff --git a/third_party/aom/av1/encoder/global_motion.c b/third_party/aom/av1/encoder/global_motion.c
index 73910de121..0ae47809c6 100644
--- a/third_party/aom/av1/encoder/global_motion.c
+++ b/third_party/aom/av1/encoder/global_motion.c
@@ -30,83 +30,6 @@
// Border over which to compute the global motion
#define ERRORADV_BORDER 0
-/* clang-format off */
-// Error metric used for global motion evaluation.
-// For 8-bit input, the pixel error used to index this table will always
-// be between -255 and +255. But for 10- and 12-bit input, we use interpolation
-// which means that we need to support indices of -256 and +256 as well.
-// Therefore, the table is offset so that logical index 0 corresponds to
-// error_measure_lut[256].
-const int error_measure_lut[513] = {
- // pow 0.7
- 16384, 16384, 16339, 16294, 16249, 16204, 16158, 16113,
- 16068, 16022, 15977, 15932, 15886, 15840, 15795, 15749,
- 15703, 15657, 15612, 15566, 15520, 15474, 15427, 15381,
- 15335, 15289, 15242, 15196, 15149, 15103, 15056, 15010,
- 14963, 14916, 14869, 14822, 14775, 14728, 14681, 14634,
- 14587, 14539, 14492, 14445, 14397, 14350, 14302, 14254,
- 14206, 14159, 14111, 14063, 14015, 13967, 13918, 13870,
- 13822, 13773, 13725, 13676, 13628, 13579, 13530, 13481,
- 13432, 13383, 13334, 13285, 13236, 13187, 13137, 13088,
- 13038, 12988, 12939, 12889, 12839, 12789, 12739, 12689,
- 12639, 12588, 12538, 12487, 12437, 12386, 12335, 12285,
- 12234, 12183, 12132, 12080, 12029, 11978, 11926, 11875,
- 11823, 11771, 11719, 11667, 11615, 11563, 11511, 11458,
- 11406, 11353, 11301, 11248, 11195, 11142, 11089, 11036,
- 10982, 10929, 10875, 10822, 10768, 10714, 10660, 10606,
- 10552, 10497, 10443, 10388, 10333, 10279, 10224, 10168,
- 10113, 10058, 10002, 9947, 9891, 9835, 9779, 9723,
- 9666, 9610, 9553, 9497, 9440, 9383, 9326, 9268,
- 9211, 9153, 9095, 9037, 8979, 8921, 8862, 8804,
- 8745, 8686, 8627, 8568, 8508, 8449, 8389, 8329,
- 8269, 8208, 8148, 8087, 8026, 7965, 7903, 7842,
- 7780, 7718, 7656, 7593, 7531, 7468, 7405, 7341,
- 7278, 7214, 7150, 7086, 7021, 6956, 6891, 6826,
- 6760, 6695, 6628, 6562, 6495, 6428, 6361, 6293,
- 6225, 6157, 6089, 6020, 5950, 5881, 5811, 5741,
- 5670, 5599, 5527, 5456, 5383, 5311, 5237, 5164,
- 5090, 5015, 4941, 4865, 4789, 4713, 4636, 4558,
- 4480, 4401, 4322, 4242, 4162, 4080, 3998, 3916,
- 3832, 3748, 3663, 3577, 3490, 3402, 3314, 3224,
- 3133, 3041, 2948, 2854, 2758, 2661, 2562, 2461,
- 2359, 2255, 2148, 2040, 1929, 1815, 1698, 1577,
- 1452, 1323, 1187, 1045, 894, 731, 550, 339,
- 0, 339, 550, 731, 894, 1045, 1187, 1323,
- 1452, 1577, 1698, 1815, 1929, 2040, 2148, 2255,
- 2359, 2461, 2562, 2661, 2758, 2854, 2948, 3041,
- 3133, 3224, 3314, 3402, 3490, 3577, 3663, 3748,
- 3832, 3916, 3998, 4080, 4162, 4242, 4322, 4401,
- 4480, 4558, 4636, 4713, 4789, 4865, 4941, 5015,
- 5090, 5164, 5237, 5311, 5383, 5456, 5527, 5599,
- 5670, 5741, 5811, 5881, 5950, 6020, 6089, 6157,
- 6225, 6293, 6361, 6428, 6495, 6562, 6628, 6695,
- 6760, 6826, 6891, 6956, 7021, 7086, 7150, 7214,
- 7278, 7341, 7405, 7468, 7531, 7593, 7656, 7718,
- 7780, 7842, 7903, 7965, 8026, 8087, 8148, 8208,
- 8269, 8329, 8389, 8449, 8508, 8568, 8627, 8686,
- 8745, 8804, 8862, 8921, 8979, 9037, 9095, 9153,
- 9211, 9268, 9326, 9383, 9440, 9497, 9553, 9610,
- 9666, 9723, 9779, 9835, 9891, 9947, 10002, 10058,
- 10113, 10168, 10224, 10279, 10333, 10388, 10443, 10497,
- 10552, 10606, 10660, 10714, 10768, 10822, 10875, 10929,
- 10982, 11036, 11089, 11142, 11195, 11248, 11301, 11353,
- 11406, 11458, 11511, 11563, 11615, 11667, 11719, 11771,
- 11823, 11875, 11926, 11978, 12029, 12080, 12132, 12183,
- 12234, 12285, 12335, 12386, 12437, 12487, 12538, 12588,
- 12639, 12689, 12739, 12789, 12839, 12889, 12939, 12988,
- 13038, 13088, 13137, 13187, 13236, 13285, 13334, 13383,
- 13432, 13481, 13530, 13579, 13628, 13676, 13725, 13773,
- 13822, 13870, 13918, 13967, 14015, 14063, 14111, 14159,
- 14206, 14254, 14302, 14350, 14397, 14445, 14492, 14539,
- 14587, 14634, 14681, 14728, 14775, 14822, 14869, 14916,
- 14963, 15010, 15056, 15103, 15149, 15196, 15242, 15289,
- 15335, 15381, 15427, 15474, 15520, 15566, 15612, 15657,
- 15703, 15749, 15795, 15840, 15886, 15932, 15977, 16022,
- 16068, 16113, 16158, 16204, 16249, 16294, 16339, 16384,
- 16384,
-};
-/* clang-format on */
-
int av1_is_enough_erroradvantage(double best_erroradvantage, int params_cost) {
return best_erroradvantage < erroradv_tr &&
best_erroradvantage * params_cost < erroradv_prod_tr;
@@ -541,6 +464,11 @@ int64_t av1_refine_integerized_param(
}
wm->wmtype = get_wmtype(wm);
+ // Recompute shear params for the refined model
+ // This should never fail, because we only ever consider warp-able models
+ if (!av1_get_shear_params(wm)) {
+ assert(0);
+ }
return best_error;
}
diff --git a/third_party/aom/av1/encoder/global_motion.h b/third_party/aom/av1/encoder/global_motion.h
index 8c9c60f0f5..de46a0e1f2 100644
--- a/third_party/aom/av1/encoder/global_motion.h
+++ b/third_party/aom/av1/encoder/global_motion.h
@@ -15,6 +15,7 @@
#include "aom/aom_integer.h"
#include "aom_dsp/flow_estimation/flow_estimation.h"
#include "aom_scale/yv12config.h"
+#include "aom_util/aom_pthread.h"
#include "aom_util/aom_thread.h"
#ifdef __cplusplus
@@ -97,37 +98,6 @@ void av1_compute_feature_segmentation_map(uint8_t *segment_map, int width,
int height, int *inliers,
int num_inliers);
-extern const int error_measure_lut[513];
-
-static INLINE int error_measure(int err) {
- return error_measure_lut[256 + err];
-}
-
-#if CONFIG_AV1_HIGHBITDEPTH
-static INLINE int highbd_error_measure(int err, int bd) {
- const int b = bd - 8;
- const int bmask = (1 << b) - 1;
- const int v = (1 << b);
-
- // Split error into two parts and do an interpolated table lookup
- // To compute the table index and interpolation value, we want to calculate
- // the quotient and remainder of err / 2^b. But it is very important that
- // the division must round down, and the remainder must be positive,
- // ie. in the range [0, 2^b).
- //
- // In C, the >> and & operators do what we want, but the / and % operators
- // give the wrong results for negative inputs. So we must use >> and & here.
- //
- // For example, if bd == 10 and err == -5, compare the results:
- // (-5) >> 2 = -2, (-5) & 3 = 3
- // vs. (-5) / 4 = -1, (-5) % 4 = -1
- const int e1 = err >> b;
- const int e2 = err & bmask;
- return error_measure_lut[256 + e1] * (v - e2) +
- error_measure_lut[257 + e1] * e2;
-}
-#endif // CONFIG_AV1_HIGHBITDEPTH
-
int64_t av1_segmented_frame_error(int use_hbd, int bd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
int p_width, int p_height,
diff --git a/third_party/aom/av1/encoder/global_motion_facade.c b/third_party/aom/av1/encoder/global_motion_facade.c
index 02a4e70ed3..687eeee18a 100644
--- a/third_party/aom/av1/encoder/global_motion_facade.c
+++ b/third_party/aom/av1/encoder/global_motion_facade.c
@@ -89,6 +89,7 @@ static AOM_INLINE void compute_global_motion_for_ref_frame(
assert(ref_buf[frame] != NULL);
int bit_depth = cpi->common.seq_params->bit_depth;
GlobalMotionMethod global_motion_method = default_global_motion_method;
+ int downsample_level = cpi->sf.gm_sf.downsample_level;
int num_refinements = cpi->sf.gm_sf.num_refinement_steps;
bool mem_alloc_failed = false;
@@ -99,9 +100,10 @@ static AOM_INLINE void compute_global_motion_for_ref_frame(
double best_erroradv = erroradv_tr;
for (TransformationType model = FIRST_GLOBAL_TRANS_TYPE;
model <= LAST_GLOBAL_TRANS_TYPE; ++model) {
- if (!aom_compute_global_motion(
- model, cpi->source, ref_buf[frame], bit_depth, global_motion_method,
- motion_models, RANSAC_NUM_MOTIONS, &mem_alloc_failed)) {
+ if (!aom_compute_global_motion(model, cpi->source, ref_buf[frame],
+ bit_depth, global_motion_method,
+ downsample_level, motion_models,
+ RANSAC_NUM_MOTIONS, &mem_alloc_failed)) {
if (mem_alloc_failed) {
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate global motion buffers");
@@ -115,6 +117,9 @@ static AOM_INLINE void compute_global_motion_for_ref_frame(
WarpedMotionParams tmp_wm_params;
av1_convert_model_to_params(motion_models[i].params, &tmp_wm_params);
+ // Check that the generated model is warp-able
+ if (!av1_get_shear_params(&tmp_wm_params)) continue;
+
// Skip models that we won't use (IDENTITY or TRANSLATION)
//
// For IDENTITY type models, we don't need to evaluate anything because
@@ -151,6 +156,14 @@ static AOM_INLINE void compute_global_motion_for_ref_frame(
double erroradvantage = (double)warp_error / ref_frame_error;
+ // Check that the model signaling cost is not too high
+ if (!av1_is_enough_erroradvantage(
+ erroradvantage,
+ gm_get_params_cost(&tmp_wm_params, ref_params,
+ cm->features.allow_high_precision_mv))) {
+ continue;
+ }
+
if (erroradvantage < best_erroradv) {
best_erroradv = erroradvantage;
// Save the wm_params modified by
@@ -161,34 +174,6 @@ static AOM_INLINE void compute_global_motion_for_ref_frame(
}
}
}
-
- if (!av1_get_shear_params(&cm->global_motion[frame]))
- cm->global_motion[frame] = default_warp_params;
-
-#if 0
- // We never choose translational models, so this code is disabled
- if (cm->global_motion[frame].wmtype == TRANSLATION) {
- cm->global_motion[frame].wmmat[0] =
- convert_to_trans_prec(cm->features.allow_high_precision_mv,
- cm->global_motion[frame].wmmat[0]) *
- GM_TRANS_ONLY_DECODE_FACTOR;
- cm->global_motion[frame].wmmat[1] =
- convert_to_trans_prec(cm->features.allow_high_precision_mv,
- cm->global_motion[frame].wmmat[1]) *
- GM_TRANS_ONLY_DECODE_FACTOR;
- }
-#endif
-
- if (cm->global_motion[frame].wmtype == IDENTITY) return;
-
- // If the best error advantage found doesn't meet the threshold for
- // this motion type, revert to IDENTITY.
- if (!av1_is_enough_erroradvantage(
- best_erroradv,
- gm_get_params_cost(&cm->global_motion[frame], ref_params,
- cm->features.allow_high_precision_mv))) {
- cm->global_motion[frame] = default_warp_params;
- }
}
// Computes global motion for the given reference frame.
diff --git a/third_party/aom/av1/encoder/k_means_template.h b/third_party/aom/av1/encoder/k_means_template.h
index 4be2038a6f..239029345d 100644
--- a/third_party/aom/av1/encoder/k_means_template.h
+++ b/third_party/aom/av1/encoder/k_means_template.h
@@ -24,6 +24,9 @@
#define RENAME_(x, y) AV1_K_MEANS_RENAME(x, y)
#define RENAME(x) RENAME_(x, AV1_K_MEANS_DIM)
+#define K_MEANS_RENAME_C(x, y) x##_dim##y##_c
+#define RENAME_C_(x, y) K_MEANS_RENAME_C(x, y)
+#define RENAME_C(x) RENAME_C_(x, AV1_K_MEANS_DIM)
// Though we want to compute the smallest L2 norm, in 1 dimension,
// it is equivalent to find the smallest L1 norm and then square it.
@@ -41,8 +44,8 @@ static int RENAME(calc_dist)(const int16_t *p1, const int16_t *p2) {
#endif
}
-void RENAME(av1_calc_indices)(const int16_t *data, const int16_t *centroids,
- uint8_t *indices, int64_t *dist, int n, int k) {
+void RENAME_C(av1_calc_indices)(const int16_t *data, const int16_t *centroids,
+ uint8_t *indices, int64_t *dist, int n, int k) {
if (dist) {
*dist = 0;
}
@@ -149,3 +152,6 @@ void RENAME(av1_k_means)(const int16_t *data, int16_t *centroids,
}
#undef RENAME_
#undef RENAME
+#undef K_MEANS_RENAME_C
+#undef RENAME_C_
+#undef RENAME_C
diff --git a/third_party/aom/av1/encoder/lookahead.c b/third_party/aom/av1/encoder/lookahead.c
index 9ef9b88675..476c91ab95 100644
--- a/third_party/aom/av1/encoder/lookahead.c
+++ b/third_party/aom/av1/encoder/lookahead.c
@@ -46,7 +46,7 @@ struct lookahead_ctx *av1_lookahead_init(
unsigned int width, unsigned int height, unsigned int subsampling_x,
unsigned int subsampling_y, int use_highbitdepth, unsigned int depth,
const int border_in_pixels, int byte_alignment, int num_lap_buffers,
- bool is_all_intra, int num_pyramid_levels) {
+ bool is_all_intra, bool alloc_pyramid) {
int lag_in_frames = AOMMAX(1, depth);
// For all-intra frame encoding, previous source frames are not required.
@@ -82,7 +82,7 @@ struct lookahead_ctx *av1_lookahead_init(
if (aom_realloc_frame_buffer(
&ctx->buf[i].img, width, height, subsampling_x, subsampling_y,
use_highbitdepth, border_in_pixels, byte_alignment, NULL, NULL,
- NULL, num_pyramid_levels, 0)) {
+ NULL, alloc_pyramid, 0)) {
goto fail;
}
}
@@ -100,7 +100,7 @@ int av1_lookahead_full(const struct lookahead_ctx *ctx) {
int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
int64_t ts_start, int64_t ts_end, int use_highbitdepth,
- int num_pyramid_levels, aom_enc_frame_flags_t flags) {
+ bool alloc_pyramid, aom_enc_frame_flags_t flags) {
int width = src->y_crop_width;
int height = src->y_crop_height;
int uv_width = src->uv_crop_width;
@@ -124,9 +124,9 @@ int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
height != buf->img.y_crop_height ||
uv_width != buf->img.uv_crop_width ||
uv_height != buf->img.uv_crop_height;
- larger_dimensions = width > buf->img.y_width || height > buf->img.y_height ||
- uv_width > buf->img.uv_width ||
- uv_height > buf->img.uv_height;
+ larger_dimensions =
+ width > buf->img.y_crop_width || height > buf->img.y_crop_height ||
+ uv_width > buf->img.uv_crop_width || uv_height > buf->img.uv_crop_height;
assert(!larger_dimensions || new_dimensions);
if (larger_dimensions) {
@@ -134,11 +134,15 @@ int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
memset(&new_img, 0, sizeof(new_img));
if (aom_alloc_frame_buffer(&new_img, width, height, subsampling_x,
subsampling_y, use_highbitdepth,
- AOM_BORDER_IN_PIXELS, 0, num_pyramid_levels, 0))
+ AOM_BORDER_IN_PIXELS, 0, alloc_pyramid, 0))
return 1;
aom_free_frame_buffer(&buf->img);
buf->img = new_img;
} else if (new_dimensions) {
+ buf->img.y_width = src->y_width;
+ buf->img.y_height = src->y_height;
+ buf->img.uv_width = src->uv_width;
+ buf->img.uv_height = src->uv_height;
buf->img.y_crop_width = src->y_crop_width;
buf->img.y_crop_height = src->y_crop_height;
buf->img.uv_crop_width = src->uv_crop_width;
@@ -146,7 +150,6 @@ int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
buf->img.subsampling_x = src->subsampling_x;
buf->img.subsampling_y = src->subsampling_y;
}
- // Partial copy not implemented yet
av1_copy_and_extend_frame(src, &buf->img);
buf->ts_start = ts_start;
diff --git a/third_party/aom/av1/encoder/lookahead.h b/third_party/aom/av1/encoder/lookahead.h
index c0e6d222f5..41eca87fa3 100644
--- a/third_party/aom/av1/encoder/lookahead.h
+++ b/third_party/aom/av1/encoder/lookahead.h
@@ -70,7 +70,7 @@ struct lookahead_ctx *av1_lookahead_init(
unsigned int width, unsigned int height, unsigned int subsampling_x,
unsigned int subsampling_y, int use_highbitdepth, unsigned int depth,
const int border_in_pixels, int byte_alignment, int num_lap_buffers,
- bool is_all_intra, int num_pyramid_levels);
+ bool is_all_intra, bool alloc_pyramid);
/**\brief Destroys the lookahead stage
*/
@@ -85,18 +85,18 @@ int av1_lookahead_full(const struct lookahead_ctx *ctx);
* This function will copy the source image into a new framebuffer with
* the expected stride/border.
*
- * \param[in] ctx Pointer to the lookahead context
- * \param[in] src Pointer to the image to enqueue
- * \param[in] ts_start Timestamp for the start of this frame
- * \param[in] ts_end Timestamp for the end of this frame
- * \param[in] use_highbitdepth Tell if HBD is used
- * \param[in] num_pyramid_levels Number of pyramid levels to allocate
- for each frame buffer
- * \param[in] flags Flags set on this frame
+ * \param[in] ctx Pointer to the lookahead context
+ * \param[in] src Pointer to the image to enqueue
+ * \param[in] ts_start Timestamp for the start of this frame
+ * \param[in] ts_end Timestamp for the end of this frame
+ * \param[in] use_highbitdepth Tell if HBD is used
+ * \param[in] alloc_pyramid Whether to allocate a downsampling pyramid
+ * for each frame buffer
+ * \param[in] flags Flags set on this frame
*/
int av1_lookahead_push(struct lookahead_ctx *ctx, const YV12_BUFFER_CONFIG *src,
int64_t ts_start, int64_t ts_end, int use_highbitdepth,
- int num_pyramid_levels, aom_enc_frame_flags_t flags);
+ bool alloc_pyramid, aom_enc_frame_flags_t flags);
/**\brief Get the next source buffer to encode
*
diff --git a/third_party/aom/av1/encoder/nonrd_pickmode.c b/third_party/aom/av1/encoder/nonrd_pickmode.c
index f939b6d1fa..57c74f66d5 100644
--- a/third_party/aom/av1/encoder/nonrd_pickmode.c
+++ b/third_party/aom/av1/encoder/nonrd_pickmode.c
@@ -2357,6 +2357,10 @@ static AOM_FORCE_INLINE bool skip_inter_mode_nonrd(
*ref_frame2 = NONE_FRAME;
}
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) &&
+ (*this_mode != GLOBALMV || *ref_frame != LAST_FRAME))
+ return true;
+
if (x->sb_me_block && *ref_frame == LAST_FRAME) {
// We want to make sure to test the superblock MV:
// so don't skip (return false) for NEAREST_LAST or NEAR_LAST if they
@@ -3241,7 +3245,8 @@ void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
inter_pred_params_sr.conv_params =
get_conv_params(/*do_average=*/0, AOM_PLANE_Y, xd->bd);
- x->block_is_zero_sad = x->content_state_sb.source_sad_nonrd == kZeroSad;
+ x->block_is_zero_sad = x->content_state_sb.source_sad_nonrd == kZeroSad ||
+ segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
!x->force_zeromv_skip_for_blk &&
x->content_state_sb.source_sad_nonrd != kZeroSad &&
diff --git a/third_party/aom/av1/encoder/palette.c b/third_party/aom/av1/encoder/palette.c
index 7f79e9596e..45b56199c6 100644
--- a/third_party/aom/av1/encoder/palette.c
+++ b/third_party/aom/av1/encoder/palette.c
@@ -480,7 +480,7 @@ struct ColorCount {
int count;
};
-int color_count_comp(const void *c1, const void *c2) {
+static int color_count_comp(const void *c1, const void *c2) {
const struct ColorCount *color_count1 = (const struct ColorCount *)c1;
const struct ColorCount *color_count2 = (const struct ColorCount *)c2;
if (color_count1->count > color_count2->count) return -1;
diff --git a/third_party/aom/av1/encoder/palette.h b/third_party/aom/av1/encoder/palette.h
index 7da863a0cc..30886d37ae 100644
--- a/third_party/aom/av1/encoder/palette.h
+++ b/third_party/aom/av1/encoder/palette.h
@@ -26,7 +26,7 @@ struct PICK_MODE_CONTEXT;
struct macroblock;
/*!\cond */
-#define AV1_K_MEANS_RENAME(func, dim) func##_dim##dim##_c
+#define AV1_K_MEANS_RENAME(func, dim) func##_dim##dim
void AV1_K_MEANS_RENAME(av1_k_means, 1)(const int16_t *data, int16_t *centroids,
uint8_t *indices, int n, int k,
diff --git a/third_party/aom/av1/encoder/partition_search.c b/third_party/aom/av1/encoder/partition_search.c
index 1c17b09ee1..61d49a23f2 100644
--- a/third_party/aom/av1/encoder/partition_search.c
+++ b/third_party/aom/av1/encoder/partition_search.c
@@ -2144,8 +2144,9 @@ static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data,
}
if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
}
- if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && mbmi->skip_txfm &&
- !cpi->rc.rtc_external_ratectrl && cm->seg.enabled)
+ if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ ||
+ cpi->active_map.enabled) &&
+ mbmi->skip_txfm && !cpi->rc.rtc_external_ratectrl && cm->seg.enabled)
av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize, dry_run);
// TODO(Ravi/Remya): Move this copy function to a better logical place
// This function will copy the best mode information from block
@@ -2254,6 +2255,8 @@ static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
+ const int seg_skip =
+ segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
// This is only needed for real time/allintra row-mt enabled multi-threaded
// encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF.
@@ -2276,15 +2279,17 @@ static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
- x->force_zeromv_skip_for_blk =
- get_force_zeromv_skip_flag_for_blk(cpi, x, bsize);
+ if (!seg_skip) {
+ x->force_zeromv_skip_for_blk =
+ get_force_zeromv_skip_flag_for_blk(cpi, x, bsize);
- // Source variance may be already compute at superblock level, so no need
- // to recompute, unless bsize < sb_size or source_variance is not yet set.
- if (!x->force_zeromv_skip_for_blk &&
- (x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size))
- x->source_variance = av1_get_perpixel_variance_facade(
- cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
+ // Source variance may be already compute at superblock level, so no need
+ // to recompute, unless bsize < sb_size or source_variance is not yet set.
+ if (!x->force_zeromv_skip_for_blk &&
+ (x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size))
+ x->source_variance = av1_get_perpixel_variance_facade(
+ cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
+ }
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
@@ -2305,16 +2310,13 @@ static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, nonrd_pick_inter_mode_sb_time);
#endif
- if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
- RD_STATS invalid_rd;
- av1_invalid_rd_stats(&invalid_rd);
- // TODO(kyslov): add av1_nonrd_pick_inter_mode_sb_seg_skip
- av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
- rd_cost, bsize, ctx,
- invalid_rd.rdcost);
- } else {
- av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx);
+ if (seg_skip) {
+ x->force_zeromv_skip_for_blk = 1;
+ // TODO(marpan): Consider adding a function for nonrd:
+ // av1_nonrd_pick_inter_mode_sb_seg_skip(), instead of setting
+ // x->force_zeromv_skip flag and entering av1_nonrd_pick_inter_mode_sb().
}
+ av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, nonrd_pick_inter_mode_sb_time);
#endif
@@ -2322,10 +2324,12 @@ static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
if (cpi->sf.rt_sf.skip_cdef_sb) {
// cdef_strength is initialized to 1 which means skip_cdef, and is updated
// here. Check to see is skipping cdef is allowed.
+ // Always allow cdef_skip for seg_skip = 1.
const int allow_cdef_skipping =
- cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad &&
- !(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
- x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]);
+ seg_skip ||
+ (cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad &&
+ !(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] ||
+ x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]));
// Find the corresponding 64x64 block. It'll be the 128x128 block if that's
// the block size.
diff --git a/third_party/aom/av1/encoder/partition_strategy.c b/third_party/aom/av1/encoder/partition_strategy.c
index ce06313579..1d62f128c7 100644
--- a/third_party/aom/av1/encoder/partition_strategy.c
+++ b/third_party/aom/av1/encoder/partition_strategy.c
@@ -1761,7 +1761,7 @@ void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
// Decide whether to evaluate the AB partition specified by part_type based on
// split and HORZ/VERT info
-int evaluate_ab_partition_based_on_split(
+static int evaluate_ab_partition_based_on_split(
const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
int split_idx2) {
diff --git a/third_party/aom/av1/encoder/pass2_strategy.c b/third_party/aom/av1/encoder/pass2_strategy.c
index a9442ffc1a..bd8620c2be 100644
--- a/third_party/aom/av1/encoder/pass2_strategy.c
+++ b/third_party/aom/av1/encoder/pass2_strategy.c
@@ -158,28 +158,12 @@ static int frame_max_bits(const RATE_CONTROL *rc,
return (int)max_bits;
}
-static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75,
- 0.80, 0.85, 0.90,
- 0.95, 0.95, 0.95 };
-#define ERR_DIVISOR 96.0
-static double calc_correction_factor(double err_per_mb, int q) {
- const double error_term = err_per_mb / ERR_DIVISOR;
- const int index = q >> 5;
- // Adjustment to power term based on qindex
- const double power_term =
- q_pow_term[index] +
- (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0);
- assert(error_term >= 0.0);
- return fclamp(pow(error_term, power_term), 0.05, 5.0);
-}
-
// Based on history adjust expectations of bits per macroblock.
static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
TWO_PASS *const twopass = &cpi->ppi->twopass;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
// Based on recent history adjust expectations of bits per macroblock.
- double damp_fac = AOMMAX(5.0, rate_err_tol / 10.0);
double rate_err_factor = 1.0;
const double adj_limit = AOMMAX(0.2, (double)(100 - rate_err_tol) / 200.0);
const double min_fac = 1.0 - adj_limit;
@@ -214,9 +198,7 @@ static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
}
int err_estimate = p_rc->rate_error_estimate;
- int64_t bits_left = twopass->bits_left;
int64_t total_actual_bits = p_rc->total_actual_bits;
- int64_t bits_off_target = p_rc->vbr_bits_off_target;
double rolling_arf_group_actual_bits =
(double)twopass->rolling_arf_group_actual_bits;
double rolling_arf_group_target_bits =
@@ -231,10 +213,6 @@ static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
: 0;
total_actual_bits = simulate_parallel_frame ? p_rc->temp_total_actual_bits
: p_rc->total_actual_bits;
- bits_off_target = simulate_parallel_frame ? p_rc->temp_vbr_bits_off_target
- : p_rc->vbr_bits_off_target;
- bits_left =
- simulate_parallel_frame ? p_rc->temp_bits_left : twopass->bits_left;
rolling_arf_group_target_bits =
(double)(simulate_parallel_frame
? p_rc->temp_rolling_arf_group_target_bits
@@ -247,21 +225,21 @@ static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
: p_rc->rate_error_estimate;
#endif
- if (p_rc->bits_off_target && total_actual_bits > 0) {
- if (cpi->ppi->lap_enabled) {
- rate_err_factor = rolling_arf_group_actual_bits /
- DOUBLE_DIVIDE_CHECK(rolling_arf_group_target_bits);
+ if ((p_rc->bits_off_target && total_actual_bits > 0) &&
+ (rolling_arf_group_target_bits >= 1.0)) {
+ if (rolling_arf_group_actual_bits > rolling_arf_group_target_bits) {
+ double error_fraction =
+ (rolling_arf_group_actual_bits - rolling_arf_group_target_bits) /
+ rolling_arf_group_target_bits;
+ error_fraction = (error_fraction > 1.0) ? 1.0 : error_fraction;
+ rate_err_factor = 1.0 + error_fraction;
} else {
- rate_err_factor = 1.0 - ((double)(bits_off_target) /
- AOMMAX(total_actual_bits, bits_left));
+ double error_fraction =
+ (rolling_arf_group_target_bits - rolling_arf_group_actual_bits) /
+ rolling_arf_group_target_bits;
+ rate_err_factor = 1.0 - error_fraction;
}
- // Adjustment is damped if this is 1 pass with look ahead processing
- // (as there are only ever a few frames of data) and for all but the first
- // GOP in normal two pass.
- if ((twopass->bpm_factor != 1.0) || cpi->ppi->lap_enabled) {
- rate_err_factor = 1.0 + ((rate_err_factor - 1.0) / damp_fac);
- }
rate_err_factor = AOMMAX(min_fac, AOMMIN(max_fac, rate_err_factor));
}
@@ -270,36 +248,38 @@ static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
if ((rate_err_factor < 1.0 && err_estimate >= 0) ||
(rate_err_factor > 1.0 && err_estimate <= 0)) {
twopass->bpm_factor *= rate_err_factor;
- if (rate_err_tol >= 100) {
- twopass->bpm_factor =
- AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor));
- } else {
- twopass->bpm_factor = AOMMAX(0.1, AOMMIN(10.0, twopass->bpm_factor));
- }
+ twopass->bpm_factor = AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor));
}
}
-static int qbpm_enumerator(int rate_err_tol) {
- return 1200000 + ((300000 * AOMMIN(75, AOMMAX(rate_err_tol - 25, 0))) / 75);
+static const double q_div_term[(QINDEX_RANGE >> 5) + 1] = { 32.0, 40.0, 46.0,
+ 52.0, 56.0, 60.0,
+ 64.0, 68.0, 72.0 };
+#define EPMB_SCALER 1250000
+static double calc_correction_factor(double err_per_mb, int q) {
+ double power_term = 0.90;
+ const int index = q >> 5;
+ const double divisor =
+ q_div_term[index] +
+ (((q_div_term[index + 1] - q_div_term[index]) * (q % 32)) / 32.0);
+ double error_term = EPMB_SCALER * pow(err_per_mb, power_term);
+ return error_term / divisor;
}
// Similar to find_qindex_by_rate() function in ratectrl.c, but includes
// calculation of a correction_factor.
static int find_qindex_by_rate_with_correction(
int desired_bits_per_mb, aom_bit_depth_t bit_depth, double error_per_mb,
- double group_weight_factor, int rate_err_tol, int best_qindex,
- int worst_qindex) {
+ double group_weight_factor, int best_qindex, int worst_qindex) {
assert(best_qindex <= worst_qindex);
int low = best_qindex;
int high = worst_qindex;
while (low < high) {
const int mid = (low + high) >> 1;
- const double mid_factor = calc_correction_factor(error_per_mb, mid);
+ const double q_factor = calc_correction_factor(error_per_mb, mid);
const double q = av1_convert_qindex_to_q(mid, bit_depth);
- const int enumerator = qbpm_enumerator(rate_err_tol);
- const int mid_bits_per_mb =
- (int)((enumerator * mid_factor * group_weight_factor) / q);
+ const int mid_bits_per_mb = (int)((q_factor * group_weight_factor) / q);
if (mid_bits_per_mb > desired_bits_per_mb) {
low = mid + 1;
@@ -359,8 +339,8 @@ static int get_twopass_worst_quality(AV1_COMP *cpi, const double av_frame_err,
// content at the given rate.
int q = find_qindex_by_rate_with_correction(
target_norm_bits_per_mb, cpi->common.seq_params->bit_depth,
- av_err_per_mb, cpi->ppi->twopass.bpm_factor, rate_err_tol,
- rc->best_quality, rc->worst_quality);
+ av_err_per_mb, cpi->ppi->twopass.bpm_factor, rc->best_quality,
+ rc->worst_quality);
// Restriction on active max q for constrained quality mode.
if (rc_cfg->mode == AOM_CQ) q = AOMMAX(q, rc_cfg->cq_level);
@@ -4235,12 +4215,13 @@ void av1_twopass_postencode_update(AV1_COMP *cpi) {
twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
// If the rate control is drifting consider adjustment to min or maxq.
- if ((rc_cfg->mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref) {
+ if ((rc_cfg->mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref &&
+ (p_rc->rolling_target_bits > 0)) {
int minq_adj_limit;
int maxq_adj_limit;
minq_adj_limit =
(rc_cfg->mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
- maxq_adj_limit = rc->worst_quality - rc->active_worst_quality;
+ maxq_adj_limit = (rc->worst_quality - rc->active_worst_quality);
// Undershoot
if ((rc_cfg->under_shoot_pct < 100) &&
@@ -4252,8 +4233,9 @@ void av1_twopass_postencode_update(AV1_COMP *cpi) {
if ((pct_error >= rc_cfg->under_shoot_pct) &&
(p_rc->rate_error_estimate > 0)) {
twopass->extend_minq += 1;
+ twopass->extend_maxq -= 1;
}
- twopass->extend_maxq -= 1;
+
// Overshoot
} else if ((rc_cfg->over_shoot_pct < 100) &&
(p_rc->rolling_actual_bits > p_rc->rolling_target_bits)) {
@@ -4265,18 +4247,8 @@ void av1_twopass_postencode_update(AV1_COMP *cpi) {
if ((pct_error >= rc_cfg->over_shoot_pct) &&
(p_rc->rate_error_estimate < 0)) {
twopass->extend_maxq += 1;
+ twopass->extend_minq -= 1;
}
- twopass->extend_minq -= 1;
- } else {
- // Adjustment for extreme local overshoot.
- // Only applies when normal adjustment above is not used (e.g.
- // when threshold is set to 100).
- if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
- rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
- ++twopass->extend_maxq;
- // Unwind extreme overshoot adjustment.
- else if (p_rc->rolling_target_bits > p_rc->rolling_actual_bits)
- --twopass->extend_maxq;
}
twopass->extend_minq =
clamp(twopass->extend_minq, -minq_adj_limit, minq_adj_limit);
diff --git a/third_party/aom/av1/encoder/pickcdef.c b/third_party/aom/av1/encoder/pickcdef.c
index 232a2f9edb..ed5fa55f17 100644
--- a/third_party/aom/av1/encoder/pickcdef.c
+++ b/third_party/aom/av1/encoder/pickcdef.c
@@ -894,7 +894,7 @@ void av1_cdef_search(AV1_COMP *cpi) {
int rdmult = cpi->td.mb.rdmult;
for (int i = 0; i <= 3; i++) {
if (i > max_signaling_bits) break;
- int best_lev0[CDEF_MAX_STRENGTHS];
+ int best_lev0[CDEF_MAX_STRENGTHS] = { 0 };
int best_lev1[CDEF_MAX_STRENGTHS] = { 0 };
const int nb_strengths = 1 << i;
uint64_t tot_mse;
diff --git a/third_party/aom/av1/encoder/picklpf.c b/third_party/aom/av1/encoder/picklpf.c
index 9084d3f13a..a504535028 100644
--- a/third_party/aom/av1/encoder/picklpf.c
+++ b/third_party/aom/av1/encoder/picklpf.c
@@ -27,12 +27,25 @@
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
+// AV1 loop filter applies to the whole frame according to mi_rows and mi_cols,
+// which are calculated based on aligned width and aligned height,
+// In addition, if super res is enabled, it copies the whole frame
+// according to the aligned width and height (av1_superres_upscale()).
+// So we need to copy the whole filtered region, instead of the cropped region.
+// For example, input image size is: 160x90.
+// Then src->y_crop_width = 160, src->y_crop_height = 90.
+// The aligned frame size is: src->y_width = 160, src->y_height = 96.
+// AV1 aligns frame size to a multiple of 8, if there is
+// chroma subsampling, it is able to ensure the chroma is also
+// an integer number of mi units. mi unit is 4x4, 8 = 4 * 2, and 2 luma mi
+// units correspond to 1 chroma mi unit if there is subsampling.
+// See: aom_realloc_frame_buffer() in yv12config.c.
static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc,
YV12_BUFFER_CONFIG *dst_bc, int plane) {
switch (plane) {
- case 0: aom_yv12_copy_y(src_bc, dst_bc); break;
- case 1: aom_yv12_copy_u(src_bc, dst_bc); break;
- case 2: aom_yv12_copy_v(src_bc, dst_bc); break;
+ case 0: aom_yv12_copy_y(src_bc, dst_bc, 0); break;
+ case 1: aom_yv12_copy_u(src_bc, dst_bc, 0); break;
+ case 2: aom_yv12_copy_v(src_bc, dst_bc, 0); break;
default: assert(plane >= 0 && plane <= 2); break;
}
}
@@ -311,7 +324,7 @@ void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
&cpi->last_frame_uf, cm->width, cm->height,
seq_params->subsampling_x, seq_params->subsampling_y,
seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, NULL, NULL, NULL, 0, 0))
+ cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
diff --git a/third_party/aom/av1/encoder/pickrst.c b/third_party/aom/av1/encoder/pickrst.c
index 6429064175..b0d0d0bb78 100644
--- a/third_party/aom/av1/encoder/pickrst.c
+++ b/third_party/aom/av1/encoder/pickrst.c
@@ -1103,6 +1103,39 @@ static INLINE int wrap_index(int i, int wiener_win) {
return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
}
+// Splits each w[i] into smaller components w1[i] and w2[i] such that
+// w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i].
+static INLINE void split_wiener_filter_coefficients(int wiener_win,
+ const int32_t *w,
+ int32_t *w1, int32_t *w2) {
+ for (int i = 0; i < wiener_win; i++) {
+ w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR;
+ w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR;
+ assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]);
+ }
+}
+
+// Calculates x * w / WIENER_TAP_SCALE_FACTOR, where
+// w = w1 * WIENER_TAP_SCALE_FACTOR + w2.
+//
+// The multiplication x * w may overflow, so we multiply x by the components of
+// w (w1 and w2) and combine the multiplication with the division.
+static INLINE int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) {
+ // Let y = x * w / WIENER_TAP_SCALE_FACTOR
+ // = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR
+ const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR;
+ // Double-check the calculation using __int128.
+ // TODO(wtc): Remove after 2024-04-30.
+#if !defined(NDEBUG) && defined(__GNUC__) && defined(__LP64__)
+ const int32_t w = w1 * WIENER_TAP_SCALE_FACTOR + w2;
+ const __int128 z = (__int128)x * w / WIENER_TAP_SCALE_FACTOR;
+ assert(z >= INT64_MIN);
+ assert(z <= INT64_MAX);
+ assert(y == (int64_t)z);
+#endif
+ return y;
+}
+
// Solve linear equations to find Wiener filter tap values
// Taps are output scaled by WIENER_FILT_STEP
static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
@@ -1175,10 +1208,12 @@ static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
// Fix vector b, update vector a
static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
- int64_t **Hc, int32_t *a, int32_t *b) {
+ int64_t **Hc, int32_t *a,
+ const int32_t *b) {
int i, j;
int64_t S[WIENER_WIN];
int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
+ int32_t b1[WIENER_WIN], b2[WIENER_WIN];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
@@ -1189,16 +1224,7 @@ static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR;
}
}
-
- // b/274668506: This is the dual branch for the issue in b/272139363. The fix
- // is similar. See comments in update_b_sep_sym() below.
- int32_t max_b_l = 0;
- for (int l = 0; l < wiener_win; ++l) {
- const int32_t abs_b_l = abs(b[l]);
- if (abs_b_l > max_b_l) max_b_l = abs_b_l;
- }
- const int scale_threshold = 128 * WIENER_TAP_SCALE_FACTOR;
- const int scaler = max_b_l < scale_threshold ? 1 : 4;
+ split_wiener_filter_coefficients(wiener_win, b, b1, b2);
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; j++) {
@@ -1207,10 +1233,17 @@ static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
const int kk = wrap_index(k, wiener_win);
for (l = 0; l < wiener_win; ++l) {
const int ll = wrap_index(l, wiener_win);
- B[ll * wiener_halfwin1 + kk] +=
- Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
- (scaler * WIENER_TAP_SCALE_FACTOR) * b[j] /
- (WIENER_TAP_SCALE_FACTOR / scaler);
+ // Calculate
+ // B[ll * wiener_halfwin1 + kk] +=
+ // Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
+ // WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR;
+ //
+ // The last multiplication may overflow, so we combine the last
+ // multiplication with the last division.
+ const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
+ WIENER_TAP_SCALE_FACTOR;
+ // b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j]
+ B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]);
}
}
}
@@ -1246,10 +1279,12 @@ static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
// Fix vector a, update vector b
static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc,
- int64_t **Hc, int32_t *a, int32_t *b) {
+ int64_t **Hc, const int32_t *a,
+ int32_t *b) {
int i, j;
int64_t S[WIENER_WIN];
int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
+ int32_t a1[WIENER_WIN], a2[WIENER_WIN];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
@@ -1260,32 +1295,7 @@ static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc,
A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR;
}
}
-
- // b/272139363: The computation,
- // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
- // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
- // may generate a signed-integer-overflow. Conditionally scale the terms to
- // avoid a potential overflow.
- //
- // Hc contains accumulated correlation statistics and it is desired to leave
- // as much room as possible for Hc. It was experimentally observed that the
- // primary issue manifests itself with the second, a[l], multiply. For
- // max_a_l < WIENER_TAP_SCALE_FACTOR the first multiply with a[k] should not
- // increase dynamic range and the second multiply should hence be safe.
- // Thereafter a safe scale_threshold depends on the actual operational range
- // of Hc. The largest scale_threshold is expected to depend on bit-depth
- // (av1_compute_stats_highbd_c() scales highbd to 8-bit) and maximum
- // restoration-unit size (256), leading up to 32-bit positive numbers in Hc.
- // Noting that the caller, wiener_decompose_sep_sym(), initializes a[...]
- // to a range smaller than 16 bits, the scale_threshold is set as below for
- // convenience.
- int32_t max_a_l = 0;
- for (int l = 0; l < wiener_win; ++l) {
- const int32_t abs_a_l = abs(a[l]);
- if (abs_a_l > max_a_l) max_a_l = abs_a_l;
- }
- const int scale_threshold = 128 * WIENER_TAP_SCALE_FACTOR;
- const int scaler = max_a_l < scale_threshold ? 1 : 4;
+ split_wiener_filter_coefficients(wiener_win, a, a1, a2);
for (i = 0; i < wiener_win; i++) {
const int ii = wrap_index(i, wiener_win);
@@ -1294,10 +1304,17 @@ static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc,
int k, l;
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
- B[jj * wiener_halfwin1 + ii] +=
- Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
- (scaler * WIENER_TAP_SCALE_FACTOR) * a[l] /
- (WIENER_TAP_SCALE_FACTOR / scaler);
+ // Calculate
+ // B[jj * wiener_halfwin1 + ii] +=
+ // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
+ // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
+ //
+ // The last multiplication may overflow, so we combine the last
+ // multiplication with the last division.
+ const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
+ WIENER_TAP_SCALE_FACTOR;
+ // a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l]
+ B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]);
}
}
}
@@ -2050,7 +2067,7 @@ void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
&cpi->trial_frame_rst, cm->superres_upscaled_width,
cm->superres_upscaled_height, seq_params->subsampling_x,
seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
- cm->features.byte_alignment, NULL, NULL, NULL, 0, 0))
+ cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate trial restored frame buffer");
diff --git a/third_party/aom/av1/encoder/ratectrl.c b/third_party/aom/av1/encoder/ratectrl.c
index df86380272..7639484df5 100644
--- a/third_party/aom/av1/encoder/ratectrl.c
+++ b/third_party/aom/av1/encoder/ratectrl.c
@@ -30,6 +30,7 @@
#include "av1/common/seg_common.h"
#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/gop_structure.h"
#include "av1/encoder/random.h"
@@ -405,10 +406,10 @@ void av1_primary_rc_init(const AV1EncoderConfig *oxcf,
p_rc->rate_correction_factors[KF_STD] = 1.0;
p_rc->bits_off_target = p_rc->starting_buffer_level;
- p_rc->rolling_target_bits =
- (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate);
- p_rc->rolling_actual_bits =
- (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate);
+ p_rc->rolling_target_bits = AOMMAX(
+ 1, (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate));
+ p_rc->rolling_actual_bits = AOMMAX(
+ 1, (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate));
}
void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) {
@@ -439,6 +440,7 @@ void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) {
rc->rtc_external_ratectrl = 0;
rc->frame_level_fast_extra_bits = 0;
rc->use_external_qp_one_pass = 0;
+ rc->percent_blocks_inactive = 0;
}
static bool check_buffer_below_thresh(AV1_COMP *cpi, int64_t buffer_level,
@@ -1719,41 +1721,39 @@ static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi,
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
- const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
int active_best_quality = *active_best;
int active_worst_quality = *active_worst;
#if CONFIG_FPMT_TEST
- const int simulate_parallel_frame =
- cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
- cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
- int extend_minq = simulate_parallel_frame ? p_rc->temp_extend_minq
- : cpi->ppi->twopass.extend_minq;
- int extend_maxq = simulate_parallel_frame ? p_rc->temp_extend_maxq
- : cpi->ppi->twopass.extend_maxq;
#endif
// Extension to max or min Q if undershoot or overshoot is outside
// the permitted range.
if (cpi->oxcf.rc_cfg.mode != AOM_Q) {
+#if CONFIG_FPMT_TEST
+ const int simulate_parallel_frame =
+ cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
+ cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
+ const int extend_minq = simulate_parallel_frame
+ ? p_rc->temp_extend_minq
+ : cpi->ppi->twopass.extend_minq;
+ const int extend_maxq = simulate_parallel_frame
+ ? p_rc->temp_extend_maxq
+ : cpi->ppi->twopass.extend_maxq;
+ const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
if (frame_is_intra_only(cm) ||
(!rc->is_src_frame_alt_ref &&
(refresh_frame->golden_frame || is_intrl_arf_boost ||
refresh_frame->alt_ref_frame))) {
-#if CONFIG_FPMT_TEST
active_best_quality -= extend_minq;
active_worst_quality += (extend_maxq / 2);
-#else
- active_best_quality -= cpi->ppi->twopass.extend_minq / 4;
- active_worst_quality += (cpi->ppi->twopass.extend_maxq / 2);
-#endif
} else {
-#if CONFIG_FPMT_TEST
active_best_quality -= extend_minq / 2;
active_worst_quality += extend_maxq;
+ }
#else
- active_best_quality -= cpi->ppi->twopass.extend_minq / 4;
- active_worst_quality += cpi->ppi->twopass.extend_maxq;
+ (void)is_intrl_arf_boost;
+ active_best_quality -= cpi->ppi->twopass.extend_minq / 8;
+ active_worst_quality += cpi->ppi->twopass.extend_maxq / 4;
#endif
- }
}
#ifndef STRICT_RC
@@ -2991,6 +2991,24 @@ void av1_set_rtc_reference_structure_one_layer(AV1_COMP *cpi, int gf_update) {
cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[2] < 7);
}
+static int set_block_is_active(unsigned char *const active_map_4x4, int mi_cols,
+ int mi_rows, int sbi_col, int sbi_row, int sh,
+ int num_4x4) {
+ int r = sbi_row << sh;
+ int c = sbi_col << sh;
+ const int row_max = AOMMIN(num_4x4, mi_rows - r);
+ const int col_max = AOMMIN(num_4x4, mi_cols - c);
+ // Active map is set for 16x16 blocks, so only need to
+ // check over16x16,
+ for (int x = 0; x < row_max; x += 4) {
+ for (int y = 0; y < col_max; y += 4) {
+ if (active_map_4x4[(r + x) * mi_cols + (c + y)] == AM_SEGMENT_ID_ACTIVE)
+ return 1;
+ }
+ }
+ return 0;
+}
+
/*!\brief Check for scene detection, for 1 pass real-time mode.
*
* Compute average source sad (temporal sad: between current source and
@@ -3093,11 +3111,26 @@ static void rc_scene_detection_onepass_rt(AV1_COMP *cpi,
sizeof(*cpi->src_sad_blk_64x64)));
}
}
+ const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
+ const int mi_cols = mi_params->mi_cols;
+ const int mi_rows = mi_params->mi_rows;
+ int sh = (cm->seq_params->sb_size == BLOCK_128X128) ? 5 : 4;
+ int num_4x4 = (cm->seq_params->sb_size == BLOCK_128X128) ? 32 : 16;
+ unsigned char *const active_map_4x4 = cpi->active_map.map;
// Avoid bottom and right border.
for (int sbi_row = 0; sbi_row < sb_rows - border; ++sbi_row) {
for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
- tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
- last_src_ystride);
+ int block_is_active = 1;
+ if (cpi->active_map.enabled && rc->percent_blocks_inactive > 0) {
+ block_is_active = set_block_is_active(active_map_4x4, mi_cols, mi_rows,
+ sbi_col, sbi_row, sh, num_4x4);
+ }
+ if (block_is_active) {
+ tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
+ last_src_ystride);
+ } else {
+ tmp_sad = 0;
+ }
if (cpi->src_sad_blk_64x64 != NULL)
cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad;
if (check_light_change) {
@@ -3456,8 +3489,13 @@ void av1_get_one_pass_rt_params(AV1_COMP *cpi, FRAME_TYPE *const frame_type,
}
}
}
- // Check for scene change: for SVC check on base spatial layer only.
- if (cpi->sf.rt_sf.check_scene_detection && svc->spatial_layer_id == 0) {
+ if (cpi->active_map.enabled && cpi->rc.percent_blocks_inactive == 100) {
+ rc->frame_source_sad = 0;
+ rc->avg_source_sad = (3 * rc->avg_source_sad + rc->frame_source_sad) >> 2;
+ rc->percent_blocks_with_motion = 0;
+ rc->high_source_sad = 0;
+ } else if (cpi->sf.rt_sf.check_scene_detection &&
+ svc->spatial_layer_id == 0) {
if (rc->prev_coded_width == cm->width &&
rc->prev_coded_height == cm->height) {
rc_scene_detection_onepass_rt(cpi, frame_input);
@@ -3522,6 +3560,10 @@ void av1_get_one_pass_rt_params(AV1_COMP *cpi, FRAME_TYPE *const frame_type,
}
}
+#define CHECK_INTER_LAYER_PRED(ref_frame) \
+ ((cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) && \
+ (av1_check_ref_is_low_spatial_res_super_frame(cpi, ref_frame)))
+
int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) {
AV1_COMMON *const cm = &cpi->common;
PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
@@ -3532,12 +3574,26 @@ int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) {
int target_bits_per_mb;
double q2;
int enumerator;
+ int inter_layer_pred_on = 0;
int is_screen_content = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN);
- *q = (3 * cpi->rc.worst_quality + *q) >> 2;
- // For screen content use the max-q set by the user to allow for less
- // overshoot on slide changes.
- if (is_screen_content) *q = cpi->rc.worst_quality;
cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
+ if (cpi->svc.spatial_layer_id > 0) {
+ // For spatial layers: check if inter-layer (spatial) prediction is used
+ // (check if any reference is being used that is the lower spatial layer),
+ inter_layer_pred_on = CHECK_INTER_LAYER_PRED(LAST_FRAME) ||
+ CHECK_INTER_LAYER_PRED(GOLDEN_FRAME) ||
+ CHECK_INTER_LAYER_PRED(ALTREF_FRAME);
+ }
+ // If inter-layer prediction is on: we expect to pull up the quality from
+ // the lower spatial layer, so we can use a lower q.
+ if (cpi->svc.spatial_layer_id > 0 && inter_layer_pred_on) {
+ *q = (cpi->rc.worst_quality + *q) >> 1;
+ } else {
+ *q = (3 * cpi->rc.worst_quality + *q) >> 2;
+ // For screen content use the max-q set by the user to allow for less
+ // overshoot on slide changes.
+ if (is_screen_content) *q = cpi->rc.worst_quality;
+ }
// Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
// these parameters will affect QP selection for subsequent frames. If they
// have settled down to a very different (low QP) state, then not adjusting
@@ -3566,8 +3622,10 @@ int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) {
rate_correction_factor;
}
// For temporal layers: reset the rate control parameters across all
- // temporal layers.
- if (cpi->svc.number_temporal_layers > 1) {
+ // temporal layers. Only do it for spatial enhancement layers when
+ // inter_layer_pred_on is not set (off).
+ if (cpi->svc.number_temporal_layers > 1 &&
+ (cpi->svc.spatial_layer_id == 0 || inter_layer_pred_on == 0)) {
SVC *svc = &cpi->svc;
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
int sl = svc->spatial_layer_id;
diff --git a/third_party/aom/av1/encoder/ratectrl.h b/third_party/aom/av1/encoder/ratectrl.h
index 6802ad42d0..5121a909f4 100644
--- a/third_party/aom/av1/encoder/ratectrl.h
+++ b/third_party/aom/av1/encoder/ratectrl.h
@@ -249,6 +249,9 @@ typedef struct {
// signals if number of blocks with motion is high
int percent_blocks_with_motion;
+ // signals percentage of 16x16 blocks that are inactive, via active_maps
+ int percent_blocks_inactive;
+
// Maximum value of source sad across all blocks of frame.
uint64_t max_block_source_sad;
diff --git a/third_party/aom/av1/encoder/speed_features.c b/third_party/aom/av1/encoder/speed_features.c
index 63d69cadc5..256b6fc9eb 100644
--- a/third_party/aom/av1/encoder/speed_features.c
+++ b/third_party/aom/av1/encoder/speed_features.c
@@ -1177,6 +1177,7 @@ static void set_good_speed_features_framesize_independent(
sf->mv_sf.subpel_search_method = SUBPEL_TREE_PRUNED_MORE;
sf->gm_sf.prune_zero_mv_with_sse = 2;
+ sf->gm_sf.downsample_level = 1;
sf->part_sf.simple_motion_search_prune_agg =
allow_screen_content_tools ? SIMPLE_AGG_LVL0 : SIMPLE_AGG_LVL2;
@@ -1282,6 +1283,8 @@ static void set_good_speed_features_framesize_independent(
sf->hl_sf.disable_extra_sc_testing = 1;
sf->hl_sf.second_alt_ref_filtering = 0;
+ sf->gm_sf.downsample_level = 2;
+
sf->inter_sf.prune_inter_modes_based_on_tpl = boosted ? 0 : 3;
sf->inter_sf.selective_ref_frame = 6;
sf->inter_sf.prune_single_ref = is_boosted_arf2_bwd_type ? 0 : 2;
@@ -1465,6 +1468,7 @@ static void set_rt_speed_feature_framesize_dependent(const AV1_COMP *const cpi,
if (is_360p_or_larger) {
sf->part_sf.fixed_partition_size = BLOCK_32X32;
sf->rt_sf.use_fast_fixed_part = 1;
+ sf->mv_sf.subpel_force_stop = HALF_PEL;
}
sf->rt_sf.increase_source_sad_thresh = 1;
sf->rt_sf.part_early_exit_zeromv = 2;
@@ -1472,6 +1476,7 @@ static void set_rt_speed_feature_framesize_dependent(const AV1_COMP *const cpi,
for (int i = 0; i < BLOCK_SIZES; ++i) {
sf->rt_sf.intra_y_mode_bsize_mask_nrd[i] = INTRA_DC;
}
+ sf->rt_sf.hybrid_intra_pickmode = 0;
}
// Setting for SVC, or when the ref_frame_config control is
// used to set the reference structure.
@@ -1572,13 +1577,13 @@ static void set_rt_speed_feature_framesize_dependent(const AV1_COMP *const cpi,
sf->rt_sf.screen_content_cdef_filter_qindex_thresh = 80;
sf->rt_sf.part_early_exit_zeromv = 1;
sf->rt_sf.nonrd_aggressive_skip = 1;
+ sf->rt_sf.thresh_active_maps_skip_lf_cdef = 90;
}
if (speed >= 11) {
sf->rt_sf.skip_lf_screen = 2;
sf->rt_sf.skip_cdef_sb = 2;
sf->rt_sf.part_early_exit_zeromv = 2;
sf->rt_sf.prune_palette_nonrd = 1;
- sf->rt_sf.set_zeromv_skip_based_on_source_sad = 2;
sf->rt_sf.increase_color_thresh_palette = 0;
}
sf->rt_sf.use_nonrd_altref_frame = 0;
@@ -1974,6 +1979,7 @@ static AOM_INLINE void init_gm_sf(GLOBAL_MOTION_SPEED_FEATURES *gm_sf) {
gm_sf->prune_ref_frame_for_gm_search = 0;
gm_sf->prune_zero_mv_with_sse = 0;
gm_sf->disable_gm_search_based_on_stats = 0;
+ gm_sf->downsample_level = 0;
gm_sf->num_refinement_steps = GM_MAX_REFINEMENT_STEPS;
}
@@ -2270,6 +2276,7 @@ static AOM_INLINE void init_rt_sf(REAL_TIME_SPEED_FEATURES *rt_sf) {
rt_sf->part_early_exit_zeromv = 0;
rt_sf->sse_early_term_inter_search = EARLY_TERM_DISABLED;
rt_sf->skip_lf_screen = 0;
+ rt_sf->thresh_active_maps_skip_lf_cdef = 100;
rt_sf->sad_based_adp_altref_lag = 0;
rt_sf->partition_direct_merging = 0;
rt_sf->var_part_based_on_qidx = 0;
diff --git a/third_party/aom/av1/encoder/speed_features.h b/third_party/aom/av1/encoder/speed_features.h
index 60c000e4f4..d59cb38a71 100644
--- a/third_party/aom/av1/encoder/speed_features.h
+++ b/third_party/aom/av1/encoder/speed_features.h
@@ -587,6 +587,9 @@ typedef struct GLOBAL_MOTION_SPEED_FEATURES {
// GF group
int disable_gm_search_based_on_stats;
+ // Downsampling pyramid level to use for global motion estimation
+ int downsample_level;
+
// Number of refinement steps to apply after initial model generation
int num_refinement_steps;
} GLOBAL_MOTION_SPEED_FEATURES;
@@ -1771,6 +1774,10 @@ typedef struct REAL_TIME_SPEED_FEATURES {
// where rc->high_source_sad = 0 (no slide-changes).
int skip_lf_screen;
+ // Threshold on the active/inactive region percent to disable
+ // the loopfilter and cdef. Setting to 100 disables this feature.
+ int thresh_active_maps_skip_lf_cdef;
+
// For nonrd: early exit out of variance partition that sets the
// block size to superblock size, and sets mode to zeromv-last skip.
// 0: disabled
diff --git a/third_party/aom/av1/encoder/superres_scale.c b/third_party/aom/av1/encoder/superres_scale.c
index 3b47909b15..41225d55ae 100644
--- a/third_party/aom/av1/encoder/superres_scale.c
+++ b/third_party/aom/av1/encoder/superres_scale.c
@@ -404,7 +404,7 @@ void av1_superres_post_encode(AV1_COMP *cpi) {
assert(!is_lossless_requested(&cpi->oxcf.rc_cfg));
assert(!cm->features.all_lossless);
- av1_superres_upscale(cm, NULL, cpi->image_pyramid_levels);
+ av1_superres_upscale(cm, NULL, cpi->alloc_pyramid);
// If regular resizing is occurring the source will need to be downscaled to
// match the upscaled superres resolution. Otherwise the original source is
diff --git a/third_party/aom/av1/encoder/svc_layercontext.c b/third_party/aom/av1/encoder/svc_layercontext.c
index 2c99cb89b8..33da3afbd3 100644
--- a/third_party/aom/av1/encoder/svc_layercontext.c
+++ b/third_party/aom/av1/encoder/svc_layercontext.c
@@ -203,8 +203,10 @@ void av1_update_temporal_layer_framerate(AV1_COMP *const cpi) {
}
}
-static AOM_INLINE bool check_ref_is_low_spatial_res_super_frame(
- int ref_frame, const SVC *svc, const RTC_REF *rtc_ref) {
+bool av1_check_ref_is_low_spatial_res_super_frame(AV1_COMP *const cpi,
+ int ref_frame) {
+ SVC *svc = &cpi->svc;
+ RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
int ref_frame_idx = rtc_ref->ref_idx[ref_frame - 1];
return rtc_ref->buffer_time_index[ref_frame_idx] == svc->current_superframe &&
rtc_ref->buffer_spatial_layer[ref_frame_idx] <=
@@ -253,13 +255,13 @@ void av1_restore_layer_context(AV1_COMP *const cpi) {
// previous spatial layer(s) at the same time (current_superframe).
if (rtc_ref->set_ref_frame_config && svc->force_zero_mode_spatial_ref &&
cpi->sf.rt_sf.use_nonrd_pick_mode) {
- if (check_ref_is_low_spatial_res_super_frame(LAST_FRAME, svc, rtc_ref)) {
+ if (av1_check_ref_is_low_spatial_res_super_frame(cpi, LAST_FRAME)) {
svc->skip_mvsearch_last = 1;
}
- if (check_ref_is_low_spatial_res_super_frame(GOLDEN_FRAME, svc, rtc_ref)) {
+ if (av1_check_ref_is_low_spatial_res_super_frame(cpi, GOLDEN_FRAME)) {
svc->skip_mvsearch_gf = 1;
}
- if (check_ref_is_low_spatial_res_super_frame(ALTREF_FRAME, svc, rtc_ref)) {
+ if (av1_check_ref_is_low_spatial_res_super_frame(cpi, ALTREF_FRAME)) {
svc->skip_mvsearch_altref = 1;
}
}
diff --git a/third_party/aom/av1/encoder/svc_layercontext.h b/third_party/aom/av1/encoder/svc_layercontext.h
index 93118be2d4..d56ea77791 100644
--- a/third_party/aom/av1/encoder/svc_layercontext.h
+++ b/third_party/aom/av1/encoder/svc_layercontext.h
@@ -223,6 +223,21 @@ void av1_update_layer_context_change_config(struct AV1_COMP *const cpi,
*/
void av1_update_temporal_layer_framerate(struct AV1_COMP *const cpi);
+/*!\brief Prior to check if reference is lower spatial layer at the same
+ * timestamp/superframe.
+ *
+ * \ingroup SVC
+ * \callgraph
+ * \callergraph
+ *
+ * \param[in] cpi Top level encoder structure
+ * \param[in] ref_frame Reference frame
+ *
+ * \return True if the ref_frame if lower spatial layer, otherwise false.
+ */
+bool av1_check_ref_is_low_spatial_res_super_frame(struct AV1_COMP *const cpi,
+ int ref_frame);
+
/*!\brief Prior to encoding the frame, set the layer context, for the current
layer to be encoded, to the cpi struct.
*
diff --git a/third_party/aom/av1/encoder/temporal_filter.c b/third_party/aom/av1/encoder/temporal_filter.c
index 7d4d25de6a..e8cc145030 100644
--- a/third_party/aom/av1/encoder/temporal_filter.c
+++ b/third_party/aom/av1/encoder/temporal_filter.c
@@ -463,12 +463,12 @@ static void tf_build_predictor(const YV12_BUFFER_CONFIG *ref_frame,
// Returns:
// Nothing will be returned. But the content to which `accum` and `pred`
// point will be modified.
-void tf_apply_temporal_filter_self(const YV12_BUFFER_CONFIG *ref_frame,
- const MACROBLOCKD *mbd,
- const BLOCK_SIZE block_size,
- const int mb_row, const int mb_col,
- const int num_planes, uint32_t *accum,
- uint16_t *count) {
+static void tf_apply_temporal_filter_self(const YV12_BUFFER_CONFIG *ref_frame,
+ const MACROBLOCKD *mbd,
+ const BLOCK_SIZE block_size,
+ const int mb_row, const int mb_col,
+ const int num_planes, uint32_t *accum,
+ uint16_t *count) {
// Block information.
const int mb_height = block_size_high[block_size];
const int mb_width = block_size_wide[block_size];
@@ -564,9 +564,10 @@ static INLINE void compute_square_diff(const uint8_t *ref, const int ref_offset,
// Returns:
// Nothing will be returned. But the content to which `luma_sse_sum` points
// will be modified.
-void compute_luma_sq_error_sum(uint32_t *square_diff, uint32_t *luma_sse_sum,
- int block_height, int block_width,
- int ss_x_shift, int ss_y_shift) {
+static void compute_luma_sq_error_sum(uint32_t *square_diff,
+ uint32_t *luma_sse_sum, int block_height,
+ int block_width, int ss_x_shift,
+ int ss_y_shift) {
for (int i = 0; i < block_height; ++i) {
for (int j = 0; j < block_width; ++j) {
for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
@@ -1456,7 +1457,7 @@ bool av1_tf_info_alloc(TEMPORAL_FILTER_INFO *tf_info, const AV1_COMP *cpi) {
oxcf->frm_dim_cfg.height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
- NULL, cpi->image_pyramid_levels, 0)) {
+ NULL, cpi->alloc_pyramid, 0)) {
return false;
}
}
diff --git a/third_party/aom/av1/encoder/temporal_filter.h b/third_party/aom/av1/encoder/temporal_filter.h
index 6504b91b66..a40fb039b9 100644
--- a/third_party/aom/av1/encoder/temporal_filter.h
+++ b/third_party/aom/av1/encoder/temporal_filter.h
@@ -14,6 +14,8 @@
#include <stdbool.h>
+#include "aom_util/aom_pthread.h"
+
#ifdef __cplusplus
extern "C" {
#endif
diff --git a/third_party/aom/av1/encoder/tpl_model.c b/third_party/aom/av1/encoder/tpl_model.c
index ca60e4981e..86f5485a26 100644
--- a/third_party/aom/av1/encoder/tpl_model.c
+++ b/third_party/aom/av1/encoder/tpl_model.c
@@ -19,6 +19,7 @@
#include "config/aom_scale_rtcd.h"
#include "aom/aom_codec.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/enums.h"
@@ -193,7 +194,7 @@ void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
&tpl_data->tpl_rec_pool[frame], width, height,
seq_params->subsampling_x, seq_params->subsampling_y,
seq_params->use_highbitdepth, tpl_data->border_in_pixels,
- byte_alignment, 0, alloc_y_plane_only))
+ byte_alignment, false, alloc_y_plane_only))
aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
diff --git a/third_party/aom/av1/encoder/tpl_model.h b/third_party/aom/av1/encoder/tpl_model.h
index bcd58216c5..0150c702f9 100644
--- a/third_party/aom/av1/encoder/tpl_model.h
+++ b/third_party/aom/av1/encoder/tpl_model.h
@@ -30,6 +30,7 @@ struct TPL_INFO;
#include "config/aom_config.h"
#include "aom_scale/yv12config.h"
+#include "aom_util/aom_pthread.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
diff --git a/third_party/aom/av1/encoder/tune_butteraugli.c b/third_party/aom/av1/encoder/tune_butteraugli.c
index 92fc4b2a92..4381af6a8b 100644
--- a/third_party/aom/av1/encoder/tune_butteraugli.c
+++ b/third_party/aom/av1/encoder/tune_butteraugli.c
@@ -209,7 +209,7 @@ void av1_setup_butteraugli_source(AV1_COMP *cpi) {
if (dst->buffer_alloc_sz == 0) {
aom_alloc_frame_buffer(
dst, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth,
- cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0);
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0);
}
av1_copy_and_extend_frame(cpi->source, dst);
@@ -218,7 +218,7 @@ void av1_setup_butteraugli_source(AV1_COMP *cpi) {
aom_alloc_frame_buffer(
resized_dst, width / resize_factor, height / resize_factor, ss_x, ss_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
}
if (!av1_resize_and_extend_frame_nonnormative(
cpi->source, resized_dst, bit_depth, av1_num_planes(cm))) {
@@ -244,7 +244,7 @@ void av1_setup_butteraugli_rdmult_and_restore_source(AV1_COMP *cpi, double K) {
aom_alloc_frame_buffer(
&resized_recon, width / resize_factor, height / resize_factor, ss_x, ss_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
copy_img(&cpi->common.cur_frame->buf, &resized_recon, width / resize_factor,
height / resize_factor);
@@ -267,12 +267,12 @@ void av1_setup_butteraugli_rdmult(AV1_COMP *cpi) {
cpi->source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter,
- 0, false, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels);
+ 0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
if (cpi->unscaled_last_source != NULL) {
cpi->last_source = av1_realloc_and_scale_if_required(
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels,
- cpi->image_pyramid_levels);
+ cpi->alloc_pyramid);
}
av1_setup_butteraugli_source(cpi);
diff --git a/third_party/aom/av1/encoder/tune_vmaf.c b/third_party/aom/av1/encoder/tune_vmaf.c
index 4e5ffa387c..91db3db726 100644
--- a/third_party/aom/av1/encoder/tune_vmaf.c
+++ b/third_party/aom/av1/encoder/tune_vmaf.c
@@ -288,10 +288,10 @@ static AOM_INLINE void gaussian_blur(const int bit_depth,
}
}
-static AOM_INLINE double cal_approx_vmaf(const AV1_COMP *const cpi,
- double source_variance,
- YV12_BUFFER_CONFIG *const source,
- YV12_BUFFER_CONFIG *const sharpened) {
+static AOM_INLINE double cal_approx_vmaf(
+ const AV1_COMP *const cpi, double source_variance,
+ const YV12_BUFFER_CONFIG *const source,
+ const YV12_BUFFER_CONFIG *const sharpened) {
const int bit_depth = cpi->td.mb.e_mbd.bd;
const bool cal_vmaf_neg =
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN;
@@ -305,11 +305,11 @@ static AOM_INLINE double cal_approx_vmaf(const AV1_COMP *const cpi,
}
static double find_best_frame_unsharp_amount_loop(
- const AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const source,
- YV12_BUFFER_CONFIG *const blurred, YV12_BUFFER_CONFIG *const sharpened,
- double best_vmaf, const double baseline_variance,
- const double unsharp_amount_start, const double step_size,
- const int max_loop_count, const double max_amount) {
+ const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source,
+ const YV12_BUFFER_CONFIG *const blurred,
+ const YV12_BUFFER_CONFIG *const sharpened, double best_vmaf,
+ const double baseline_variance, const double unsharp_amount_start,
+ const double step_size, const int max_loop_count, const double max_amount) {
const double min_amount = 0.0;
int loop_count = 0;
double approx_vmaf = best_vmaf;
@@ -328,13 +328,11 @@ static double find_best_frame_unsharp_amount_loop(
return AOMMIN(max_amount, AOMMAX(unsharp_amount, min_amount));
}
-static double find_best_frame_unsharp_amount(const AV1_COMP *const cpi,
- YV12_BUFFER_CONFIG *const source,
- YV12_BUFFER_CONFIG *const blurred,
- const double unsharp_amount_start,
- const double step_size,
- const int max_loop_count,
- const double max_filter_amount) {
+static double find_best_frame_unsharp_amount(
+ const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source,
+ const YV12_BUFFER_CONFIG *const blurred, const double unsharp_amount_start,
+ const double step_size, const int max_loop_count,
+ const double max_filter_amount) {
const AV1_COMMON *const cm = &cpi->common;
const int width = source->y_width;
const int height = source->y_height;
@@ -343,7 +341,7 @@ static double find_best_frame_unsharp_amount(const AV1_COMP *const cpi,
aom_alloc_frame_buffer(
&sharpened, width, height, source->subsampling_x, source->subsampling_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
const double baseline_variance = frame_average_variance(cpi, source);
double unsharp_amount;
@@ -376,7 +374,7 @@ static double find_best_frame_unsharp_amount(const AV1_COMP *const cpi,
}
void av1_vmaf_neg_preprocessing(AV1_COMP *const cpi,
- YV12_BUFFER_CONFIG *const source) {
+ const YV12_BUFFER_CONFIG *const source) {
const AV1_COMMON *const cm = &cpi->common;
const int bit_depth = cpi->td.mb.e_mbd.bd;
const int width = source->y_width;
@@ -395,7 +393,7 @@ void av1_vmaf_neg_preprocessing(AV1_COMP *const cpi,
aom_alloc_frame_buffer(
&blurred, width, height, source->subsampling_x, source->subsampling_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
gaussian_blur(bit_depth, source, &blurred);
unsharp(cpi, source, &blurred, source, best_frame_unsharp_amount);
@@ -403,7 +401,7 @@ void av1_vmaf_neg_preprocessing(AV1_COMP *const cpi,
}
void av1_vmaf_frame_preprocessing(AV1_COMP *const cpi,
- YV12_BUFFER_CONFIG *const source) {
+ const YV12_BUFFER_CONFIG *const source) {
const AV1_COMMON *const cm = &cpi->common;
const int bit_depth = cpi->td.mb.e_mbd.bd;
const int width = source->y_width;
@@ -415,11 +413,11 @@ void av1_vmaf_frame_preprocessing(AV1_COMP *const cpi,
aom_alloc_frame_buffer(
&source_extended, width, height, source->subsampling_x,
source->subsampling_y, cm->seq_params->use_highbitdepth,
- cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0);
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(
&blurred, width, height, source->subsampling_x, source->subsampling_y,
cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
av1_copy_and_extend_frame(source, &source_extended);
gaussian_blur(bit_depth, &source_extended, &blurred);
@@ -442,7 +440,7 @@ void av1_vmaf_frame_preprocessing(AV1_COMP *const cpi,
}
void av1_vmaf_blk_preprocessing(AV1_COMP *const cpi,
- YV12_BUFFER_CONFIG *const source) {
+ const YV12_BUFFER_CONFIG *const source) {
const AV1_COMMON *const cm = &cpi->common;
const int width = source->y_width;
const int height = source->y_height;
@@ -455,11 +453,11 @@ void av1_vmaf_blk_preprocessing(AV1_COMP *const cpi,
memset(&source_extended, 0, sizeof(source_extended));
aom_alloc_frame_buffer(
&blurred, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth,
- cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0);
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(&source_extended, width, height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
av1_copy_and_extend_frame(source, &source_extended);
gaussian_blur(bit_depth, &source_extended, &blurred);
@@ -495,11 +493,11 @@ void av1_vmaf_blk_preprocessing(AV1_COMP *const cpi,
aom_alloc_frame_buffer(&source_block, block_w, block_h, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(&blurred_block, block_w, block_h, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
@@ -622,7 +620,7 @@ void av1_set_mb_vmaf_rdmult_scaling(AV1_COMP *cpi) {
aom_alloc_frame_buffer(
&resized_source, y_width / resize_factor, y_height / resize_factor, ss_x,
ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
if (!av1_resize_and_extend_frame_nonnormative(
cpi->source, &resized_source, bit_depth, av1_num_planes(cm))) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
@@ -643,7 +641,7 @@ void av1_set_mb_vmaf_rdmult_scaling(AV1_COMP *cpi) {
aom_alloc_frame_buffer(&blurred, resized_y_width, resized_y_height, ss_x,
ss_y, cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
gaussian_blur(bit_depth, &resized_source, &blurred);
YV12_BUFFER_CONFIG recon;
@@ -651,7 +649,7 @@ void av1_set_mb_vmaf_rdmult_scaling(AV1_COMP *cpi) {
aom_alloc_frame_buffer(&recon, resized_y_width, resized_y_height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_yv12_copy_frame(&resized_source, &recon, 1);
VmafContext *vmaf_context;
@@ -830,15 +828,15 @@ static double calc_vmaf_motion_score(const AV1_COMP *const cpi,
aom_alloc_frame_buffer(&blurred_cur, y_width, y_height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(&blurred_last, y_width, y_height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(&blurred_next, y_width, y_height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
gaussian_blur(bit_depth, cur, &blurred_cur);
gaussian_blur(bit_depth, last, &blurred_last);
@@ -881,8 +879,8 @@ static double calc_vmaf_motion_score(const AV1_COMP *const cpi,
}
static AOM_INLINE void get_neighbor_frames(const AV1_COMP *const cpi,
- YV12_BUFFER_CONFIG **last,
- YV12_BUFFER_CONFIG **next) {
+ const YV12_BUFFER_CONFIG **last,
+ const YV12_BUFFER_CONFIG **next) {
const AV1_COMMON *const cm = &cpi->common;
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
const int src_index =
@@ -920,7 +918,7 @@ int av1_get_vmaf_base_qindex(const AV1_COMP *const cpi, int current_qindex) {
if (approx_sse < sse_threshold || approx_dvmaf < vmaf_threshold) {
return current_qindex;
}
- YV12_BUFFER_CONFIG *cur_buf = cpi->source;
+ const YV12_BUFFER_CONFIG *cur_buf = cpi->source;
if (cm->show_frame == 0) {
const int src_index = gf_group->arf_src_offset[cpi->gf_frame_index];
struct lookahead_entry *cur_entry = av1_lookahead_peek(
@@ -929,7 +927,7 @@ int av1_get_vmaf_base_qindex(const AV1_COMP *const cpi, int current_qindex) {
}
assert(cur_buf);
- YV12_BUFFER_CONFIG *next_buf, *last_buf;
+ const YV12_BUFFER_CONFIG *next_buf, *last_buf;
get_neighbor_frames(cpi, &last_buf, &next_buf);
assert(last_buf);
@@ -954,8 +952,8 @@ int av1_get_vmaf_base_qindex(const AV1_COMP *const cpi, int current_qindex) {
static AOM_INLINE double cal_approx_score(
AV1_COMP *const cpi, double src_variance, double new_variance,
- double src_score, YV12_BUFFER_CONFIG *const src,
- YV12_BUFFER_CONFIG *const recon_sharpened) {
+ double src_score, const YV12_BUFFER_CONFIG *const src,
+ const YV12_BUFFER_CONFIG *const recon_sharpened) {
double score;
const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
const bool cal_vmaf_neg =
@@ -967,11 +965,12 @@ static AOM_INLINE double cal_approx_score(
static double find_best_frame_unsharp_amount_loop_neg(
AV1_COMP *const cpi, double src_variance, double base_score,
- YV12_BUFFER_CONFIG *const src, YV12_BUFFER_CONFIG *const recon,
- YV12_BUFFER_CONFIG *const ref, YV12_BUFFER_CONFIG *const src_blurred,
- YV12_BUFFER_CONFIG *const recon_blurred,
- YV12_BUFFER_CONFIG *const src_sharpened,
- YV12_BUFFER_CONFIG *const recon_sharpened, FULLPEL_MV *mvs,
+ const YV12_BUFFER_CONFIG *const src, const YV12_BUFFER_CONFIG *const recon,
+ const YV12_BUFFER_CONFIG *const ref,
+ const YV12_BUFFER_CONFIG *const src_blurred,
+ const YV12_BUFFER_CONFIG *const recon_blurred,
+ const YV12_BUFFER_CONFIG *const src_sharpened,
+ const YV12_BUFFER_CONFIG *const recon_sharpened, FULLPEL_MV *mvs,
double best_score, const double unsharp_amount_start,
const double step_size, const int max_loop_count, const double max_amount) {
const double min_amount = 0.0;
@@ -999,8 +998,8 @@ static double find_best_frame_unsharp_amount_loop_neg(
}
static double find_best_frame_unsharp_amount_neg(
- AV1_COMP *const cpi, YV12_BUFFER_CONFIG *const src,
- YV12_BUFFER_CONFIG *const recon, YV12_BUFFER_CONFIG *const ref,
+ AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const src,
+ const YV12_BUFFER_CONFIG *const recon, const YV12_BUFFER_CONFIG *const ref,
double base_score, const double unsharp_amount_start,
const double step_size, const int max_loop_count,
const double max_filter_amount) {
@@ -1023,18 +1022,18 @@ static double find_best_frame_unsharp_amount_neg(
aom_alloc_frame_buffer(&recon_sharpened, width, height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(&src_sharpened, width, height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(&recon_blurred, width, height, ss_x, ss_y,
cm->seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels,
- cm->features.byte_alignment, 0, 0);
+ cm->features.byte_alignment, false, 0);
aom_alloc_frame_buffer(
&src_blurred, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth,
- cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0);
+ cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0);
gaussian_blur(bit_depth, recon, &recon_blurred);
gaussian_blur(bit_depth, src, &src_blurred);
@@ -1076,8 +1075,8 @@ static double find_best_frame_unsharp_amount_neg(
}
void av1_update_vmaf_curve(AV1_COMP *cpi) {
- YV12_BUFFER_CONFIG *source = cpi->source;
- YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf;
+ const YV12_BUFFER_CONFIG *source = cpi->source;
+ const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf;
const int bit_depth = cpi->td.mb.e_mbd.bd;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int layer_depth =
@@ -1099,7 +1098,7 @@ void av1_update_vmaf_curve(AV1_COMP *cpi) {
}
if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
- YV12_BUFFER_CONFIG *last, *next;
+ const YV12_BUFFER_CONFIG *last, *next;
get_neighbor_frames(cpi, &last, &next);
double best_unsharp_amount_start =
get_layer_value(cpi->vmaf_info.last_frame_unsharp_amount, layer_depth);
diff --git a/third_party/aom/av1/encoder/tune_vmaf.h b/third_party/aom/av1/encoder/tune_vmaf.h
index a04a29e6fe..404fd1029a 100644
--- a/third_party/aom/av1/encoder/tune_vmaf.h
+++ b/third_party/aom/av1/encoder/tune_vmaf.h
@@ -43,13 +43,13 @@ typedef struct {
struct AV1_COMP;
void av1_vmaf_blk_preprocessing(struct AV1_COMP *cpi,
- YV12_BUFFER_CONFIG *source);
+ const YV12_BUFFER_CONFIG *source);
void av1_vmaf_frame_preprocessing(struct AV1_COMP *cpi,
- YV12_BUFFER_CONFIG *source);
+ const YV12_BUFFER_CONFIG *source);
void av1_vmaf_neg_preprocessing(struct AV1_COMP *cpi,
- YV12_BUFFER_CONFIG *source);
+ const YV12_BUFFER_CONFIG *source);
void av1_set_mb_vmaf_rdmult_scaling(struct AV1_COMP *cpi);
diff --git a/third_party/aom/av1/encoder/tx_search.c b/third_party/aom/av1/encoder/tx_search.c
index 7292c01191..5dcc08c0ff 100644
--- a/third_party/aom/av1/encoder/tx_search.c
+++ b/third_party/aom/av1/encoder/tx_search.c
@@ -1109,13 +1109,11 @@ static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
*out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
}
-uint16_t prune_txk_type_separ(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
- int block, TX_SIZE tx_size, int blk_row,
- int blk_col, BLOCK_SIZE plane_bsize, int *txk_map,
- int16_t allowed_tx_mask, int prune_factor,
- const TXB_CTX *const txb_ctx,
- int reduced_tx_set_used, int64_t ref_best_rd,
- int num_sel) {
+static uint16_t prune_txk_type_separ(
+ const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
+ int blk_row, int blk_col, BLOCK_SIZE plane_bsize, int *txk_map,
+ int16_t allowed_tx_mask, int prune_factor, const TXB_CTX *const txb_ctx,
+ int reduced_tx_set_used, int64_t ref_best_rd, int num_sel) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
@@ -1255,11 +1253,12 @@ uint16_t prune_txk_type_separ(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
return prune;
}
-uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
- int block, TX_SIZE tx_size, int blk_row, int blk_col,
- BLOCK_SIZE plane_bsize, int *txk_map,
- uint16_t allowed_tx_mask, int prune_factor,
- const TXB_CTX *const txb_ctx, int reduced_tx_set_used) {
+static uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
+ int block, TX_SIZE tx_size, int blk_row,
+ int blk_col, BLOCK_SIZE plane_bsize,
+ int *txk_map, uint16_t allowed_tx_mask,
+ int prune_factor, const TXB_CTX *const txb_ctx,
+ int reduced_tx_set_used) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int tx_type;
diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c
index a4def754b0..31cc37db7a 100644
--- a/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c
+++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c
@@ -2638,6 +2638,11 @@ void av1_lowbd_fwd_txfm2d_16x64_sse2(const int16_t *input, int32_t *output,
}
}
+// Include top-level function only for 32-bit x86, to support Valgrind.
+// For normal use, we require SSE4.1, so av1_lowbd_fwd_txfm_sse4_1 will be used
+// instead of this function. However, 32-bit Valgrind does not support SSE4.1,
+// so we include a fallback to SSE2 to improve performance
+#if AOM_ARCH_X86
static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = {
av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform
av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform
@@ -2671,3 +2676,4 @@ void av1_lowbd_fwd_txfm_sse2(const int16_t *src_diff, tran_low_t *coeff,
fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type,
txfm_param->bd);
}
+#endif // AOM_ARCH_X86
diff --git a/third_party/aom/av1/encoder/x86/cnn_avx2.c b/third_party/aom/av1/encoder/x86/cnn_avx2.c
index ee93b3d5a0..9c26a56641 100644
--- a/third_party/aom/av1/encoder/x86/cnn_avx2.c
+++ b/third_party/aom/av1/encoder/x86/cnn_avx2.c
@@ -466,7 +466,7 @@ static INLINE void cnn_convolve_no_maxpool_padding_valid_layer2_avx2(
// As per the layer config set by av1_intra_mode_cnn_partition_cnn_config,
// the filter_width and filter_height are equal to 2 for layer >= 1. So
// convolution happens at 2x2 for layer >= 1.
-void cnn_convolve_no_maxpool_padding_valid_2x2_avx2(
+static void cnn_convolve_no_maxpool_padding_valid_2x2_avx2(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
int start_idx, const int cstep, const int channel_step) {