summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/compressed_dc.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/jpeg-xl/lib/jxl/compressed_dc.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/compressed_dc.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/compressed_dc.cc313
1 files changed, 313 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/compressed_dc.cc b/third_party/jpeg-xl/lib/jxl/compressed_dc.cc
new file mode 100644
index 0000000000..b21b1da18b
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/compressed_dc.cc
@@ -0,0 +1,313 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/compressed_dc.h"
+
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <algorithm>
+#include <array>
+#include <memory>
+#include <utility>
+#include <vector>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/compressed_dc.cc"
+#include <hwy/aligned_allocator.h>
+#include <hwy/foreach_target.h>
+#include <hwy/highway.h>
+
+#include "lib/jxl/ac_strategy.h"
+#include "lib/jxl/ans_params.h"
+#include "lib/jxl/base/bits.h"
+#include "lib/jxl/base/compiler_specific.h"
+#include "lib/jxl/base/data_parallel.h"
+#include "lib/jxl/base/status.h"
+#include "lib/jxl/chroma_from_luma.h"
+#include "lib/jxl/dec_ans.h"
+#include "lib/jxl/dec_bit_reader.h"
+#include "lib/jxl/dec_cache.h"
+#include "lib/jxl/entropy_coder.h"
+#include "lib/jxl/image.h"
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+
+using D = HWY_FULL(float);
+using DScalar = HWY_CAPPED(float, 1);
+
+// These templates are not found via ADL.
+using hwy::HWY_NAMESPACE::Abs;
+using hwy::HWY_NAMESPACE::Add;
+using hwy::HWY_NAMESPACE::Div;
+using hwy::HWY_NAMESPACE::Max;
+using hwy::HWY_NAMESPACE::Mul;
+using hwy::HWY_NAMESPACE::MulAdd;
+using hwy::HWY_NAMESPACE::Rebind;
+using hwy::HWY_NAMESPACE::Sub;
+using hwy::HWY_NAMESPACE::Vec;
+using hwy::HWY_NAMESPACE::ZeroIfNegative;
+
+// TODO(veluca): optimize constants.
+const float w1 = 0.20345139757231578f;
+const float w2 = 0.0334829185968739f;
+const float w0 = 1.0f - 4.0f * (w1 + w2);
+
+template <class V>
+V MaxWorkaround(V a, V b) {
+#if (HWY_TARGET == HWY_AVX3) && HWY_COMPILER_CLANG <= 800
+ // Prevents "Do not know how to split the result of this operator" error
+ return IfThenElse(a > b, a, b);
+#else
+ return Max(a, b);
+#endif
+}
+
+template <typename D>
+JXL_INLINE void ComputePixelChannel(const D d, const float dc_factor,
+ const float* JXL_RESTRICT row_top,
+ const float* JXL_RESTRICT row,
+ const float* JXL_RESTRICT row_bottom,
+ Vec<D>* JXL_RESTRICT mc,
+ Vec<D>* JXL_RESTRICT sm,
+ Vec<D>* JXL_RESTRICT gap, size_t x) {
+ const auto tl = LoadU(d, row_top + x - 1);
+ const auto tc = Load(d, row_top + x);
+ const auto tr = LoadU(d, row_top + x + 1);
+
+ const auto ml = LoadU(d, row + x - 1);
+ *mc = Load(d, row + x);
+ const auto mr = LoadU(d, row + x + 1);
+
+ const auto bl = LoadU(d, row_bottom + x - 1);
+ const auto bc = Load(d, row_bottom + x);
+ const auto br = LoadU(d, row_bottom + x + 1);
+
+ const auto w_center = Set(d, w0);
+ const auto w_side = Set(d, w1);
+ const auto w_corner = Set(d, w2);
+
+ const auto corner = Add(Add(tl, tr), Add(bl, br));
+ const auto side = Add(Add(ml, mr), Add(tc, bc));
+ *sm = MulAdd(corner, w_corner, MulAdd(side, w_side, Mul(*mc, w_center)));
+
+ const auto dc_quant = Set(d, dc_factor);
+ *gap = MaxWorkaround(*gap, Abs(Div(Sub(*mc, *sm), dc_quant)));
+}
+
+template <typename D>
+JXL_INLINE void ComputePixel(
+ const float* JXL_RESTRICT dc_factors,
+ const float* JXL_RESTRICT* JXL_RESTRICT rows_top,
+ const float* JXL_RESTRICT* JXL_RESTRICT rows,
+ const float* JXL_RESTRICT* JXL_RESTRICT rows_bottom,
+ float* JXL_RESTRICT* JXL_RESTRICT out_rows, size_t x) {
+ const D d;
+ auto mc_x = Undefined(d);
+ auto mc_y = Undefined(d);
+ auto mc_b = Undefined(d);
+ auto sm_x = Undefined(d);
+ auto sm_y = Undefined(d);
+ auto sm_b = Undefined(d);
+ auto gap = Set(d, 0.5f);
+ ComputePixelChannel(d, dc_factors[0], rows_top[0], rows[0], rows_bottom[0],
+ &mc_x, &sm_x, &gap, x);
+ ComputePixelChannel(d, dc_factors[1], rows_top[1], rows[1], rows_bottom[1],
+ &mc_y, &sm_y, &gap, x);
+ ComputePixelChannel(d, dc_factors[2], rows_top[2], rows[2], rows_bottom[2],
+ &mc_b, &sm_b, &gap, x);
+ auto factor = MulAdd(Set(d, -4.0f), gap, Set(d, 3.0f));
+ factor = ZeroIfNegative(factor);
+
+ auto out = MulAdd(Sub(sm_x, mc_x), factor, mc_x);
+ Store(out, d, out_rows[0] + x);
+ out = MulAdd(Sub(sm_y, mc_y), factor, mc_y);
+ Store(out, d, out_rows[1] + x);
+ out = MulAdd(Sub(sm_b, mc_b), factor, mc_b);
+ Store(out, d, out_rows[2] + x);
+}
+
+void AdaptiveDCSmoothing(const float* dc_factors, Image3F* dc,
+ ThreadPool* pool) {
+ const size_t xsize = dc->xsize();
+ const size_t ysize = dc->ysize();
+ if (ysize <= 2 || xsize <= 2) return;
+
+ // TODO(veluca): use tile-based processing?
+ // TODO(veluca): decide if changes to the y channel should be propagated to
+ // the x and b channels through color correlation.
+ JXL_ASSERT(w1 + w2 < 0.25f);
+
+ Image3F smoothed(xsize, ysize);
+ // Fill in borders that the loop below will not. First and last are unused.
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t y : {size_t(0), ysize - 1}) {
+ memcpy(smoothed.PlaneRow(c, y), dc->PlaneRow(c, y),
+ xsize * sizeof(float));
+ }
+ }
+ auto process_row = [&](const uint32_t y, size_t /*thread*/) {
+ const float* JXL_RESTRICT rows_top[3]{
+ dc->ConstPlaneRow(0, y - 1),
+ dc->ConstPlaneRow(1, y - 1),
+ dc->ConstPlaneRow(2, y - 1),
+ };
+ const float* JXL_RESTRICT rows[3] = {
+ dc->ConstPlaneRow(0, y),
+ dc->ConstPlaneRow(1, y),
+ dc->ConstPlaneRow(2, y),
+ };
+ const float* JXL_RESTRICT rows_bottom[3] = {
+ dc->ConstPlaneRow(0, y + 1),
+ dc->ConstPlaneRow(1, y + 1),
+ dc->ConstPlaneRow(2, y + 1),
+ };
+ float* JXL_RESTRICT rows_out[3] = {
+ smoothed.PlaneRow(0, y),
+ smoothed.PlaneRow(1, y),
+ smoothed.PlaneRow(2, y),
+ };
+ for (size_t x : {size_t(0), xsize - 1}) {
+ for (size_t c = 0; c < 3; c++) {
+ rows_out[c][x] = rows[c][x];
+ }
+ }
+
+ size_t x = 1;
+ // First pixels
+ const size_t N = Lanes(D());
+ for (; x < std::min(N, xsize - 1); x++) {
+ ComputePixel<DScalar>(dc_factors, rows_top, rows, rows_bottom, rows_out,
+ x);
+ }
+ // Full vectors.
+ for (; x + N <= xsize - 1; x += N) {
+ ComputePixel<D>(dc_factors, rows_top, rows, rows_bottom, rows_out, x);
+ }
+ // Last pixels.
+ for (; x < xsize - 1; x++) {
+ ComputePixel<DScalar>(dc_factors, rows_top, rows, rows_bottom, rows_out,
+ x);
+ }
+ };
+ JXL_CHECK(RunOnPool(pool, 1, ysize - 1, ThreadPool::NoInit, process_row,
+ "DCSmoothingRow"));
+ dc->Swap(smoothed);
+}
+
+// DC dequantization.
+void DequantDC(const Rect& r, Image3F* dc, ImageB* quant_dc, const Image& in,
+ const float* dc_factors, float mul, const float* cfl_factors,
+ YCbCrChromaSubsampling chroma_subsampling,
+ const BlockCtxMap& bctx) {
+ const HWY_FULL(float) df;
+ const Rebind<pixel_type, HWY_FULL(float)> di; // assumes pixel_type <= float
+ if (chroma_subsampling.Is444()) {
+ const auto fac_x = Set(df, dc_factors[0] * mul);
+ const auto fac_y = Set(df, dc_factors[1] * mul);
+ const auto fac_b = Set(df, dc_factors[2] * mul);
+ const auto cfl_fac_x = Set(df, cfl_factors[0]);
+ const auto cfl_fac_b = Set(df, cfl_factors[2]);
+ for (size_t y = 0; y < r.ysize(); y++) {
+ float* dec_row_x = r.PlaneRow(dc, 0, y);
+ float* dec_row_y = r.PlaneRow(dc, 1, y);
+ float* dec_row_b = r.PlaneRow(dc, 2, y);
+ const int32_t* quant_row_x = in.channel[1].plane.Row(y);
+ const int32_t* quant_row_y = in.channel[0].plane.Row(y);
+ const int32_t* quant_row_b = in.channel[2].plane.Row(y);
+ for (size_t x = 0; x < r.xsize(); x += Lanes(di)) {
+ const auto in_q_x = Load(di, quant_row_x + x);
+ const auto in_q_y = Load(di, quant_row_y + x);
+ const auto in_q_b = Load(di, quant_row_b + x);
+ const auto in_x = Mul(ConvertTo(df, in_q_x), fac_x);
+ const auto in_y = Mul(ConvertTo(df, in_q_y), fac_y);
+ const auto in_b = Mul(ConvertTo(df, in_q_b), fac_b);
+ Store(in_y, df, dec_row_y + x);
+ Store(MulAdd(in_y, cfl_fac_x, in_x), df, dec_row_x + x);
+ Store(MulAdd(in_y, cfl_fac_b, in_b), df, dec_row_b + x);
+ }
+ }
+ } else {
+ for (size_t c : {1, 0, 2}) {
+ Rect rect(r.x0() >> chroma_subsampling.HShift(c),
+ r.y0() >> chroma_subsampling.VShift(c),
+ r.xsize() >> chroma_subsampling.HShift(c),
+ r.ysize() >> chroma_subsampling.VShift(c));
+ const auto fac = Set(df, dc_factors[c] * mul);
+ const Channel& ch = in.channel[c < 2 ? c ^ 1 : c];
+ for (size_t y = 0; y < rect.ysize(); y++) {
+ const int32_t* quant_row = ch.plane.Row(y);
+ float* row = rect.PlaneRow(dc, c, y);
+ for (size_t x = 0; x < rect.xsize(); x += Lanes(di)) {
+ const auto in_q = Load(di, quant_row + x);
+ const auto in = Mul(ConvertTo(df, in_q), fac);
+ Store(in, df, row + x);
+ }
+ }
+ }
+ }
+ if (bctx.num_dc_ctxs <= 1) {
+ for (size_t y = 0; y < r.ysize(); y++) {
+ uint8_t* qdc_row = r.Row(quant_dc, y);
+ memset(qdc_row, 0, sizeof(*qdc_row) * r.xsize());
+ }
+ } else {
+ for (size_t y = 0; y < r.ysize(); y++) {
+ uint8_t* qdc_row_val = r.Row(quant_dc, y);
+ const int32_t* quant_row_x =
+ in.channel[1].plane.Row(y >> chroma_subsampling.VShift(0));
+ const int32_t* quant_row_y =
+ in.channel[0].plane.Row(y >> chroma_subsampling.VShift(1));
+ const int32_t* quant_row_b =
+ in.channel[2].plane.Row(y >> chroma_subsampling.VShift(2));
+ for (size_t x = 0; x < r.xsize(); x++) {
+ int bucket_x = 0, bucket_y = 0, bucket_b = 0;
+ for (int t : bctx.dc_thresholds[0]) {
+ if (quant_row_x[x >> chroma_subsampling.HShift(0)] > t) bucket_x++;
+ }
+ for (int t : bctx.dc_thresholds[1]) {
+ if (quant_row_y[x >> chroma_subsampling.HShift(1)] > t) bucket_y++;
+ }
+ for (int t : bctx.dc_thresholds[2]) {
+ if (quant_row_b[x >> chroma_subsampling.HShift(2)] > t) bucket_b++;
+ }
+ int bucket = bucket_x;
+ bucket *= bctx.dc_thresholds[2].size() + 1;
+ bucket += bucket_b;
+ bucket *= bctx.dc_thresholds[1].size() + 1;
+ bucket += bucket_y;
+ qdc_row_val[x] = bucket;
+ }
+ }
+ }
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace jxl {
+
+HWY_EXPORT(DequantDC);
+HWY_EXPORT(AdaptiveDCSmoothing);
+void AdaptiveDCSmoothing(const float* dc_factors, Image3F* dc,
+ ThreadPool* pool) {
+ return HWY_DYNAMIC_DISPATCH(AdaptiveDCSmoothing)(dc_factors, dc, pool);
+}
+
+void DequantDC(const Rect& r, Image3F* dc, ImageB* quant_dc, const Image& in,
+ const float* dc_factors, float mul, const float* cfl_factors,
+ YCbCrChromaSubsampling chroma_subsampling,
+ const BlockCtxMap& bctx) {
+ return HWY_DYNAMIC_DISPATCH(DequantDC)(r, dc, quant_dc, in, dc_factors, mul,
+ cfl_factors, chroma_subsampling, bctx);
+}
+
+} // namespace jxl
+#endif // HWY_ONCE