summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_group.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/jpeg-xl/lib/jxl/enc_group.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_group.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/enc_group.cc540
1 files changed, 540 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_group.cc b/third_party/jpeg-xl/lib/jxl/enc_group.cc
new file mode 100644
index 0000000000..09bab534c9
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/enc_group.cc
@@ -0,0 +1,540 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/enc_group.h"
+
+#include <hwy/aligned_allocator.h>
+#include <utility>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/enc_group.cc"
+#include <hwy/foreach_target.h>
+#include <hwy/highway.h>
+
+#include "lib/jxl/ac_strategy.h"
+#include "lib/jxl/base/bits.h"
+#include "lib/jxl/base/compiler_specific.h"
+#include "lib/jxl/common.h" // kMaxNumPasses
+#include "lib/jxl/dct_util.h"
+#include "lib/jxl/dec_transforms-inl.h"
+#include "lib/jxl/enc_aux_out.h"
+#include "lib/jxl/enc_cache.h"
+#include "lib/jxl/enc_params.h"
+#include "lib/jxl/enc_transforms-inl.h"
+#include "lib/jxl/image.h"
+#include "lib/jxl/quantizer-inl.h"
+#include "lib/jxl/quantizer.h"
+#include "lib/jxl/simd_util.h"
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+
+// These templates are not found via ADL.
+using hwy::HWY_NAMESPACE::Abs;
+using hwy::HWY_NAMESPACE::Ge;
+using hwy::HWY_NAMESPACE::IfThenElse;
+using hwy::HWY_NAMESPACE::IfThenElseZero;
+using hwy::HWY_NAMESPACE::MaskFromVec;
+using hwy::HWY_NAMESPACE::Round;
+
+// NOTE: caller takes care of extracting quant from rect of RawQuantField.
+void QuantizeBlockAC(const Quantizer& quantizer, const bool error_diffusion,
+ size_t c, float qm_multiplier, size_t quant_kind,
+ size_t xsize, size_t ysize, float* thresholds,
+ const float* JXL_RESTRICT block_in, int32_t* quant,
+ int32_t* JXL_RESTRICT block_out) {
+ const float* JXL_RESTRICT qm = quantizer.InvDequantMatrix(quant_kind, c);
+ float qac = quantizer.Scale() * (*quant);
+ // Not SIMD-ified for now.
+ if (c != 1 && xsize * ysize >= 4) {
+ for (int i = 0; i < 4; ++i) {
+ thresholds[i] -= 0.00744f * xsize * ysize;
+ if (thresholds[i] < 0.5) {
+ thresholds[i] = 0.5;
+ }
+ }
+ }
+ HWY_CAPPED(float, kBlockDim) df;
+ HWY_CAPPED(int32_t, kBlockDim) di;
+ HWY_CAPPED(uint32_t, kBlockDim) du;
+ const auto quantv = Set(df, qac * qm_multiplier);
+ for (size_t y = 0; y < ysize * kBlockDim; y++) {
+ size_t yfix = static_cast<size_t>(y >= ysize * kBlockDim / 2) * 2;
+ const size_t off = y * kBlockDim * xsize;
+ for (size_t x = 0; x < xsize * kBlockDim; x += Lanes(df)) {
+ auto thr = Zero(df);
+ if (xsize == 1) {
+ HWY_ALIGN uint32_t kMask[kBlockDim] = {0, 0, 0, 0, ~0u, ~0u, ~0u, ~0u};
+ const auto mask = MaskFromVec(BitCast(df, Load(du, kMask + x)));
+ thr = IfThenElse(mask, Set(df, thresholds[yfix + 1]),
+ Set(df, thresholds[yfix]));
+ } else {
+ // Same for all lanes in the vector.
+ thr = Set(
+ df,
+ thresholds[yfix + static_cast<size_t>(x >= xsize * kBlockDim / 2)]);
+ }
+ const auto q = Mul(Load(df, qm + off + x), quantv);
+ const auto in = Load(df, block_in + off + x);
+ const auto val = Mul(q, in);
+ const auto nzero_mask = Ge(Abs(val), thr);
+ const auto v = ConvertTo(di, IfThenElseZero(nzero_mask, Round(val)));
+ Store(v, di, block_out + off + x);
+ }
+ }
+}
+
+void AdjustQuantBlockAC(const Quantizer& quantizer, size_t c,
+ float qm_multiplier, size_t quant_kind, size_t xsize,
+ size_t ysize, float* thresholds,
+ const float* JXL_RESTRICT block_in, int32_t* quant) {
+ // No quantization adjusting for these small blocks.
+ // Quantization adjusting attempts to fix some known issues
+ // with larger blocks and on the 8x8 dct's emerging 8x8 blockiness
+ // when there are not many non-zeros.
+ constexpr size_t kPartialBlockKinds =
+ (1 << AcStrategy::Type::IDENTITY) | (1 << AcStrategy::Type::DCT2X2) |
+ (1 << AcStrategy::Type::DCT4X4) | (1 << AcStrategy::Type::DCT4X8) |
+ (1 << AcStrategy::Type::DCT8X4) | (1 << AcStrategy::Type::AFV0) |
+ (1 << AcStrategy::Type::AFV1) | (1 << AcStrategy::Type::AFV2) |
+ (1 << AcStrategy::Type::AFV3);
+ if ((1 << quant_kind) & kPartialBlockKinds) {
+ return;
+ }
+
+ const float* JXL_RESTRICT qm = quantizer.InvDequantMatrix(quant_kind, c);
+ float qac = quantizer.Scale() * (*quant);
+ if (xsize > 1 || ysize > 1) {
+ for (int i = 0; i < 4; ++i) {
+ thresholds[i] -= Clamp1(0.003f * xsize * ysize, 0.f, 0.08f);
+ if (thresholds[i] < 0.54) {
+ thresholds[i] = 0.54;
+ }
+ }
+ }
+ float sum_of_highest_freq_row_and_column = 0;
+ float sum_of_error = 0;
+ float sum_of_vals = 0;
+ float hfNonZeros[4] = {};
+ float hfMaxError[4] = {};
+
+ for (size_t y = 0; y < ysize * kBlockDim; y++) {
+ for (size_t x = 0; x < xsize * kBlockDim; x++) {
+ const size_t pos = y * kBlockDim * xsize + x;
+ if (x < xsize && y < ysize) {
+ continue;
+ }
+ const size_t hfix = (static_cast<size_t>(y >= ysize * kBlockDim / 2) * 2 +
+ static_cast<size_t>(x >= xsize * kBlockDim / 2));
+ const float val = block_in[pos] * (qm[pos] * qac * qm_multiplier);
+ const float v = (std::abs(val) < thresholds[hfix]) ? 0 : rintf(val);
+ const float error = std::abs(val - v);
+ sum_of_error += error;
+ sum_of_vals += std::abs(v);
+ if (c == 1 && v == 0) {
+ if (hfMaxError[hfix] < error) {
+ hfMaxError[hfix] = error;
+ }
+ }
+ if (v != 0.0f) {
+ hfNonZeros[hfix] += std::abs(v);
+ bool in_corner = y >= 7 * ysize && x >= 7 * xsize;
+ bool on_border =
+ y == ysize * kBlockDim - 1 || x == xsize * kBlockDim - 1;
+ bool in_larger_corner = x >= 4 * xsize && y >= 4 * ysize;
+ if (in_corner || (on_border && in_larger_corner)) {
+ sum_of_highest_freq_row_and_column += std::abs(val);
+ }
+ }
+ }
+ }
+ if (c == 1 && sum_of_vals * 8 < xsize * ysize) {
+ static const double kLimit[4] = {
+ 0.46,
+ 0.46,
+ 0.46,
+ 0.46,
+ };
+ static const double kMul[4] = {
+ 0.9999,
+ 0.9999,
+ 0.9999,
+ 0.9999,
+ };
+ const int32_t orig_quant = *quant;
+ int32_t new_quant = *quant;
+ for (int i = 1; i < 4; ++i) {
+ if (hfNonZeros[i] == 0.0 && hfMaxError[i] > kLimit[i]) {
+ new_quant = orig_quant + 1;
+ break;
+ }
+ }
+ *quant = new_quant;
+ if (hfNonZeros[3] == 0.0 && hfMaxError[3] > kLimit[3]) {
+ thresholds[3] = kMul[3] * hfMaxError[3] * new_quant / orig_quant;
+ } else if ((hfNonZeros[1] == 0.0 && hfMaxError[1] > kLimit[1]) ||
+ (hfNonZeros[2] == 0.0 && hfMaxError[2] > kLimit[2])) {
+ thresholds[1] = kMul[1] * std::max(hfMaxError[1], hfMaxError[2]) *
+ new_quant / orig_quant;
+ thresholds[2] = thresholds[1];
+ } else if (hfNonZeros[0] == 0.0 && hfMaxError[0] > kLimit[0]) {
+ thresholds[0] = kMul[0] * hfMaxError[0] * new_quant / orig_quant;
+ }
+ }
+ // Heuristic for improving accuracy of high-frequency patterns
+ // occurring in an environment with no medium-frequency masking
+ // patterns.
+ {
+ float all =
+ hfNonZeros[0] + hfNonZeros[1] + hfNonZeros[2] + hfNonZeros[3] + 1;
+ float mul[3] = {70, 30, 60};
+ if (mul[c] * sum_of_highest_freq_row_and_column >= all) {
+ *quant += mul[c] * sum_of_highest_freq_row_and_column / all;
+ if (*quant >= Quantizer::kQuantMax) {
+ *quant = Quantizer::kQuantMax - 1;
+ }
+ }
+ }
+ if (quant_kind == AcStrategy::Type::DCT) {
+ // If this 8x8 block is too flat, increase the adaptive quantization level
+ // a bit to reduce visible block boundaries and requantize the block.
+ if (hfNonZeros[0] + hfNonZeros[1] + hfNonZeros[2] + hfNonZeros[3] < 11) {
+ *quant += 1;
+ if (*quant >= Quantizer::kQuantMax) {
+ *quant = Quantizer::kQuantMax - 1;
+ }
+ }
+ }
+ {
+ static const double kMul1[4][3] = {
+ {
+ 0.22080615753848404,
+ 0.45797479824262011,
+ 0.29859235095977965,
+ },
+ {
+ 0.70109486510286834,
+ 0.16185281305512639,
+ 0.14387691730035473,
+ },
+ {
+ 0.114985964456218638,
+ 0.44656840441027695,
+ 0.10587658215149048,
+ },
+ {
+ 0.46849665264409396,
+ 0.41239077937781954,
+ 0.088667407767185444,
+ },
+ };
+ static const double kMul2[4][3] = {
+ {
+ 0.27450281941822197,
+ 1.1255766549984996,
+ 0.98950459134128388,
+ },
+ {
+ 0.4652168675598285,
+ 0.40945807983455818,
+ 0.36581899811751367,
+ },
+ {
+ 0.28034972424715715,
+ 0.9182653201929738,
+ 1.5581531543057416,
+ },
+ {
+ 0.26873118114033728,
+ 0.68863712390392484,
+ 1.2082185408666786,
+ },
+ };
+ static const double kQuantNormalizer = 2.2942708343284721;
+ sum_of_error *= kQuantNormalizer;
+ sum_of_vals *= kQuantNormalizer;
+ if (quant_kind >= AcStrategy::Type::DCT16X16) {
+ int ix = 3;
+ if (quant_kind == AcStrategy::Type::DCT32X16 ||
+ quant_kind == AcStrategy::Type::DCT16X32) {
+ ix = 1;
+ } else if (quant_kind == AcStrategy::Type::DCT16X16) {
+ ix = 0;
+ } else if (quant_kind == AcStrategy::Type::DCT32X32) {
+ ix = 2;
+ }
+ int step =
+ sum_of_error / (kMul1[ix][c] * xsize * ysize * kBlockDim * kBlockDim +
+ kMul2[ix][c] * sum_of_vals);
+ if (step >= 2) {
+ step = 2;
+ }
+ if (step < 0) {
+ step = 0;
+ }
+ if (sum_of_error > kMul1[ix][c] * xsize * ysize * kBlockDim * kBlockDim +
+ kMul2[ix][c] * sum_of_vals) {
+ *quant += step;
+ if (*quant >= Quantizer::kQuantMax) {
+ *quant = Quantizer::kQuantMax - 1;
+ }
+ }
+ }
+ }
+ {
+ // Reduce quant in highly active areas.
+ int32_t div = (xsize * ysize);
+ int32_t activity = (hfNonZeros[0] + div / 2) / div;
+ int32_t orig_qp_limit = std::max(4, *quant / 2);
+ for (int i = 1; i < 4; ++i) {
+ activity = std::min<int32_t>(activity, (hfNonZeros[i] + div / 2) / div);
+ }
+ if (activity >= 15) {
+ activity = 15;
+ }
+ int32_t qp = *quant - activity;
+ if (c == 1) {
+ for (int i = 1; i < 4; ++i) {
+ thresholds[i] += 0.01 * activity;
+ }
+ }
+ if (qp < orig_qp_limit) {
+ qp = orig_qp_limit;
+ }
+ *quant = qp;
+ }
+}
+
+// NOTE: caller takes care of extracting quant from rect of RawQuantField.
+void QuantizeRoundtripYBlockAC(PassesEncoderState* enc_state, const size_t size,
+ const Quantizer& quantizer,
+ const bool error_diffusion, size_t quant_kind,
+ size_t xsize, size_t ysize,
+ const float* JXL_RESTRICT biases, int32_t* quant,
+ float* JXL_RESTRICT inout,
+ int32_t* JXL_RESTRICT quantized) {
+ float thres_y[4] = {0.58f, 0.64f, 0.64f, 0.64f};
+ {
+ int32_t max_quant = 0;
+ int quant_orig = *quant;
+ float val[3] = {enc_state->x_qm_multiplier, 1.0f,
+ enc_state->b_qm_multiplier};
+ int clut[3] = {1, 0, 2};
+ for (int ii = 0; ii < 3; ++ii) {
+ float thres[4] = {0.58f, 0.64f, 0.64f, 0.64f};
+ int c = clut[ii];
+ *quant = quant_orig;
+ AdjustQuantBlockAC(quantizer, c, val[c], quant_kind, xsize, ysize,
+ &thres[0], inout + c * size, quant);
+ // Dead zone adjustment
+ if (c == 1) {
+ for (int k = 0; k < 4; ++k) {
+ thres_y[k] = thres[k];
+ }
+ }
+ max_quant = std::max(*quant, max_quant);
+ }
+ *quant = max_quant;
+ }
+
+ QuantizeBlockAC(quantizer, error_diffusion, 1, 1.0f, quant_kind, xsize, ysize,
+ &thres_y[0], inout + size, quant, quantized + size);
+
+ const float* JXL_RESTRICT dequant_matrix =
+ quantizer.DequantMatrix(quant_kind, 1);
+
+ HWY_CAPPED(float, kDCTBlockSize) df;
+ HWY_CAPPED(int32_t, kDCTBlockSize) di;
+ const auto inv_qac = Set(df, quantizer.inv_quant_ac(*quant));
+ for (size_t k = 0; k < kDCTBlockSize * xsize * ysize; k += Lanes(df)) {
+ const auto quant = Load(di, quantized + size + k);
+ const auto adj_quant = AdjustQuantBias(di, 1, quant, biases);
+ const auto dequantm = Load(df, dequant_matrix + k);
+ Store(Mul(Mul(adj_quant, dequantm), inv_qac), df, inout + size + k);
+ }
+}
+
+void ComputeCoefficients(size_t group_idx, PassesEncoderState* enc_state,
+ const Image3F& opsin, const Rect& rect, Image3F* dc) {
+ const Rect block_group_rect =
+ enc_state->shared.frame_dim.BlockGroupRect(group_idx);
+ const Rect cmap_rect(
+ block_group_rect.x0() / kColorTileDimInBlocks,
+ block_group_rect.y0() / kColorTileDimInBlocks,
+ DivCeil(block_group_rect.xsize(), kColorTileDimInBlocks),
+ DivCeil(block_group_rect.ysize(), kColorTileDimInBlocks));
+ const Rect group_rect =
+ enc_state->shared.frame_dim.GroupRect(group_idx).Translate(rect.x0(),
+ rect.y0());
+
+ const size_t xsize_blocks = block_group_rect.xsize();
+ const size_t ysize_blocks = block_group_rect.ysize();
+
+ const size_t dc_stride = static_cast<size_t>(dc->PixelsPerRow());
+ const size_t opsin_stride = static_cast<size_t>(opsin.PixelsPerRow());
+
+ ImageI& full_quant_field = enc_state->shared.raw_quant_field;
+ const CompressParams& cparams = enc_state->cparams;
+
+ const size_t dct_scratch_size =
+ 3 * (MaxVectorSize() / sizeof(float)) * AcStrategy::kMaxBlockDim;
+
+ // TODO(veluca): consider strategies to reduce this memory.
+ auto mem = hwy::AllocateAligned<int32_t>(3 * AcStrategy::kMaxCoeffArea);
+ auto fmem = hwy::AllocateAligned<float>(5 * AcStrategy::kMaxCoeffArea +
+ dct_scratch_size);
+ float* JXL_RESTRICT scratch_space =
+ fmem.get() + 3 * AcStrategy::kMaxCoeffArea;
+ {
+ // Only use error diffusion in Squirrel mode or slower.
+ const bool error_diffusion = cparams.speed_tier <= SpeedTier::kSquirrel;
+ constexpr HWY_CAPPED(float, kDCTBlockSize) d;
+
+ int32_t* JXL_RESTRICT coeffs[3][kMaxNumPasses] = {};
+ size_t num_passes = enc_state->progressive_splitter.GetNumPasses();
+ JXL_DASSERT(num_passes > 0);
+ for (size_t i = 0; i < num_passes; i++) {
+ // TODO(veluca): 16-bit quantized coeffs are not implemented yet.
+ JXL_ASSERT(enc_state->coeffs[i]->Type() == ACType::k32);
+ for (size_t c = 0; c < 3; c++) {
+ coeffs[c][i] = enc_state->coeffs[i]->PlaneRow(c, group_idx, 0).ptr32;
+ }
+ }
+
+ HWY_ALIGN float* coeffs_in = fmem.get();
+ HWY_ALIGN int32_t* quantized = mem.get();
+
+ for (size_t by = 0; by < ysize_blocks; ++by) {
+ int32_t* JXL_RESTRICT row_quant_ac =
+ block_group_rect.Row(&full_quant_field, by);
+ size_t ty = by / kColorTileDimInBlocks;
+ const int8_t* JXL_RESTRICT row_cmap[3] = {
+ cmap_rect.ConstRow(enc_state->shared.cmap.ytox_map, ty),
+ nullptr,
+ cmap_rect.ConstRow(enc_state->shared.cmap.ytob_map, ty),
+ };
+ const float* JXL_RESTRICT opsin_rows[3] = {
+ group_rect.ConstPlaneRow(opsin, 0, by * kBlockDim),
+ group_rect.ConstPlaneRow(opsin, 1, by * kBlockDim),
+ group_rect.ConstPlaneRow(opsin, 2, by * kBlockDim),
+ };
+ float* JXL_RESTRICT dc_rows[3] = {
+ block_group_rect.PlaneRow(dc, 0, by),
+ block_group_rect.PlaneRow(dc, 1, by),
+ block_group_rect.PlaneRow(dc, 2, by),
+ };
+ AcStrategyRow ac_strategy_row =
+ enc_state->shared.ac_strategy.ConstRow(block_group_rect, by);
+ for (size_t tx = 0; tx < DivCeil(xsize_blocks, kColorTileDimInBlocks);
+ tx++) {
+ const auto x_factor =
+ Set(d, enc_state->shared.cmap.YtoXRatio(row_cmap[0][tx]));
+ const auto b_factor =
+ Set(d, enc_state->shared.cmap.YtoBRatio(row_cmap[2][tx]));
+ for (size_t bx = tx * kColorTileDimInBlocks;
+ bx < xsize_blocks && bx < (tx + 1) * kColorTileDimInBlocks; ++bx) {
+ const AcStrategy acs = ac_strategy_row[bx];
+ if (!acs.IsFirstBlock()) continue;
+
+ size_t xblocks = acs.covered_blocks_x();
+ size_t yblocks = acs.covered_blocks_y();
+
+ CoefficientLayout(&yblocks, &xblocks);
+
+ size_t size = kDCTBlockSize * xblocks * yblocks;
+
+ // DCT Y channel, roundtrip-quantize it and set DC.
+ int32_t quant_ac = row_quant_ac[bx];
+ for (size_t c : {0, 1, 2}) {
+ TransformFromPixels(acs.Strategy(), opsin_rows[c] + bx * kBlockDim,
+ opsin_stride, coeffs_in + c * size,
+ scratch_space);
+ }
+ DCFromLowestFrequencies(acs.Strategy(), coeffs_in + size,
+ dc_rows[1] + bx, dc_stride);
+
+ QuantizeRoundtripYBlockAC(
+ enc_state, size, enc_state->shared.quantizer, error_diffusion,
+ acs.RawStrategy(), xblocks, yblocks, kDefaultQuantBias, &quant_ac,
+ coeffs_in, quantized);
+
+ // Unapply color correlation
+ for (size_t k = 0; k < size; k += Lanes(d)) {
+ const auto in_x = Load(d, coeffs_in + k);
+ const auto in_y = Load(d, coeffs_in + size + k);
+ const auto in_b = Load(d, coeffs_in + 2 * size + k);
+ const auto out_x = NegMulAdd(x_factor, in_y, in_x);
+ const auto out_b = NegMulAdd(b_factor, in_y, in_b);
+ Store(out_x, d, coeffs_in + k);
+ Store(out_b, d, coeffs_in + 2 * size + k);
+ }
+
+ // Quantize X and B channels and set DC.
+ for (size_t c : {0, 2}) {
+ float thres[4] = {0.58f, 0.62f, 0.62f, 0.62f};
+ QuantizeBlockAC(enc_state->shared.quantizer, error_diffusion, c,
+ c == 0 ? enc_state->x_qm_multiplier
+ : enc_state->b_qm_multiplier,
+ acs.RawStrategy(), xblocks, yblocks, &thres[0],
+ coeffs_in + c * size, &quant_ac,
+ quantized + c * size);
+ DCFromLowestFrequencies(acs.Strategy(), coeffs_in + c * size,
+ dc_rows[c] + bx, dc_stride);
+ }
+ row_quant_ac[bx] = quant_ac;
+ for (size_t c = 0; c < 3; c++) {
+ enc_state->progressive_splitter.SplitACCoefficients(
+ quantized + c * size, acs, bx, by, coeffs[c]);
+ for (size_t p = 0; p < num_passes; p++) {
+ coeffs[c][p] += size;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace jxl {
+HWY_EXPORT(ComputeCoefficients);
+void ComputeCoefficients(size_t group_idx, PassesEncoderState* enc_state,
+ const Image3F& opsin, const Rect& rect, Image3F* dc) {
+ return HWY_DYNAMIC_DISPATCH(ComputeCoefficients)(group_idx, enc_state, opsin,
+ rect, dc);
+}
+
+Status EncodeGroupTokenizedCoefficients(size_t group_idx, size_t pass_idx,
+ size_t histogram_idx,
+ const PassesEncoderState& enc_state,
+ BitWriter* writer, AuxOut* aux_out) {
+ // Select which histogram to use among those of the current pass.
+ const size_t num_histograms = enc_state.shared.num_histograms;
+ // num_histograms is 0 only for lossless.
+ JXL_ASSERT(num_histograms == 0 || histogram_idx < num_histograms);
+ size_t histo_selector_bits = CeilLog2Nonzero(num_histograms);
+
+ if (histo_selector_bits != 0) {
+ BitWriter::Allotment allotment(writer, histo_selector_bits);
+ writer->Write(histo_selector_bits, histogram_idx);
+ allotment.ReclaimAndCharge(writer, kLayerAC, aux_out);
+ }
+ size_t context_offset =
+ histogram_idx * enc_state.shared.block_ctx_map.NumACContexts();
+ WriteTokens(enc_state.passes[pass_idx].ac_tokens[group_idx],
+ enc_state.passes[pass_idx].codes,
+ enc_state.passes[pass_idx].context_map, context_offset, writer,
+ kLayerACTokens, aux_out);
+
+ return true;
+}
+
+} // namespace jxl
+#endif // HWY_ONCE