summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_modular.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:14:29 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:14:29 +0000
commitfbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8 (patch)
tree4c1ccaf5486d4f2009f9a338a98a83e886e29c97 /third_party/jpeg-xl/lib/jxl/enc_modular.cc
parentReleasing progress-linux version 124.0.1-1~progress7.99u1. (diff)
downloadfirefox-fbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8.tar.xz
firefox-fbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8.zip
Merging upstream version 125.0.1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_modular.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/enc_modular.cc631
1 files changed, 366 insertions, 265 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_modular.cc b/third_party/jpeg-xl/lib/jxl/enc_modular.cc
index b8366953b7..dbd62d4a01 100644
--- a/third_party/jpeg-xl/lib/jxl/enc_modular.cc
+++ b/third_party/jpeg-xl/lib/jxl/enc_modular.cc
@@ -10,8 +10,8 @@
#include <array>
#include <atomic>
+#include <cstdint>
#include <limits>
-#include <queue>
#include <utility>
#include <vector>
@@ -28,9 +28,9 @@
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_patch_dictionary.h"
#include "lib/jxl/enc_quant_weights.h"
+#include "lib/jxl/frame_dimensions.h"
#include "lib/jxl/frame_header.h"
#include "lib/jxl/modular/encoding/context_predict.h"
-#include "lib/jxl/modular/encoding/enc_debug_tree.h"
#include "lib/jxl/modular/encoding/enc_encoding.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/modular/encoding/ma_common.h"
@@ -38,7 +38,7 @@
#include "lib/jxl/modular/options.h"
#include "lib/jxl/modular/transform/enc_transform.h"
#include "lib/jxl/pack_signed.h"
-#include "lib/jxl/toc.h"
+#include "modular/options.h"
namespace jxl {
@@ -48,15 +48,15 @@ namespace {
// Squeeze default quantization factors
// these quantization factors are for -Q 50 (other qualities simply scale the
// factors; things are rounded down and obviously cannot get below 1)
-static const float squeeze_quality_factor =
+const float squeeze_quality_factor =
0.35; // for easy tweaking of the quality range (decrease this number for
// higher quality)
-static const float squeeze_luma_factor =
+const float squeeze_luma_factor =
1.1; // for easy tweaking of the balance between luma (or anything
// non-chroma) and chroma (decrease this number for higher quality
// luma)
-static const float squeeze_quality_factor_xyb = 2.4f;
-static const float squeeze_xyb_qtable[3][16] = {
+const float squeeze_quality_factor_xyb = 2.4f;
+const float squeeze_xyb_qtable[3][16] = {
{163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16,
0.08, 0.04, 0.02, 0.01, 0.005}, // Y
{1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5,
@@ -65,12 +65,12 @@ static const float squeeze_xyb_qtable[3][16] = {
0.5}, // B-Y
};
-static const float squeeze_luma_qtable[16] = {
- 163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28,
- 0.64, 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, 0.005};
+const float squeeze_luma_qtable[16] = {163.84, 81.92, 40.96, 20.48, 10.24, 5.12,
+ 2.56, 1.28, 0.64, 0.32, 0.16, 0.08,
+ 0.04, 0.02, 0.01, 0.005};
// for 8-bit input, the range of YCoCg chroma is -255..255 so basically this
// does 4:2:0 subsampling (two most fine grained layers get quantized away)
-static const float squeeze_chroma_qtable[16] = {
+const float squeeze_chroma_qtable[16] = {
1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5};
// Merges the trees in `trees` using nodes that decide on stream_id, as defined
@@ -139,10 +139,12 @@ Status float_to_int(const float* const row_in, pixel_type* const row_out,
}
if (bits == 32 && fp) {
JXL_ASSERT(exp_bits == 8);
- memcpy((void*)row_out, (const void*)row_in, 4 * xsize);
+ memcpy(static_cast<void*>(row_out), static_cast<const void*>(row_in),
+ 4 * xsize);
return true;
}
+ JXL_ASSERT(bits > 0);
int exp_bias = (1 << (exp_bits - 1)) - 1;
int max_exp = (1 << exp_bits) - 1;
uint32_t sign = (1u << (bits - 1));
@@ -186,14 +188,144 @@ Status float_to_int(const float* const row_in, pixel_type* const row_out,
f = (signbit ? sign : 0);
f |= (exp << mant_bits);
f |= mantissa;
- row_out[x] = (pixel_type)f;
+ row_out[x] = static_cast<pixel_type>(f);
}
return true;
}
+
+float EstimateWPCost(const Image& img, size_t i) {
+ size_t extra_bits = 0;
+ float histo_cost = 0;
+ HybridUintConfig config;
+ int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31,
+ -23, -15, -11, -7, -4, -3, -1, 0, 1,
+ 3, 5, 7, 11, 15, 23, 31, 47, 63,
+ 95, 127, 191, 255, 392, 500};
+ constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
+ Histogram histo[nc] = {};
+ weighted::Header wp_header;
+ PredictorMode(i, &wp_header);
+ for (const Channel& ch : img.channel) {
+ const intptr_t onerow = ch.plane.PixelsPerRow();
+ weighted::State wp_state(wp_header, ch.w, ch.h);
+ Properties properties(1);
+ for (size_t y = 0; y < ch.h; y++) {
+ const pixel_type* JXL_RESTRICT r = ch.Row(y);
+ for (size_t x = 0; x < ch.w; x++) {
+ size_t offset = 0;
+ pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
+ pixel_type_w top = (y ? *(r + x - onerow) : left);
+ pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
+ pixel_type_w topright =
+ (x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top);
+ pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
+ pixel_type guess = wp_state.Predict</*compute_properties=*/true>(
+ x, y, ch.w, top, left, topright, topleft, toptop, &properties,
+ offset);
+ size_t ctx = 0;
+ for (int c : cutoffs) {
+ ctx += (c >= properties[0]) ? 1 : 0;
+ }
+ pixel_type res = r[x] - guess;
+ uint32_t token;
+ uint32_t nbits;
+ uint32_t bits;
+ config.Encode(PackSigned(res), &token, &nbits, &bits);
+ histo[ctx].Add(token);
+ extra_bits += nbits;
+ wp_state.UpdateErrors(r[x], x, y, ch.w);
+ }
+ }
+ for (auto& h : histo) {
+ histo_cost += h.ShannonEntropy();
+ h.Clear();
+ }
+ }
+ return histo_cost + extra_bits;
+}
+
+float EstimateCost(const Image& img) {
+ // TODO(veluca): consider SIMDfication of this code.
+ size_t extra_bits = 0;
+ float histo_cost = 0;
+ HybridUintConfig config;
+ uint32_t cutoffs[] = {0, 1, 3, 5, 7, 11, 15, 23, 31,
+ 47, 63, 95, 127, 191, 255, 392, 500};
+ constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
+ Histogram histo[nc] = {};
+ for (const Channel& ch : img.channel) {
+ const intptr_t onerow = ch.plane.PixelsPerRow();
+ for (size_t y = 0; y < ch.h; y++) {
+ const pixel_type* JXL_RESTRICT r = ch.Row(y);
+ for (size_t x = 0; x < ch.w; x++) {
+ pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
+ pixel_type_w top = (y ? *(r + x - onerow) : left);
+ pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
+ size_t maxdiff = std::max(std::max(left, top), topleft) -
+ std::min(std::min(left, top), topleft);
+ size_t ctx = 0;
+ for (uint32_t c : cutoffs) {
+ ctx += (c > maxdiff) ? 1 : 0;
+ }
+ pixel_type res = r[x] - ClampedGradient(top, left, topleft);
+ uint32_t token;
+ uint32_t nbits;
+ uint32_t bits;
+ config.Encode(PackSigned(res), &token, &nbits, &bits);
+ histo[ctx].Add(token);
+ extra_bits += nbits;
+ }
+ }
+ for (auto& h : histo) {
+ histo_cost += h.ShannonEntropy();
+ h.Clear();
+ }
+ }
+ return histo_cost + extra_bits;
+}
+
+bool do_transform(Image& image, const Transform& tr,
+ const weighted::Header& wp_header,
+ jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) {
+ Transform t = tr;
+ bool did_it = true;
+ if (force_jxlart) {
+ if (!t.MetaApply(image)) return false;
+ } else {
+ did_it = TransformForward(t, image, wp_header, pool);
+ }
+ if (did_it) image.transform.push_back(t);
+ return did_it;
+}
+
+bool maybe_do_transform(Image& image, const Transform& tr,
+ const CompressParams& cparams,
+ const weighted::Header& wp_header,
+ jxl::ThreadPool* pool = nullptr,
+ bool force_jxlart = false) {
+ if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) {
+ return do_transform(image, tr, wp_header, pool, force_jxlart);
+ }
+ float cost_before = EstimateCost(image);
+ bool did_it = do_transform(image, tr, wp_header, pool);
+ if (did_it) {
+ float cost_after = EstimateCost(image);
+ JXL_DEBUG_V(7, "Cost before: %f cost after: %f", cost_before, cost_after);
+ if (cost_after > cost_before) {
+ Transform t = image.transform.back();
+ JXL_RETURN_IF_ERROR(t.Inverse(image, wp_header, pool));
+ image.transform.pop_back();
+ did_it = false;
+ }
+ }
+ return did_it;
+}
+
} // namespace
ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
- const CompressParams& cparams_orig)
+ const CompressParams& cparams_orig,
+ bool streaming_mode)
: frame_dim_(frame_header.ToFrameDimensions()), cparams_(cparams_orig) {
size_t num_streams =
ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes);
@@ -253,10 +385,16 @@ ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
// Same, but for the non-Squeeze case.
prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8};
// if few groups, don't use group as a property
- if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise) {
+ if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise &&
+ cparams_orig.ModularPartIsLossless()) {
prop_order.erase(prop_order.begin() + 1);
}
}
+ int max_properties = std::min<int>(
+ cparams_.options.max_properties,
+ static_cast<int>(
+ frame_header.nonserialized_metadata->m.num_extra_channels) +
+ (frame_header.encoding == FrameEncoding::kModular ? 2 : -1));
switch (cparams_.speed_tier) {
case SpeedTier::kHare:
cparams_.options.splitting_heuristics_properties.assign(
@@ -278,6 +416,7 @@ ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
prop_order.begin(), prop_order.begin() + 10);
cparams_.options.max_property_values = 96;
break;
+ case SpeedTier::kGlacier:
case SpeedTier::kTortoise:
cparams_.options.splitting_heuristics_properties = prop_order;
cparams_.options.max_property_values = 256;
@@ -290,24 +429,36 @@ ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
}
if (cparams_.speed_tier > SpeedTier::kTortoise) {
// Gradient in previous channels.
- for (int i = 0; i < cparams_.options.max_properties; i++) {
+ for (int i = 0; i < max_properties; i++) {
cparams_.options.splitting_heuristics_properties.push_back(
kNumNonrefProperties + i * 4 + 3);
}
} else {
// All the extra properties in Tortoise mode.
- for (int i = 0; i < cparams_.options.max_properties * 4; i++) {
+ for (int i = 0; i < max_properties * 4; i++) {
cparams_.options.splitting_heuristics_properties.push_back(
kNumNonrefProperties + i);
}
}
}
- if (cparams_.options.predictor == static_cast<Predictor>(-1)) {
+ if ((cparams_.options.predictor == Predictor::Average0 ||
+ cparams_.options.predictor == Predictor::Average1 ||
+ cparams_.options.predictor == Predictor::Average2 ||
+ cparams_.options.predictor == Predictor::Average3 ||
+ cparams_.options.predictor == Predictor::Average4 ||
+ cparams_.options.predictor == Predictor::Weighted) &&
+ !cparams_.ModularPartIsLossless()) {
+ // Lossy + Average/Weighted predictors does not work, so switch to default
+ // predictors.
+ cparams_.options.predictor = kUndefinedPredictor;
+ }
+
+ if (cparams_.options.predictor == kUndefinedPredictor) {
// no explicit predictor(s) given, set a good default
- if ((cparams_.speed_tier <= SpeedTier::kTortoise ||
+ if ((cparams_.speed_tier <= SpeedTier::kGlacier ||
cparams_.modular_mode == false) &&
- cparams_.IsLossless() && cparams_.responsive == false) {
+ cparams_.IsLossless() && cparams_.responsive == JXL_FALSE) {
// TODO(veluca): allow all predictors that don't break residual
// multipliers in lossy mode.
cparams_.options.predictor = Predictor::Variable;
@@ -354,48 +505,54 @@ ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
// TODO(veluca): figure out how to use different predictor sets per channel.
stream_options_.resize(num_streams, cparams_.options);
-}
-bool do_transform(Image& image, const Transform& tr,
- const weighted::Header& wp_header,
- jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) {
- Transform t = tr;
- bool did_it = true;
- if (force_jxlart) {
- if (!t.MetaApply(image)) return false;
- } else {
- did_it = TransformForward(t, image, wp_header, pool);
+ stream_options_[0] = cparams_.options;
+ if (cparams_.speed_tier == SpeedTier::kFalcon) {
+ stream_options_[0].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
+ } else if (cparams_.speed_tier == SpeedTier::kThunder) {
+ stream_options_[0].tree_kind = ModularOptions::TreeKind::kGradientFixedDC;
}
- if (did_it) image.transform.push_back(t);
- return did_it;
+ stream_options_[0].histogram_params =
+ HistogramParams::ForModular(cparams_, {}, streaming_mode);
}
Status ModularFrameEncoder::ComputeEncodingData(
const FrameHeader& frame_header, const ImageMetadata& metadata,
Image3F* JXL_RESTRICT color, const std::vector<ImageF>& extra_channels,
- PassesEncoderState* JXL_RESTRICT enc_state, const JxlCmsInterface& cms,
- ThreadPool* pool, AuxOut* aux_out, bool do_color) {
+ const Rect& group_rect, const FrameDimensions& patch_dim,
+ const Rect& frame_area_rect, PassesEncoderState* JXL_RESTRICT enc_state,
+ const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out,
+ bool do_color) {
JXL_DEBUG_V(6, "Computing modular encoding data for frame %s",
frame_header.DebugString().c_str());
- if (do_color && frame_header.loop_filter.gab) {
+ bool groupwise = enc_state->streaming_mode;
+
+ if (do_color && frame_header.loop_filter.gab && !groupwise) {
float w = 0.9908511000000001f;
float weights[3] = {w, w, w};
- GaborishInverse(color, Rect(*color), weights, pool);
+ JXL_RETURN_IF_ERROR(GaborishInverse(color, Rect(*color), weights, pool));
}
if (do_color && metadata.bit_depth.bits_per_sample <= 16 &&
cparams_.speed_tier < SpeedTier::kCheetah &&
- cparams_.decoding_speed_tier < 2) {
- FindBestPatchDictionary(*color, enc_state, cms, nullptr, aux_out,
- cparams_.color_transform == ColorTransform::kXYB);
+ cparams_.decoding_speed_tier < 2 && !groupwise) {
+ JXL_RETURN_IF_ERROR(FindBestPatchDictionary(
+ *color, enc_state, cms, nullptr, aux_out,
+ cparams_.color_transform == ColorTransform::kXYB));
PatchDictionaryEncoder::SubtractFrom(
enc_state->shared.image_features.patches, color);
}
+ if (cparams_.custom_splines.HasAny()) {
+ PassesSharedState& shared = enc_state->shared;
+ ImageFeatures& image_features = shared.image_features;
+ image_features.splines = cparams_.custom_splines;
+ }
+
// Convert ImageBundle to modular Image object
- const size_t xsize = frame_dim_.xsize;
- const size_t ysize = frame_dim_.ysize;
+ const size_t xsize = patch_dim.xsize;
+ const size_t ysize = patch_dim.ysize;
int nb_chans = 3;
if (metadata.color_encoding.IsGray() &&
@@ -423,7 +580,9 @@ Status ModularFrameEncoder::ComputeEncodingData(
int max_bitdepth =
do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0;
Image& gi = stream_images_[0];
- gi = Image(xsize, ysize, metadata.bit_depth.bits_per_sample, nb_chans);
+ JXL_ASSIGN_OR_RETURN(
+ gi, Image::Create(xsize, ysize, metadata.bit_depth.bits_per_sample,
+ nb_chans));
int c = 0;
if (cparams_.color_transform == ColorTransform::kXYB &&
cparams_.modular_mode == true) {
@@ -478,17 +637,21 @@ Status ModularFrameEncoder::ComputeEncodingData(
gi.channel[c_out].vshift = frame_header.chroma_subsampling.VShift(c);
size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift);
size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift);
- gi.channel[c_out].shrink(xsize_shifted, ysize_shifted);
+ JXL_RETURN_IF_ERROR(
+ gi.channel[c_out].shrink(xsize_shifted, ysize_shifted));
std::atomic<bool> has_error{false};
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, ysize_shifted, ThreadPool::NoInit,
[&](const int task, const int thread) {
+ if (has_error) return;
const size_t y = task;
- const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y);
+ const float* const JXL_RESTRICT row_in =
+ color->PlaneRow(c, y + group_rect.y0()) + group_rect.x0();
pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
if (!float_to_int(row_in, row_out, xsize_shifted, bits, exp_bits,
fp, factor)) {
has_error = true;
+ return;
};
},
"float2int"));
@@ -505,8 +668,9 @@ Status ModularFrameEncoder::ComputeEncodingData(
for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) {
const ExtraChannelInfo& eci = metadata.extra_channel_info[ec];
size_t ecups = frame_header.extra_channel_upsampling[ec];
- gi.channel[c].shrink(DivCeil(frame_dim_.xsize_upsampled, ecups),
- DivCeil(frame_dim_.ysize_upsampled, ecups));
+ JXL_RETURN_IF_ERROR(
+ gi.channel[c].shrink(DivCeil(patch_dim.xsize_upsampled, ecups),
+ DivCeil(patch_dim.ysize_upsampled, ecups)));
gi.channel[c].hshift = gi.channel[c].vshift =
CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling);
@@ -519,12 +683,15 @@ Status ModularFrameEncoder::ComputeEncodingData(
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, gi.channel[c].plane.ysize(), ThreadPool::NoInit,
[&](const int task, const int thread) {
+ if (has_error) return;
const size_t y = task;
- const float* const JXL_RESTRICT row_in = extra_channels[ec].Row(y);
+ const float* const JXL_RESTRICT row_in =
+ extra_channels[ec].Row(y + group_rect.y0()) + group_rect.x0();
pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y);
if (!float_to_int(row_in, row_out, gi.channel[c].plane.xsize(), bits,
exp_bits, fp, factor)) {
has_error = true;
+ return;
};
},
"float2int"));
@@ -533,11 +700,12 @@ Status ModularFrameEncoder::ComputeEncodingData(
JXL_ASSERT(c == nb_chans);
int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32);
- if (max_bitdepth > level_max_bitdepth)
+ if (max_bitdepth > level_max_bitdepth) {
return JXL_FAILURE(
"Bitdepth too high for level %i (need %i bits, have only %i in this "
"level)",
cparams_.level, max_bitdepth, level_max_bitdepth);
+ }
// Set options and apply transformations
if (!cparams_.ModularPartIsLossless()) {
@@ -553,14 +721,14 @@ Status ModularFrameEncoder::ComputeEncodingData(
}
// Global palette
- if (cparams_.palette_colors != 0 || cparams_.lossy_palette) {
+ if ((cparams_.palette_colors != 0 || cparams_.lossy_palette) && !groupwise) {
// all-channel palette (e.g. RGBA)
if (gi.channel.size() - gi.nb_meta_channels > 1) {
Transform maybe_palette(TransformId::kPalette);
maybe_palette.begin_c = gi.nb_meta_channels;
maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
- maybe_palette.nb_colors =
- std::min((int)(xsize * ysize / 2), std::abs(cparams_.palette_colors));
+ maybe_palette.nb_colors = std::min(static_cast<int>(xsize * ysize / 2),
+ std::abs(cparams_.palette_colors));
maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette.lossy_palette =
(cparams_.lossy_palette && maybe_palette.num_c == 3);
@@ -569,8 +737,8 @@ Status ModularFrameEncoder::ComputeEncodingData(
}
// TODO(veluca): use a custom weighted header if using the weighted
// predictor.
- do_transform(gi, maybe_palette, weighted::Header(), pool,
- cparams_.options.zero_tokens);
+ maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(), pool,
+ cparams_.options.zero_tokens);
}
// all-minus-one-channel palette (RGB with separate alpha, or CMY with
// separate K)
@@ -578,20 +746,20 @@ Status ModularFrameEncoder::ComputeEncodingData(
Transform maybe_palette_3(TransformId::kPalette);
maybe_palette_3.begin_c = gi.nb_meta_channels;
maybe_palette_3.num_c = gi.channel.size() - gi.nb_meta_channels - 1;
- maybe_palette_3.nb_colors =
- std::min((int)(xsize * ysize / 3), std::abs(cparams_.palette_colors));
+ maybe_palette_3.nb_colors = std::min(static_cast<int>(xsize * ysize / 3),
+ std::abs(cparams_.palette_colors));
maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette_3.lossy_palette = cparams_.lossy_palette;
if (maybe_palette_3.lossy_palette) {
maybe_palette_3.predictor = delta_pred_;
}
- do_transform(gi, maybe_palette_3, weighted::Header(), pool,
- cparams_.options.zero_tokens);
+ maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(),
+ pool, cparams_.options.zero_tokens);
}
}
// Global channel palette
- if (cparams_.channel_colors_pre_transform_percent > 0 &&
+ if (!groupwise && cparams_.channel_colors_pre_transform_percent > 0 &&
!cparams_.lossy_palette &&
(cparams_.speed_tier <= SpeedTier::kThunder ||
(do_color && metadata.bit_depth.bits_per_sample > 8))) {
@@ -600,9 +768,10 @@ Status ModularFrameEncoder::ComputeEncodingData(
int orig_bitdepth = max_bitdepth;
max_bitdepth = 0;
for (size_t i = 0; i < nb_channels; i++) {
- int32_t min, max;
+ int32_t min;
+ int32_t max;
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
- int64_t colors = (int64_t)max - min + 1;
+ int64_t colors = static_cast<int64_t>(max) - min + 1;
JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
Transform maybe_palette_1(TransformId::kPalette);
maybe_palette_1.begin_c = i + gi.nb_meta_channels;
@@ -612,9 +781,11 @@ Status ModularFrameEncoder::ComputeEncodingData(
// (but only if the channel palette is less than 6% the size of the
// image itself)
maybe_palette_1.nb_colors = std::min(
- (int)(xsize * ysize / 16),
- (int)(cparams_.channel_colors_pre_transform_percent / 100. * colors));
- if (do_transform(gi, maybe_palette_1, weighted::Header(), pool)) {
+ static_cast<int>(xsize * ysize / 16),
+ static_cast<int>(cparams_.channel_colors_pre_transform_percent /
+ 100. * colors));
+ if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(),
+ pool)) {
// effective bit depth is lower, adjust quantization accordingly
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
if (max < maxval) maxval = max;
@@ -646,8 +817,28 @@ Status ModularFrameEncoder::ComputeEncodingData(
}
}
+ if (cparams_.move_to_front_from_channel > 0) {
+ for (size_t tgt = 0;
+ tgt + cparams_.move_to_front_from_channel < gi.channel.size(); tgt++) {
+ size_t pos = cparams_.move_to_front_from_channel;
+ while (pos > 0) {
+ Transform move(TransformId::kRCT);
+ if (pos == 1) {
+ move.begin_c = tgt;
+ move.rct_type = 28; // RGB -> GRB
+ pos -= 1;
+ } else {
+ move.begin_c = tgt + pos - 2;
+ move.rct_type = 14; // RGB -> BRG
+ pos -= 2;
+ }
+ do_transform(gi, move, weighted::Header(), pool);
+ }
+ }
+ }
+
// don't do squeeze if we don't have some spare bits
- if (cparams_.responsive && !gi.channel.empty() &&
+ if (!groupwise && cparams_.responsive && !gi.channel.empty() &&
max_bitdepth + 2 < level_max_bitdepth) {
Transform t(TransformId::kSqueeze);
do_transform(gi, t, weighted::Header(), pool);
@@ -674,8 +865,8 @@ Status ModularFrameEncoder::ComputeEncodingData(
bitdepth_correction = maxval / 255.f;
}
std::vector<float> quantizers;
- float dist = cparams_.butteraugli_distance;
for (size_t i = 0; i < 3; i++) {
+ float dist = cparams_.butteraugli_distance;
quantizers.push_back(quantizer * dist * bitdepth_correction);
}
for (size_t i = 0; i < extra_channels.size(); i++) {
@@ -683,6 +874,7 @@ Status ModularFrameEncoder::ComputeEncodingData(
metadata.extra_channel_info[i].bit_depth.bits_per_sample;
pixel_type ec_maxval = ec_bitdepth < 32 ? (1u << ec_bitdepth) - 1 : 0;
bitdepth_correction = ec_maxval / 255.f;
+ float dist = 0;
if (i < cparams_.ec_distance.size()) dist = cparams_.ec_distance[i];
if (dist < 0) dist = cparams_.butteraugli_distance;
quantizers.push_back(quantizer * dist * bitdepth_correction);
@@ -722,57 +914,57 @@ Status ModularFrameEncoder::ComputeEncodingData(
}
// Fill other groups.
- struct GroupParams {
- Rect rect;
- int minShift;
- int maxShift;
- ModularStreamId id;
- };
- std::vector<GroupParams> stream_params;
-
- stream_options_[0] = cparams_.options;
-
// DC
- for (size_t group_id = 0; group_id < frame_dim_.num_dc_groups; group_id++) {
- const size_t gx = group_id % frame_dim_.xsize_dc_groups;
- const size_t gy = group_id / frame_dim_.xsize_dc_groups;
- const Rect rect(gx * frame_dim_.dc_group_dim, gy * frame_dim_.dc_group_dim,
- frame_dim_.dc_group_dim, frame_dim_.dc_group_dim);
+ for (size_t group_id = 0; group_id < patch_dim.num_dc_groups; group_id++) {
+ const size_t rgx = group_id % patch_dim.xsize_dc_groups;
+ const size_t rgy = group_id / patch_dim.xsize_dc_groups;
+ const Rect rect(rgx * patch_dim.dc_group_dim, rgy * patch_dim.dc_group_dim,
+ patch_dim.dc_group_dim, patch_dim.dc_group_dim);
+ size_t gx = rgx + frame_area_rect.x0() / 2048;
+ size_t gy = rgy + frame_area_rect.y0() / 2048;
+ size_t real_group_id = gy * frame_dim_.xsize_dc_groups + gx;
// minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim
// maxShift==1000 is infinity
- stream_params.push_back(
- GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(group_id)});
+ stream_params_.push_back(
+ GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(real_group_id)});
}
// AC global -> nothing.
// AC
- for (size_t group_id = 0; group_id < frame_dim_.num_groups; group_id++) {
- const size_t gx = group_id % frame_dim_.xsize_groups;
- const size_t gy = group_id / frame_dim_.xsize_groups;
- const Rect mrect(gx * frame_dim_.group_dim, gy * frame_dim_.group_dim,
- frame_dim_.group_dim, frame_dim_.group_dim);
+ for (size_t group_id = 0; group_id < patch_dim.num_groups; group_id++) {
+ const size_t rgx = group_id % patch_dim.xsize_groups;
+ const size_t rgy = group_id / patch_dim.xsize_groups;
+ const Rect mrect(rgx * patch_dim.group_dim, rgy * patch_dim.group_dim,
+ patch_dim.group_dim, patch_dim.group_dim);
+ size_t gx = rgx + frame_area_rect.x0() / (frame_dim_.group_dim);
+ size_t gy = rgy + frame_area_rect.y0() / (frame_dim_.group_dim);
+ size_t real_group_id = gy * frame_dim_.xsize_groups + gx;
for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses();
i++) {
- int maxShift, minShift;
+ int maxShift;
+ int minShift;
frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift);
- stream_params.push_back(GroupParams{
- mrect, minShift, maxShift, ModularStreamId::ModularAC(group_id, i)});
+ stream_params_.push_back(
+ GroupParams{mrect, minShift, maxShift,
+ ModularStreamId::ModularAC(real_group_id, i)});
}
}
// if there's only one group, everything ends up in GlobalModular
// in that case, also try RCTs/WP params for the one group
- if (stream_params.size() == 2) {
- stream_params.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000,
- ModularStreamId::Global()});
+ if (stream_params_.size() == 2) {
+ stream_params_.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000,
+ ModularStreamId::Global()});
}
gi_channel_.resize(stream_images_.size());
JXL_RETURN_IF_ERROR(RunOnPool(
- pool, 0, stream_params.size(), ThreadPool::NoInit,
+ pool, 0, stream_params_.size(), ThreadPool::NoInit,
[&](const uint32_t i, size_t /* thread */) {
- stream_options_[stream_params[i].id.ID(frame_dim_)] = cparams_.options;
+ size_t stream = stream_params_[i].id.ID(frame_dim_);
+ stream_options_[stream] = stream_options_[0];
JXL_CHECK(PrepareStreamParams(
- stream_params[i].rect, cparams_, stream_params[i].minShift,
- stream_params[i].maxShift, stream_params[i].id, do_color));
+ stream_params_[i].rect, cparams_, stream_params_[i].minShift,
+ stream_params_[i].maxShift, stream_params_[i].id, do_color,
+ groupwise));
},
"ChooseParams"));
{
@@ -821,7 +1013,7 @@ Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
StaticPropRange range;
range[0] = {{i, i + 1}};
range[1] = {{stream_id, stream_id + 1}};
- multiplier_info.push_back({range, (uint32_t)q});
+ multiplier_info.push_back({range, static_cast<uint32_t>(q)});
} else {
// Previous channel in the same group had the same quantization
// factor. Don't provide two different ranges, as that creates
@@ -922,11 +1114,10 @@ Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
StaticPropRange range;
range[0] = {{0, max_c}};
range[1] = {{start, stop}};
- auto local_multiplier_info = multiplier_info;
tree_samples.PreQuantizeProperties(
- range, local_multiplier_info, group_pixel_count,
- channel_pixel_count, pixel_samples, diff_samples,
+ range, multiplier_info, group_pixel_count, channel_pixel_count,
+ pixel_samples, diff_samples,
stream_options_[start].max_property_values);
for (size_t i = start; i < stop; i++) {
JXL_CHECK(ModularGenericCompress(
@@ -937,7 +1128,7 @@ Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
// TODO(veluca): parallelize more.
trees[chunk] =
LearnTree(std::move(tree_samples), total_pixels,
- stream_options_[start], local_multiplier_info, range);
+ stream_options_[start], multiplier_info, range);
},
"LearnTrees"));
if (invalid_force_wp.test_and_set(std::memory_order_acq_rel)) {
@@ -966,7 +1157,7 @@ Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
tree_tokens_.resize(1);
tree_tokens_[0].clear();
Tree decoded_tree;
- TokenizeTree(tree_, &tree_tokens_[0], &decoded_tree);
+ TokenizeTree(tree_, tree_tokens_.data(), &decoded_tree);
JXL_ASSERT(tree_.size() == decoded_tree.size());
tree_ = std::move(decoded_tree);
@@ -1019,46 +1210,8 @@ Status ModularFrameEncoder::EncodeGlobalInfo(bool streaming_mode,
allotment.ReclaimAndCharge(writer, kLayerModularTree, aux_out);
// Write tree
- HistogramParams params;
- if (cparams_.speed_tier > SpeedTier::kKitten) {
- params.clustering = HistogramParams::ClusteringType::kFast;
- params.ans_histogram_strategy =
- cparams_.speed_tier > SpeedTier::kThunder
- ? HistogramParams::ANSHistogramStrategy::kFast
- : HistogramParams::ANSHistogramStrategy::kApproximate;
- params.lz77_method =
- cparams_.decoding_speed_tier >= 3 && cparams_.modular_mode
- ? (cparams_.speed_tier >= SpeedTier::kFalcon
- ? HistogramParams::LZ77Method::kRLE
- : HistogramParams::LZ77Method::kLZ77)
- : HistogramParams::LZ77Method::kNone;
- // Near-lossless DC, as well as modular mode, require choosing hybrid uint
- // more carefully.
- if ((!extra_dc_precision.empty() && extra_dc_precision[0] != 0) ||
- (cparams_.modular_mode && cparams_.speed_tier < SpeedTier::kCheetah)) {
- params.uint_method = HistogramParams::HybridUintMethod::kFast;
- } else {
- params.uint_method = HistogramParams::HybridUintMethod::kNone;
- }
- } else if (cparams_.speed_tier <= SpeedTier::kTortoise) {
- params.lz77_method = HistogramParams::LZ77Method::kOptimal;
- } else {
- params.lz77_method = HistogramParams::LZ77Method::kLZ77;
- }
- if (cparams_.decoding_speed_tier >= 1) {
- params.max_histograms = 12;
- }
- if (cparams_.decoding_speed_tier >= 1 && cparams_.responsive) {
- params.lz77_method = cparams_.speed_tier >= SpeedTier::kCheetah
- ? HistogramParams::LZ77Method::kRLE
- : cparams_.speed_tier >= SpeedTier::kKitten
- ? HistogramParams::LZ77Method::kLZ77
- : HistogramParams::LZ77Method::kOptimal;
- }
- if (cparams_.decoding_speed_tier >= 2 && cparams_.responsive) {
- params.uint_method = HistogramParams::HybridUintMethod::k000;
- params.force_huffman = true;
- }
+ HistogramParams params =
+ HistogramParams::ForModular(cparams_, extra_dc_precision, streaming_mode);
{
EntropyEncodingData tree_code;
std::vector<uint8_t> tree_context_map;
@@ -1082,6 +1235,7 @@ Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out,
const ModularStreamId& stream) {
size_t stream_id = stream.ID(frame_dim_);
if (stream_images_[stream_id].channel.empty()) {
+ JXL_DEBUG_V(10, "Modular stream %" PRIuS " is empty.", stream_id);
return true; // Image with no channels, header never gets decoded.
}
if (tokens_.empty()) {
@@ -1103,113 +1257,44 @@ void ModularFrameEncoder::ClearStreamData(const ModularStreamId& stream) {
std::swap(stream_images_[stream_id], empty_image);
}
-namespace {
-float EstimateWPCost(const Image& img, size_t i) {
- size_t extra_bits = 0;
- float histo_cost = 0;
- HybridUintConfig config;
- int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31,
- -23, -15, -11, -7, -4, -3, -1, 0, 1,
- 3, 5, 7, 11, 15, 23, 31, 47, 63,
- 95, 127, 191, 255, 392, 500};
- constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
- Histogram histo[nc] = {};
- weighted::Header wp_header;
- PredictorMode(i, &wp_header);
- for (const Channel& ch : img.channel) {
- const intptr_t onerow = ch.plane.PixelsPerRow();
- weighted::State wp_state(wp_header, ch.w, ch.h);
- Properties properties(1);
- for (size_t y = 0; y < ch.h; y++) {
- const pixel_type* JXL_RESTRICT r = ch.Row(y);
- for (size_t x = 0; x < ch.w; x++) {
- size_t offset = 0;
- pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
- pixel_type_w top = (y ? *(r + x - onerow) : left);
- pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
- pixel_type_w topright =
- (x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top);
- pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
- pixel_type guess = wp_state.Predict</*compute_properties=*/true>(
- x, y, ch.w, top, left, topright, topleft, toptop, &properties,
- offset);
- size_t ctx = 0;
- for (int c : cutoffs) {
- ctx += c >= properties[0];
- }
- pixel_type res = r[x] - guess;
- uint32_t token, nbits, bits;
- config.Encode(PackSigned(res), &token, &nbits, &bits);
- histo[ctx].Add(token);
- extra_bits += nbits;
- wp_state.UpdateErrors(r[x], x, y, ch.w);
- }
- }
- for (size_t h = 0; h < nc; h++) {
- histo_cost += histo[h].ShannonEntropy();
- histo[h].Clear();
- }
+void ModularFrameEncoder::ClearModularStreamData() {
+ for (const auto& group : stream_params_) {
+ ClearStreamData(group.id);
}
- return histo_cost + extra_bits;
+ stream_params_.clear();
}
-float EstimateCost(const Image& img) {
- // TODO(veluca): consider SIMDfication of this code.
- size_t extra_bits = 0;
- float histo_cost = 0;
- HybridUintConfig config;
- uint32_t cutoffs[] = {0, 1, 3, 5, 7, 11, 15, 23, 31,
- 47, 63, 95, 127, 191, 255, 392, 500};
- constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
- Histogram histo[nc] = {};
- for (const Channel& ch : img.channel) {
- const intptr_t onerow = ch.plane.PixelsPerRow();
- for (size_t y = 0; y < ch.h; y++) {
- const pixel_type* JXL_RESTRICT r = ch.Row(y);
- for (size_t x = 0; x < ch.w; x++) {
- pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
- pixel_type_w top = (y ? *(r + x - onerow) : left);
- pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
- size_t maxdiff = std::max(std::max(left, top), topleft) -
- std::min(std::min(left, top), topleft);
- size_t ctx = 0;
- for (uint32_t c : cutoffs) {
- ctx += c > maxdiff;
- }
- pixel_type res = r[x] - ClampedGradient(top, left, topleft);
- uint32_t token, nbits, bits;
- config.Encode(PackSigned(res), &token, &nbits, &bits);
- histo[ctx].Add(token);
- extra_bits += nbits;
- }
- }
- for (size_t h = 0; h < nc; h++) {
- histo_cost += histo[h].ShannonEntropy();
- histo[h].Clear();
- }
- }
- return histo_cost + extra_bits;
+size_t ModularFrameEncoder::ComputeStreamingAbsoluteAcGroupId(
+ size_t dc_group_id, size_t ac_group_id,
+ const FrameDimensions& patch_dim) const {
+ size_t dc_group_x = dc_group_id % frame_dim_.xsize_dc_groups;
+ size_t dc_group_y = dc_group_id / frame_dim_.xsize_dc_groups;
+ size_t ac_group_x = ac_group_id % patch_dim.xsize_groups;
+ size_t ac_group_y = ac_group_id / patch_dim.xsize_groups;
+ return (dc_group_x * 8 + ac_group_x) +
+ (dc_group_y * 8 + ac_group_y) * frame_dim_.xsize_groups;
}
-} // namespace
-
Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
const CompressParams& cparams_,
int minShift, int maxShift,
const ModularStreamId& stream,
- bool do_color) {
+ bool do_color, bool groupwise) {
size_t stream_id = stream.ID(frame_dim_);
Image& full_image = stream_images_[0];
const size_t xsize = rect.xsize();
const size_t ysize = rect.ysize();
Image& gi = stream_images_[stream_id];
if (stream_id > 0) {
- gi = Image(xsize, ysize, full_image.bitdepth, 0);
+ JXL_ASSIGN_OR_RETURN(gi,
+ Image::Create(xsize, ysize, full_image.bitdepth, 0));
// start at the first bigger-than-frame_dim.group_dim non-metachannel
size_t c = full_image.nb_meta_channels;
- for (; c < full_image.channel.size(); c++) {
- Channel& fc = full_image.channel[c];
- if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
+ if (!groupwise) {
+ for (; c < full_image.channel.size(); c++) {
+ Channel& fc = full_image.channel[c];
+ if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
+ }
}
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
@@ -1220,7 +1305,7 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
if (r.xsize() == 0 || r.ysize() == 0) continue;
gi_channel_[stream_id].push_back(c);
- Channel gc(r.xsize(), r.ysize());
+ JXL_ASSIGN_OR_RETURN(Channel gc, Channel::Create(r.xsize(), r.ysize()));
gc.hshift = fc.hshift;
gc.vshift = fc.vshift;
for (size_t y = 0; y < r.ysize(); ++y) {
@@ -1245,7 +1330,7 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
maybe_palette.nb_colors = std::abs(cparams_.palette_colors);
maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
- do_transform(gi, maybe_palette, weighted::Header());
+ maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header());
}
// all-minus-one-channel palette (RGB with separate alpha, or CMY with
// separate K)
@@ -1259,7 +1344,7 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
if (maybe_palette_3.lossy_palette) {
maybe_palette_3.predictor = Predictor::Weighted;
}
- do_transform(gi, maybe_palette_3, weighted::Header());
+ maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header());
}
}
@@ -1271,9 +1356,10 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
// single channel palette (like FLIF's ChannelCompact)
size_t nb_channels = gi.channel.size() - gi.nb_meta_channels;
for (size_t i = 0; i < nb_channels; i++) {
- int32_t min, max;
+ int32_t min;
+ int32_t max;
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
- int64_t colors = (int64_t)max - min + 1;
+ int64_t colors = static_cast<int64_t>(max) - min + 1;
JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
Transform maybe_palette_1(TransformId::kPalette);
maybe_palette_1.begin_c = i + gi.nb_meta_channels;
@@ -1282,10 +1368,10 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
// actually occur, it is probably worth it to do a compaction
// (but only if the channel palette is less than 80% the size of the
// image itself)
- maybe_palette_1.nb_colors =
- std::min((int)(xsize * ysize * 0.8),
- (int)(cparams_.channel_colors_percent / 100. * colors));
- do_transform(gi, maybe_palette_1, weighted::Header());
+ maybe_palette_1.nb_colors = std::min(
+ static_cast<int>(xsize * ysize * 0.8),
+ static_cast<int>(cparams_.channel_colors_percent / 100. * colors));
+ maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header());
}
}
}
@@ -1295,7 +1381,7 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
if (cparams_.color_transform == ColorTransform::kNone &&
cparams_.IsLossless() && cparams_.colorspace < 0 &&
gi.channel.size() - gi.nb_meta_channels >= 3 &&
- cparams_.responsive == false && do_color &&
+ cparams_.responsive == JXL_FALSE && do_color &&
cparams_.speed_tier <= SpeedTier::kHare) {
Transform sg(TransformId::kRCT);
sg.begin_c = gi.nb_meta_channels;
@@ -1319,6 +1405,7 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
case SpeedTier::kKitten:
nb_rcts_to_try = 9;
break;
+ case SpeedTier::kTectonicPlate:
case SpeedTier::kGlacier:
case SpeedTier::kTortoise:
nb_rcts_to_try = 19;
@@ -1403,11 +1490,11 @@ int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x,
return residual + pred.guess;
}
-void ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
- const Image3F& dc, const Rect& r,
- size_t group_index, bool nl_dc,
- PassesEncoderState* enc_state,
- bool jpeg_transcode) {
+Status ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
+ const Image3F& dc, const Rect& r,
+ size_t group_index, bool nl_dc,
+ PassesEncoderState* enc_state,
+ bool jpeg_transcode) {
extra_dc_precision[group_index] = nl_dc ? 1 : 0;
float mul = 1 << extra_dc_precision[group_index];
@@ -1430,8 +1517,11 @@ void ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kGradientFixedDC;
}
+ stream_options_[stream_id].histogram_params =
+ stream_options_[0].histogram_params;
- stream_images_[stream_id] = Image(r.xsize(), r.ysize(), 8, 3);
+ JXL_ASSIGN_OR_RETURN(stream_images_[stream_id],
+ Image::Create(r.xsize(), r.ysize(), 8, 3));
if (nl_dc && stream_options_[stream_id].tree_kind ==
ModularOptions::TreeKind::kGradientFixedDC) {
JXL_ASSERT(frame_header.chroma_subsampling.Is444());
@@ -1531,7 +1621,7 @@ void ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c];
ch.w = xs;
ch.h = ys;
- ch.shrink();
+ JXL_RETURN_IF_ERROR(ch.shrink());
for (size_t y = 0; y < ys; y++) {
int32_t* quant_row = ch.plane.Row(y);
const float* row = rect.ConstPlaneRow(dc, c, y);
@@ -1546,14 +1636,17 @@ void ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
stream_images_[stream_id], enc_state->shared.quantizer.MulDC(),
1.0 / mul, enc_state->shared.cmap.DCFactors(),
frame_header.chroma_subsampling, enc_state->shared.block_ctx_map);
+ return true;
}
-void ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
- bool jpeg_transcode,
- PassesEncoderState* enc_state) {
+Status ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
+ bool jpeg_transcode,
+ PassesEncoderState* enc_state) {
size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_);
stream_options_[stream_id].max_chan_size = 0xFFFFFF;
- stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP;
+ if (stream_options_[stream_id].predictor != Predictor::Weighted) {
+ stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP;
+ }
if (jpeg_transcode) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kJpegTranscodeACMeta;
@@ -1569,14 +1662,19 @@ void ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
cparams_.force_cfl_jpeg_recompression) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
}
+ stream_options_[stream_id].histogram_params =
+ stream_options_[0].histogram_params;
// YToX, YToB, ACS + QF, EPF
Image& image = stream_images_[stream_id];
- image = Image(r.xsize(), r.ysize(), 8, 4);
+ JXL_ASSIGN_OR_RETURN(image, Image::Create(r.xsize(), r.ysize(), 8, 4));
static_assert(kColorTileDimInBlocks == 8, "Color tile size changed");
Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3);
- image.channel[0] = Channel(cr.xsize(), cr.ysize(), 3, 3);
- image.channel[1] = Channel(cr.xsize(), cr.ysize(), 3, 3);
- image.channel[2] = Channel(r.xsize() * r.ysize(), 2, 0, 0);
+ JXL_ASSIGN_OR_RETURN(image.channel[0],
+ Channel::Create(cr.xsize(), cr.ysize(), 3, 3));
+ JXL_ASSIGN_OR_RETURN(image.channel[1],
+ Channel::Create(cr.xsize(), cr.ysize(), 3, 3));
+ JXL_ASSIGN_OR_RETURN(image.channel[2],
+ Channel::Create(r.xsize() * r.ysize(), 2, 0, 0));
ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map,
Rect(image.channel[0].plane), &image.channel[0].plane);
ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map,
@@ -1599,9 +1697,10 @@ void ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
}
image.channel[2].w = num;
ac_metadata_size[group_index] = num;
+ return true;
}
-void ModularFrameEncoder::EncodeQuantTable(
+Status ModularFrameEncoder::EncodeQuantTable(
size_t size_x, size_t size_y, BitWriter* writer,
const QuantEncoding& encoding, size_t idx,
ModularFrameEncoder* modular_frame_encoder) {
@@ -1611,9 +1710,9 @@ void ModularFrameEncoder::EncodeQuantTable(
if (modular_frame_encoder) {
JXL_CHECK(modular_frame_encoder->EncodeStream(
writer, nullptr, 0, ModularStreamId::QuantTable(idx)));
- return;
+ return true;
}
- Image image(size_x, size_y, 8, 3);
+ JXL_ASSIGN_OR_RETURN(Image image, Image::Create(size_x, size_y, 8, 3));
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
@@ -1624,16 +1723,17 @@ void ModularFrameEncoder::EncodeQuantTable(
}
ModularOptions cfopts;
JXL_CHECK(ModularGenericCompress(image, cfopts, writer));
+ return true;
}
-void ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
- const QuantEncoding& encoding,
- size_t idx) {
+Status ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
+ const QuantEncoding& encoding,
+ size_t idx) {
size_t stream_id = ModularStreamId::QuantTable(idx).ID(frame_dim_);
JXL_ASSERT(encoding.qraw.qtable != nullptr);
JXL_ASSERT(size_x * size_y * 3 == encoding.qraw.qtable->size());
Image& image = stream_images_[stream_id];
- image = Image(size_x, size_y, 8, 3);
+ JXL_ASSIGN_OR_RETURN(image, Image::Create(size_x, size_y, 8, 3));
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
@@ -1642,5 +1742,6 @@ void ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
}
}
}
+ return true;
}
} // namespace jxl