summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/modular
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:14:29 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:14:29 +0000
commitfbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8 (patch)
tree4c1ccaf5486d4f2009f9a338a98a83e886e29c97 /third_party/jpeg-xl/lib/jxl/modular
parentReleasing progress-linux version 124.0.1-1~progress7.99u1. (diff)
downloadfirefox-fbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8.tar.xz
firefox-fbaf0bb26397aa498eb9156f06d5a6fe34dd7dd8.zip
Merging upstream version 125.0.1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/modular')
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/encoding/context_predict.h12
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/encoding/dec_ma.cc2
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/encoding/enc_debug_tree.cc2
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/encoding/enc_encoding.cc82
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/encoding/enc_ma.cc15
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/encoding/encoding.cc12
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/modular_image.cc35
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/modular_image.h36
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/options.h8
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/enc_palette.cc38
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/enc_squeeze.cc49
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/palette.cc19
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/palette.h1
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.cc19
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.h2
-rw-r--r--third_party/jpeg-xl/lib/jxl/modular/transform/transform.h14
16 files changed, 217 insertions, 129 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/modular/encoding/context_predict.h b/third_party/jpeg-xl/lib/jxl/modular/encoding/context_predict.h
index 4c3a33a52a..7bec5128fc 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/encoding/context_predict.h
+++ b/third_party/jpeg-xl/lib/jxl/modular/encoding/context_predict.h
@@ -10,6 +10,7 @@
#include <vector>
#include "lib/jxl/fields.h"
+#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/options.h"
@@ -78,14 +79,14 @@ struct State {
294337, 289262, 284359, 279620, 275036, 270600, 266305, 262144};
constexpr static pixel_type_w AddBits(pixel_type_w x) {
- return uint64_t(x) << kPredExtraBits;
+ return static_cast<uint64_t>(x) << kPredExtraBits;
}
State(Header header, size_t xsize, size_t ysize) : header(header) {
// Extra margin to avoid out-of-bounds writes.
// All have space for two rows of data.
- for (size_t i = 0; i < 4; i++) {
- pred_errors[i].resize((xsize + 2) * 2);
+ for (auto &pred_error : pred_errors) {
+ pred_error.resize((xsize + 2) * 2);
}
error.resize((xsize + 2) * 2);
}
@@ -538,8 +539,9 @@ JXL_INLINE PredictionResult Predict(
}
if (mode & kAllPredictions) {
for (size_t i = 0; i < kNumModularPredictors; i++) {
- predictions[i] = PredictOne((Predictor)i, left, top, toptop, topleft,
- topright, leftleft, toprightright, wp_pred);
+ predictions[i] =
+ PredictOne(static_cast<Predictor>(i), left, top, toptop, topleft,
+ topright, leftleft, toprightright, wp_pred);
}
}
result.guess += PredictOne(predictor, left, top, toptop, topleft, topright,
diff --git a/third_party/jpeg-xl/lib/jxl/modular/encoding/dec_ma.cc b/third_party/jpeg-xl/lib/jxl/modular/encoding/dec_ma.cc
index ee7177bcd6..b53b9a9103 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/encoding/dec_ma.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/encoding/dec_ma.cc
@@ -5,6 +5,8 @@
#include "lib/jxl/modular/encoding/dec_ma.h"
+#include <limits>
+
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/modular/encoding/ma_common.h"
diff --git a/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_debug_tree.cc b/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_debug_tree.cc
index bd27f28458..f863823629 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_debug_tree.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_debug_tree.cc
@@ -95,7 +95,7 @@ std::string PropertyName(size_t i) {
case 15:
return "WGH";
default:
- return "ch[" + ToString(15 - (int)i) + "]";
+ return "ch[" + ToString(15 - static_cast<int>(i)) + "]";
}
}
diff --git a/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_encoding.cc b/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_encoding.cc
index fc2e69e4a6..84d8137d21 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_encoding.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_encoding.cc
@@ -6,35 +6,24 @@
#include <stdint.h>
#include <stdlib.h>
-#include <cinttypes>
#include <limits>
-#include <numeric>
#include <queue>
-#include <set>
-#include <unordered_map>
-#include <unordered_set>
#include "lib/jxl/base/common.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/status.h"
-#include "lib/jxl/dec_ans.h"
-#include "lib/jxl/dec_bit_reader.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/enc_fields.h"
-#include "lib/jxl/entropy_coder.h"
#include "lib/jxl/fields.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/context_predict.h"
-#include "lib/jxl/modular/encoding/enc_debug_tree.h"
#include "lib/jxl/modular/encoding/enc_ma.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/modular/encoding/ma_common.h"
#include "lib/jxl/modular/options.h"
-#include "lib/jxl/modular/transform/transform.h"
#include "lib/jxl/pack_signed.h"
-#include "lib/jxl/toc.h"
namespace jxl {
@@ -61,7 +50,7 @@ inline std::array<uint8_t, 3> PredictorColor(Predictor p) {
return {{255, 0, 255}};
case Predictor::Weighted:
return {{0, 255, 255}};
- // TODO
+ // TODO(jon)
default:
return {{255, 255, 255}};
};
@@ -101,17 +90,17 @@ Tree MakeFixedTree(int property, const std::vector<int32_t> &cutoffs,
} // namespace
-void GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
- const weighted::Header &wp_header,
- const ModularOptions &options, TreeSamples &tree_samples,
- size_t *total_pixels) {
+Status GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
+ const weighted::Header &wp_header,
+ const ModularOptions &options, TreeSamples &tree_samples,
+ size_t *total_pixels) {
const Channel &channel = image.channel[chan];
JXL_DEBUG_V(7, "Learning %" PRIuS "x%" PRIuS " channel %d", channel.w,
channel.h, chan);
std::array<pixel_type, kNumStaticProperties> static_props = {
- {chan, (int)group_id}};
+ {chan, static_cast<int>(group_id)}};
Properties properties(kNumNonrefProperties +
kExtraPropsPerChannel * options.max_properties);
double pixel_fraction = std::min(1.0f, options.nb_repeats);
@@ -137,7 +126,9 @@ void GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
};
const intptr_t onerow = channel.plane.PixelsPerRow();
- Channel references(properties.size() - kNumNonrefProperties, channel.w);
+ JXL_ASSIGN_OR_RETURN(
+ Channel references,
+ Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
weighted::State wp_state(wp_header, channel.w, channel.h);
tree_samples.PrepareForSamples(pixel_fraction * channel.h * channel.w + 64);
const bool multiple_predictors = tree_samples.NumPredictors() != 1;
@@ -198,6 +189,7 @@ void GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
}
}
}
+ return true;
}
Tree PredefinedTree(ModularOptions::TreeKind tree_kind, size_t total_pixels) {
@@ -316,7 +308,9 @@ Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
JXL_ASSERT(channel.w != 0 && channel.h != 0);
Image3F predictor_img;
- if (kWantDebug) predictor_img = Image3F(channel.w, channel.h);
+ if (kWantDebug) {
+ JXL_ASSIGN_OR_RETURN(predictor_img, Image3F::Create(channel.w, channel.h));
+ }
JXL_DEBUG_V(6,
"Encoding %" PRIuS "x%" PRIuS
@@ -325,8 +319,9 @@ Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
channel.w, channel.h, chan, channel.hshift, channel.vshift);
std::array<pixel_type, kNumStaticProperties> static_props = {
- {chan, (int)group_id}};
- bool use_wp, is_wp_only;
+ {chan, static_cast<int>(group_id)}};
+ bool use_wp;
+ bool is_wp_only;
bool is_gradient_only;
size_t num_props;
FlatTree tree = FilterTree(global_tree, static_props, &num_props, &use_wp,
@@ -439,7 +434,8 @@ Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
FillImage(static_cast<float>(PredictorColor(tree[0].predictor)[c]),
&predictor_img.Plane(c));
}
- uint32_t mul_shift = FloorLog2Nonzero((uint32_t)tree[0].multiplier);
+ uint32_t mul_shift =
+ FloorLog2Nonzero(static_cast<uint32_t>(tree[0].multiplier));
const intptr_t onerow = channel.plane.PixelsPerRow();
for (size_t y = 0; y < channel.h; y++) {
const pixel_type *JXL_RESTRICT r = channel.Row(y);
@@ -454,7 +450,9 @@ Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
} else if (!use_wp && !skip_encoder_fast_path) {
const intptr_t onerow = channel.plane.PixelsPerRow();
- Channel references(properties.size() - kNumNonrefProperties, channel.w);
+ JXL_ASSIGN_OR_RETURN(
+ Channel references,
+ Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
for (size_t y = 0; y < channel.h; y++) {
const pixel_type *JXL_RESTRICT p = channel.Row(y);
PrecomputeReferences(channel, y, image, chan, &references);
@@ -481,7 +479,9 @@ Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
}
} else {
const intptr_t onerow = channel.plane.PixelsPerRow();
- Channel references(properties.size() - kNumNonrefProperties, channel.w);
+ JXL_ASSIGN_OR_RETURN(
+ Channel references,
+ Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
weighted::State wp_state(wp_header, channel.w, channel.h);
for (size_t y = 0; y < channel.h; y++) {
const pixel_type *JXL_RESTRICT p = channel.Row(y);
@@ -556,8 +556,20 @@ Status ModularEncode(const Image &image, const ModularOptions &options,
TreeSamples tree_samples_storage;
size_t total_pixels_storage = 0;
if (!total_pixels) total_pixels = &total_pixels_storage;
+ if (*total_pixels == 0) {
+ for (size_t i = 0; i < nb_channels; i++) {
+ if (i >= image.nb_meta_channels &&
+ (image.channel[i].w > options.max_chan_size ||
+ image.channel[i].h > options.max_chan_size)) {
+ break;
+ }
+ *total_pixels += image.channel[i].w * image.channel[i].h;
+ }
+ *total_pixels = std::max<size_t>(*total_pixels, 1);
+ }
// If there's no tree, compute one (or gather data to).
- if (tree == nullptr) {
+ if (tree == nullptr &&
+ options.tree_kind == ModularOptions::TreeKind::kLearn) {
bool gather_data = tree_samples != nullptr;
if (tree_samples == nullptr) {
JXL_RETURN_IF_ERROR(tree_samples_storage.SetPredictor(
@@ -586,9 +598,9 @@ Status ModularEncode(const Image &image, const ModularOptions &options,
image.channel[i].h > options.max_chan_size)) {
break;
}
- GatherTreeData(image, i, group_id, header->wp_header, options,
- gather_data ? *tree_samples : tree_samples_storage,
- total_pixels);
+ JXL_RETURN_IF_ERROR(GatherTreeData(
+ image, i, group_id, header->wp_header, options,
+ gather_data ? *tree_samples : tree_samples_storage, total_pixels));
}
if (gather_data) return true;
}
@@ -609,10 +621,10 @@ Status ModularEncode(const Image &image, const ModularOptions &options,
? LearnTree(std::move(tree_samples_storage), *total_pixels, options)
: PredefinedTree(options.tree_kind, *total_pixels);
tree = &tree_storage;
- tokens = &tokens_storage[0];
+ tokens = tokens_storage.data();
Tree decoded_tree;
- TokenizeTree(*tree, &tree_tokens[0], &decoded_tree);
+ TokenizeTree(*tree, tree_tokens.data(), &decoded_tree);
JXL_ASSERT(tree->size() == decoded_tree.size());
tree_storage = std::move(decoded_tree);
@@ -622,9 +634,9 @@ Status ModularEncode(const Image &image, const ModularOptions &options,
} */
// Write tree
- BuildAndEncodeHistograms(HistogramParams(), kNumTreeContexts, tree_tokens,
- &code, &context_map, writer, kLayerModularTree,
- aux_out);
+ BuildAndEncodeHistograms(options.histogram_params, kNumTreeContexts,
+ tree_tokens, &code, &context_map, writer,
+ kLayerModularTree, aux_out);
WriteTokens(tree_tokens[0], code, context_map, 0, writer, kLayerModularTree,
aux_out);
}
@@ -669,7 +681,7 @@ Status ModularEncode(const Image &image, const ModularOptions &options,
if (!header->use_global_tree) {
EntropyEncodingData code;
std::vector<uint8_t> context_map;
- HistogramParams histo_params;
+ HistogramParams histo_params = options.histogram_params;
histo_params.image_widths.push_back(image_width);
BuildAndEncodeHistograms(histo_params, (tree->size() + 1) / 2,
tokens_storage, &code, &context_map, writer, layer,
@@ -691,7 +703,7 @@ Status ModularGenericCompress(Image &image, const ModularOptions &opts,
if (image.w == 0 || image.h == 0) return true;
ModularOptions options = opts; // Make a copy to modify it.
- if (options.predictor == static_cast<Predictor>(-1)) {
+ if (options.predictor == kUndefinedPredictor) {
options.predictor = Predictor::Gradient;
}
diff --git a/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_ma.cc b/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_ma.cc
index ef72b2477b..de629ad038 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_ma.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/encoding/enc_ma.cc
@@ -109,8 +109,8 @@ IntersectionType BoxIntersects(StaticPropRange needle, StaticPropRange haystack,
void SplitTreeSamples(TreeSamples &tree_samples, size_t begin, size_t pos,
size_t end, size_t prop) {
auto cmp = [&](size_t a, size_t b) {
- return int32_t(tree_samples.Property(prop, a)) -
- int32_t(tree_samples.Property(prop, b));
+ return static_cast<int32_t>(tree_samples.Property(prop, a)) -
+ static_cast<int32_t>(tree_samples.Property(prop, b));
};
Rng rng(0);
while (end > begin + 1) {
@@ -243,7 +243,8 @@ void FindBestSplit(TreeSamples &tree_samples, float threshold,
// properties. We do this even if the current node is not a leaf, to
// minimize the number of nodes in the resulting tree.
for (size_t i = 0; i < mul_info.size(); i++) {
- uint32_t axis, val;
+ uint32_t axis;
+ uint32_t val;
IntersectionType t =
BoxIntersects(static_prop_range, mul_info[i].range, axis, val);
if (t == IntersectionType::kNone) continue;
@@ -696,7 +697,11 @@ void TreeSamples::Swap(size_t a, size_t b) {
}
void TreeSamples::ThreeShuffle(size_t a, size_t b, size_t c) {
- if (b == c) return Swap(a, b);
+ if (b == c) {
+ Swap(a, b);
+ return;
+ }
+
for (auto &r : residuals) {
auto tmp = r[a];
r[a] = r[c];
@@ -966,7 +971,7 @@ void CollectPixelSamples(const Image &image, const ModularOptions &options,
const pixel_type *row = image.channel[channel_ids[i]].Row(y);
pixel_samples.push_back(row[x]);
size_t xp = x == 0 ? 1 : x - 1;
- diff_samples.push_back((int64_t)row[x] - row[xp]);
+ diff_samples.push_back(static_cast<int64_t>(row[x]) - row[xp]);
}
}
diff --git a/third_party/jpeg-xl/lib/jxl/modular/encoding/encoding.cc b/third_party/jpeg-xl/lib/jxl/modular/encoding/encoding.cc
index a6abdcfc91..bb690b74ba 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/encoding/encoding.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/encoding/encoding.cc
@@ -14,6 +14,8 @@
#include "lib/jxl/base/scope_guard.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/dec_bit_reader.h"
+#include "lib/jxl/frame_dimensions.h"
+#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/pack_signed.h"
@@ -141,7 +143,7 @@ Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
Channel &channel = image->channel[chan];
std::array<pixel_type, kNumStaticProperties> static_props = {
- {chan, (int)group_id}};
+ {chan, static_cast<int>(group_id)}};
// TODO(veluca): filter the tree according to static_props.
// zero pixel channel? could happen
@@ -376,7 +378,9 @@ Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
MATreeLookup tree_lookup(tree);
Properties properties = Properties(num_props);
const intptr_t onerow = channel.plane.PixelsPerRow();
- Channel references(properties.size() - kNumNonrefProperties, channel.w);
+ JXL_ASSIGN_OR_RETURN(
+ Channel references,
+ Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT p = channel.Row(y);
PrecomputeReferences(channel, y, *image, chan, &references);
@@ -422,7 +426,9 @@ Status DecodeModularChannelMAANS(BitReader *br, ANSSymbolReader *reader,
MATreeLookup tree_lookup(tree);
Properties properties = Properties(num_props);
const intptr_t onerow = channel.plane.PixelsPerRow();
- Channel references(properties.size() - kNumNonrefProperties, channel.w);
+ JXL_ASSIGN_OR_RETURN(
+ Channel references,
+ Channel::Create(properties.size() - kNumNonrefProperties, channel.w));
weighted::State wp_state(wp_header, channel.w, channel.h);
for (size_t y = 0; y < channel.h; y++) {
pixel_type *JXL_RESTRICT p = channel.Row(y);
diff --git a/third_party/jpeg-xl/lib/jxl/modular/modular_image.cc b/third_party/jpeg-xl/lib/jxl/modular/modular_image.cc
index 746d7c87fd..32a5531080 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/modular_image.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/modular_image.cc
@@ -8,6 +8,7 @@
#include <sstream>
#include "lib/jxl/base/status.h"
+#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/transform/transform.h"
namespace jxl {
@@ -28,9 +29,18 @@ void Image::undo_transforms(const weighted::Header &wp_header,
}
}
-Image::Image(size_t iw, size_t ih, int bitdepth, int nb_chans)
- : w(iw), h(ih), bitdepth(bitdepth), nb_meta_channels(0), error(false) {
- for (int i = 0; i < nb_chans; i++) channel.emplace_back(Channel(iw, ih));
+Image::Image(size_t iw, size_t ih, int bitdepth)
+ : w(iw), h(ih), bitdepth(bitdepth), nb_meta_channels(0), error(false) {}
+
+StatusOr<Image> Image::Create(size_t iw, size_t ih, int bitdepth,
+ int nb_chans) {
+ Image result(iw, ih, bitdepth);
+ for (int i = 0; i < nb_chans; i++) {
+ StatusOr<Channel> channel_or = Channel::Create(iw, ih);
+ JXL_RETURN_IF_ERROR(channel_or.status());
+ result.channel.emplace_back(std::move(channel_or).value());
+ }
+ return result;
}
Image::Image() : w(0), h(0), bitdepth(8), nb_meta_channels(0), error(true) {}
@@ -46,17 +56,18 @@ Image &Image::operator=(Image &&other) noexcept {
return *this;
}
-Image Image::clone() {
- Image c(w, h, bitdepth, 0);
- c.nb_meta_channels = nb_meta_channels;
- c.error = error;
- c.transform = transform;
- for (Channel &ch : channel) {
- Channel a(ch.w, ch.h, ch.hshift, ch.vshift);
+StatusOr<Image> Image::Clone(const Image &that) {
+ Image clone(that.w, that.h, that.bitdepth);
+ clone.nb_meta_channels = that.nb_meta_channels;
+ clone.error = that.error;
+ clone.transform = that.transform;
+ for (const Channel &ch : that.channel) {
+ JXL_ASSIGN_OR_RETURN(Channel a,
+ Channel::Create(ch.w, ch.h, ch.hshift, ch.vshift));
CopyImageTo(ch.plane, &a.plane);
- c.channel.push_back(std::move(a));
+ clone.channel.push_back(std::move(a));
}
- return c;
+ return clone;
}
#if JXL_DEBUG_V_LEVEL >= 1
diff --git a/third_party/jpeg-xl/lib/jxl/modular/modular_image.h b/third_party/jpeg-xl/lib/jxl/modular/modular_image.h
index 56e80d823a..eb95b1cb6c 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/modular_image.h
+++ b/third_party/jpeg-xl/lib/jxl/modular/modular_image.h
@@ -18,7 +18,6 @@
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/image.h"
-#include "lib/jxl/image_ops.h"
namespace jxl {
@@ -36,12 +35,16 @@ class Channel {
jxl::Plane<pixel_type> plane;
size_t w, h;
int hshift, vshift; // w ~= image.w >> hshift; h ~= image.h >> vshift
- Channel(size_t iw, size_t ih, int hsh = 0, int vsh = 0)
- : plane(iw, ih), w(iw), h(ih), hshift(hsh), vshift(vsh) {}
-
Channel(const Channel& other) = delete;
Channel& operator=(const Channel& other) = delete;
+ static StatusOr<Channel> Create(size_t iw, size_t ih, int hsh = 0,
+ int vsh = 0) {
+ JXL_ASSIGN_OR_RETURN(Plane<pixel_type> plane,
+ Plane<pixel_type>::Create(iw, ih));
+ return Channel(std::move(plane), iw, ih, hsh, vsh);
+ }
+
// Move assignment
Channel& operator=(Channel&& other) noexcept {
w = other.w;
@@ -55,21 +58,25 @@ class Channel {
// Move constructor
Channel(Channel&& other) noexcept = default;
- void shrink() {
- if (plane.xsize() == w && plane.ysize() == h) return;
- jxl::Plane<pixel_type> resizedplane(w, h);
- plane = std::move(resizedplane);
+ Status shrink() {
+ if (plane.xsize() == w && plane.ysize() == h) return true;
+ JXL_ASSIGN_OR_RETURN(plane, Plane<pixel_type>::Create(w, h));
+ return true;
}
- void shrink(int nw, int nh) {
+ Status shrink(int nw, int nh) {
w = nw;
h = nh;
- shrink();
+ return shrink();
}
JXL_INLINE pixel_type* Row(const size_t y) { return plane.Row(y); }
JXL_INLINE const pixel_type* Row(const size_t y) const {
return plane.Row(y);
}
+
+ private:
+ Channel(jxl::Plane<pixel_type>&& p, size_t iw, size_t ih, int hsh, int vsh)
+ : plane(std::move(p)), w(iw), h(ih), hshift(hsh), vshift(vsh) {}
};
class Transform;
@@ -88,7 +95,6 @@ class Image {
size_t nb_meta_channels; // first few channels might contain palette(s)
bool error; // true if a fatal error occurred, false otherwise
- Image(size_t iw, size_t ih, int bitdepth, int nb_chans);
Image();
Image(const Image& other) = delete;
@@ -97,6 +103,9 @@ class Image {
Image& operator=(Image&& other) noexcept;
Image(Image&& other) noexcept = default;
+ static StatusOr<Image> Create(size_t iw, size_t ih, int bitdepth,
+ int nb_chans);
+
bool empty() const {
for (const auto& ch : channel) {
if (ch.w && ch.h) return false;
@@ -104,12 +113,15 @@ class Image {
return true;
}
- Image clone();
+ static StatusOr<Image> Clone(const Image& that);
void undo_transforms(const weighted::Header& wp_header,
jxl::ThreadPool* pool = nullptr);
std::string DebugString() const;
+
+ private:
+ Image(size_t iw, size_t ih, int bitdepth);
};
} // namespace jxl
diff --git a/third_party/jpeg-xl/lib/jxl/modular/options.h b/third_party/jpeg-xl/lib/jxl/modular/options.h
index ce6596b912..6613b513de 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/options.h
+++ b/third_party/jpeg-xl/lib/jxl/modular/options.h
@@ -11,6 +11,8 @@
#include <array>
#include <vector>
+#include "lib/jxl/enc_ans_params.h"
+
namespace jxl {
using PropertyVal = int32_t;
@@ -37,6 +39,8 @@ enum class Predictor : uint32_t {
15, // Find the best decision tree for predictors/predictor per row
};
+constexpr Predictor kUndefinedPredictor = static_cast<Predictor>(~0u);
+
constexpr size_t kNumModularPredictors =
static_cast<size_t>(Predictor::Average4) + 1;
constexpr size_t kNumModularEncoderPredictors =
@@ -80,7 +84,7 @@ struct ModularOptions {
size_t max_property_values = 32;
// Predictor to use for each channel.
- Predictor predictor = static_cast<Predictor>(-1);
+ Predictor predictor = kUndefinedPredictor;
int wp_mode = 0;
@@ -108,6 +112,8 @@ struct ModularOptions {
};
TreeKind tree_kind = TreeKind::kLearn;
+ HistogramParams histogram_params;
+
// Ignore the image and just pretend all tokens are zeroes
bool zero_tokens = false;
};
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/enc_palette.cc b/third_party/jpeg-xl/lib/jxl/modular/transform/enc_palette.cc
index f5172aa126..24c64f5aad 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/enc_palette.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/enc_palette.cc
@@ -10,8 +10,8 @@
#include <set>
#include "lib/jxl/base/common.h"
-#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/status.h"
+#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/transform/enc_transform.h"
@@ -34,7 +34,8 @@ float ColorDistance(const std::vector<float> &JXL_RESTRICT a,
if (a.size() >= 3) {
ave3 = (a[0] + b[0] + a[1] + b[1] + a[2] + b[2]) * (1.21f / 3.0f);
}
- float sum_a = 0, sum_b = 0;
+ float sum_a = 0;
+ float sum_b = 0;
for (size_t c = 0; c < a.size(); ++c) {
const float difference =
static_cast<float>(a[c]) - static_cast<float>(b[c]);
@@ -132,7 +133,8 @@ struct PaletteIterationData {
delta_frequency.first[1],
delta_frequency.first[2]};
float delta_distance =
- sqrt(palette_internal::ColorDistance({0, 0, 0}, current_delta)) + 1;
+ std::sqrt(palette_internal::ColorDistance({0, 0, 0}, current_delta)) +
+ 1;
delta_frequency.second *= delta_distance * delta_distance_multiplier;
}
@@ -174,7 +176,8 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
// Channel palette special case
if (nb_colors == 0) return false;
std::vector<pixel_type> lookup;
- pixel_type minval, maxval;
+ pixel_type minval;
+ pixel_type maxval;
compute_minmax(input.channel[begin_c], &minval, &maxval);
size_t lookup_table_size =
static_cast<int64_t>(maxval) - static_cast<int64_t>(minval) + 1;
@@ -189,12 +192,12 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
const bool new_color = chpalette.insert(p[x]).second;
if (new_color) {
idx++;
- if (idx > (int)nb_colors) return false;
+ if (idx > static_cast<int>(nb_colors)) return false;
}
}
}
JXL_DEBUG_V(6, "Channel %i uses only %i colors.", begin_c, idx);
- Channel pch(idx, 1);
+ JXL_ASSIGN_OR_RETURN(Channel pch, Channel::Create(idx, 1));
pch.hshift = -1;
pch.vshift = -1;
nb_colors = idx;
@@ -206,9 +209,12 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
for (size_t y = 0; y < h; y++) {
pixel_type *p = input.channel[begin_c].Row(y);
for (size_t x = 0; x < w; x++) {
- for (idx = 0; p[x] != p_palette[idx] && idx < (int)nb_colors; idx++) {
+ for (idx = 0;
+ p[x] != p_palette[idx] && idx < static_cast<int>(nb_colors);
+ idx++) {
+ // no-op
}
- JXL_DASSERT(idx < (int)nb_colors);
+ JXL_DASSERT(idx < static_cast<int>(nb_colors));
p[x] = idx;
}
}
@@ -226,12 +232,12 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
if (lookup[p[x] - minval] == 0) {
lookup[p[x] - minval] = 1;
idx++;
- if (idx > (int)nb_colors) return false;
+ if (idx > static_cast<int>(nb_colors)) return false;
}
}
}
JXL_DEBUG_V(6, "Channel %i uses only %i colors.", begin_c, idx);
- Channel pch(idx, 1);
+ JXL_ASSIGN_OR_RETURN(Channel pch, Channel::Create(idx, 1));
pch.hshift = -1;
pch.vshift = -1;
nb_colors = idx;
@@ -256,7 +262,8 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
Image quantized_input;
if (lossy) {
- quantized_input = Image(w, h, input.bitdepth, nb);
+ JXL_ASSIGN_OR_RETURN(quantized_input,
+ Image::Create(w, h, input.bitdepth, nb));
for (size_t c = 0; c < nb; c++) {
CopyImageTo(input.channel[begin_c + c].plane,
&quantized_input.channel[c].plane);
@@ -337,7 +344,7 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
JXL_DEBUG_V(6, "Channels %i-%i can be represented using a %i-color palette.",
begin_c, end_c, nb_colors);
- Channel pch(nb_colors, nb);
+ JXL_ASSIGN_OR_RETURN(Channel pch, Channel::Create(nb_colors, nb));
pch.hshift = -1;
pch.vshift = -1;
pixel_type *JXL_RESTRICT p_palette = pch.Row(0);
@@ -361,7 +368,8 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
std::sort(candidate_palette_imageorder.begin(),
candidate_palette_imageorder.end(),
[](std::vector<pixel_type> ap, std::vector<pixel_type> bp) {
- float ay, by;
+ float ay;
+ float by;
ay = (0.299f * ap[0] + 0.587f * ap[1] + 0.114f * ap[2] + 0.1f);
if (ap.size() > 3) ay *= 1.f + ap[3];
by = (0.299f * bp[0] + 0.587f * bp[1] + 0.114f * bp[2] + 0.1f);
@@ -420,7 +428,7 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
for (int diffusion_index = 0; diffusion_index < 2; ++diffusion_index) {
for (size_t c = 0; c < nb; c++) {
color_with_error[c] =
- p_in[c][x] + palette_iteration_data.final_run *
+ p_in[c][x] + (palette_iteration_data.final_run ? 1 : 0) *
kDiffusionMultiplier[diffusion_index] *
error_row[0][c][x + 2];
color[c] = Clamp1(lroundf(color_with_error[c]), 0l,
@@ -503,7 +511,7 @@ Status FwdPaletteIteration(Image &input, uint32_t begin_c, uint32_t end_c,
float local_error = color_with_error[c] - best_val[c];
len_error += local_error * local_error;
}
- len_error = sqrt(len_error);
+ len_error = std::sqrt(len_error);
float modulate = 1.0;
int len_limit = 38 << std::max(0, bit_depth - 8);
if (len_error > len_limit) {
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/enc_squeeze.cc b/third_party/jpeg-xl/lib/jxl/modular/transform/enc_squeeze.cc
index 489f72a90d..0d924c0ace 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/enc_squeeze.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/enc_squeeze.cc
@@ -14,15 +14,20 @@
namespace jxl {
-void FwdHSqueeze(Image &input, int c, int rc) {
+#define AVERAGE(X, Y) (((X) + (Y) + (((X) > (Y)) ? 1 : 0)) >> 1)
+
+Status FwdHSqueeze(Image &input, int c, int rc) {
const Channel &chin = input.channel[c];
JXL_DEBUG_V(4, "Doing horizontal squeeze of channel %i to new channel %i", c,
rc);
- Channel chout((chin.w + 1) / 2, chin.h, chin.hshift + 1, chin.vshift);
- Channel chout_residual(chin.w - chout.w, chout.h, chin.hshift + 1,
- chin.vshift);
+ JXL_ASSIGN_OR_RETURN(
+ Channel chout,
+ Channel::Create((chin.w + 1) / 2, chin.h, chin.hshift + 1, chin.vshift));
+ JXL_ASSIGN_OR_RETURN(
+ Channel chout_residual,
+ Channel::Create(chin.w - chout.w, chout.h, chin.hshift + 1, chin.vshift));
for (size_t y = 0; y < chout.h; y++) {
const pixel_type *JXL_RESTRICT p_in = chin.Row(y);
@@ -31,18 +36,19 @@ void FwdHSqueeze(Image &input, int c, int rc) {
for (size_t x = 0; x < chout_residual.w; x++) {
pixel_type A = p_in[x * 2];
pixel_type B = p_in[x * 2 + 1];
- pixel_type avg = (A + B + (A > B)) >> 1;
+ pixel_type avg = AVERAGE(A, B);
p_out[x] = avg;
pixel_type diff = A - B;
pixel_type next_avg = avg;
if (x + 1 < chout_residual.w) {
- next_avg = (p_in[x * 2 + 2] + p_in[x * 2 + 3] +
- (p_in[x * 2 + 2] > p_in[x * 2 + 3])) >>
- 1; // which will be chout.value(y,x+1)
- } else if (chin.w & 1)
+ pixel_type C = p_in[x * 2 + 2];
+ pixel_type D = p_in[x * 2 + 3];
+ next_avg = AVERAGE(C, D); // which will be chout.value(y,x+1)
+ } else if (chin.w & 1) {
next_avg = p_in[x * 2 + 2];
+ }
pixel_type left = (x > 0 ? p_in[x * 2 - 1] : avg);
pixel_type tendency = SmoothTendency(left, avg, next_avg);
@@ -55,17 +61,21 @@ void FwdHSqueeze(Image &input, int c, int rc) {
}
input.channel[c] = std::move(chout);
input.channel.insert(input.channel.begin() + rc, std::move(chout_residual));
+ return true;
}
-void FwdVSqueeze(Image &input, int c, int rc) {
+Status FwdVSqueeze(Image &input, int c, int rc) {
const Channel &chin = input.channel[c];
JXL_DEBUG_V(4, "Doing vertical squeeze of channel %i to new channel %i", c,
rc);
- Channel chout(chin.w, (chin.h + 1) / 2, chin.hshift, chin.vshift + 1);
- Channel chout_residual(chin.w, chin.h - chout.h, chin.hshift,
- chin.vshift + 1);
+ JXL_ASSIGN_OR_RETURN(
+ Channel chout,
+ Channel::Create(chin.w, (chin.h + 1) / 2, chin.hshift, chin.vshift + 1));
+ JXL_ASSIGN_OR_RETURN(
+ Channel chout_residual,
+ Channel::Create(chin.w, chin.h - chout.h, chin.hshift, chin.vshift + 1));
intptr_t onerow_in = chin.plane.PixelsPerRow();
for (size_t y = 0; y < chout_residual.h; y++) {
const pixel_type *JXL_RESTRICT p_in = chin.Row(y * 2);
@@ -74,16 +84,16 @@ void FwdVSqueeze(Image &input, int c, int rc) {
for (size_t x = 0; x < chout.w; x++) {
pixel_type A = p_in[x];
pixel_type B = p_in[x + onerow_in];
- pixel_type avg = (A + B + (A > B)) >> 1;
+ pixel_type avg = AVERAGE(A, B);
p_out[x] = avg;
pixel_type diff = A - B;
pixel_type next_avg = avg;
if (y + 1 < chout_residual.h) {
- next_avg = (p_in[x + 2 * onerow_in] + p_in[x + 3 * onerow_in] +
- (p_in[x + 2 * onerow_in] > p_in[x + 3 * onerow_in])) >>
- 1; // which will be chout.value(y+1,x)
+ pixel_type C = p_in[x + 2 * onerow_in];
+ pixel_type D = p_in[x + 3 * onerow_in];
+ next_avg = AVERAGE(C, D); // which will be chout.value(y+1,x)
} else if (chin.h & 1) {
next_avg = p_in[x + 2 * onerow_in];
}
@@ -104,6 +114,7 @@ void FwdVSqueeze(Image &input, int c, int rc) {
}
input.channel[c] = std::move(chout);
input.channel.insert(input.channel.begin() + rc, std::move(chout_residual));
+ return true;
}
Status FwdSqueeze(Image &input, std::vector<SqueezeParams> parameters,
@@ -128,9 +139,9 @@ Status FwdSqueeze(Image &input, std::vector<SqueezeParams> parameters,
}
for (uint32_t c = beginc; c <= endc; c++) {
if (horizontal) {
- FwdHSqueeze(input, c, offset + c - beginc);
+ JXL_RETURN_IF_ERROR(FwdHSqueeze(input, c, offset + c - beginc));
} else {
- FwdVSqueeze(input, c, offset + c - beginc);
+ JXL_RETURN_IF_ERROR(FwdVSqueeze(input, c, offset + c - beginc));
}
}
}
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/palette.cc b/third_party/jpeg-xl/lib/jxl/modular/transform/palette.cc
index bffbacf160..1ab499ccf6 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/palette.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/palette.cc
@@ -23,9 +23,11 @@ Status InvPalette(Image &input, uint32_t begin_c, uint32_t nb_colors,
size_t h = input.channel[c0].h;
if (nb < 1) return JXL_FAILURE("Corrupted transforms");
for (int i = 1; i < nb; i++) {
- input.channel.insert(
- input.channel.begin() + c0 + 1,
- Channel(w, h, input.channel[c0].hshift, input.channel[c0].vshift));
+ StatusOr<Channel> channel_or = Channel::Create(
+ w, h, input.channel[c0].hshift, input.channel[c0].vshift);
+ JXL_RETURN_IF_ERROR(channel_or.status());
+ input.channel.insert(input.channel.begin() + c0 + 1,
+ std::move(channel_or).value());
}
const Channel &palette = input.channel[0];
const pixel_type *JXL_RESTRICT p_palette = input.channel[0].Row(0);
@@ -44,7 +46,8 @@ Status InvPalette(Image &input, uint32_t begin_c, uint32_t nb_colors,
const size_t y = task;
pixel_type *p = input.channel[c0].Row(y);
for (size_t x = 0; x < w; x++) {
- const int index = Clamp1<int>(p[x], 0, (pixel_type)palette.w - 1);
+ const int index =
+ Clamp1<int>(p[x], 0, static_cast<pixel_type>(palette.w) - 1);
p[x] = palette_internal::GetPaletteValue(
p_palette, index, /*c=*/0,
/*palette_size=*/palette.w,
@@ -75,8 +78,10 @@ Status InvPalette(Image &input, uint32_t begin_c, uint32_t nb_colors,
}
} else {
// Parallelized per channel.
- ImageI indices = std::move(input.channel[c0].plane);
- input.channel[c0].plane = ImageI(indices.xsize(), indices.ysize());
+ ImageI indices;
+ ImageI &plane = input.channel[c0].plane;
+ JXL_ASSIGN_OR_RETURN(indices, ImageI::Create(plane.xsize(), plane.ysize()));
+ plane.Swap(indices);
if (predictor == Predictor::Weighted) {
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, nb, ThreadPool::NoInit,
@@ -167,7 +172,7 @@ Status MetaPalette(Image &input, uint32_t begin_c, uint32_t end_c,
}
input.channel.erase(input.channel.begin() + begin_c + 1,
input.channel.begin() + end_c + 1);
- Channel pch(nb_colors + nb_deltas, nb);
+ JXL_ASSIGN_OR_RETURN(Channel pch, Channel::Create(nb_colors + nb_deltas, nb));
pch.hshift = -1;
pch.vshift = -1;
input.channel.insert(input.channel.begin(), std::move(pch));
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/palette.h b/third_party/jpeg-xl/lib/jxl/modular/transform/palette.h
index 279ef04568..e0405a2162 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/palette.h
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/palette.h
@@ -101,6 +101,7 @@ GetPaletteValue(const pixel_type *const palette, int index, const size_t c,
// index >= kLargeCube ** 3 ?
switch (c) {
case 0:
+ default:
break;
case 1:
index /= kLargeCube;
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.cc b/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.cc
index e9892ea48f..580829741a 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.cc
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.cc
@@ -113,7 +113,9 @@ Status InvHSqueeze(Image &input, uint32_t c, uint32_t rc, ThreadPool *pool) {
}
// Note: chin.w >= chin_residual.w and at most 1 different.
- Channel chout(chin.w + chin_residual.w, chin.h, chin.hshift - 1, chin.vshift);
+ JXL_ASSIGN_OR_RETURN(Channel chout,
+ Channel::Create(chin.w + chin_residual.w, chin.h,
+ chin.hshift - 1, chin.vshift));
JXL_DEBUG_V(4,
"Undoing horizontal squeeze of channel %i using residuals in "
"channel %i (going from width %" PRIuS " to %" PRIuS ")",
@@ -222,7 +224,9 @@ Status InvVSqueeze(Image &input, uint32_t c, uint32_t rc, ThreadPool *pool) {
}
// Note: chin.h >= chin_residual.h and at most 1 different.
- Channel chout(chin.w, chin.h + chin_residual.h, chin.hshift, chin.vshift - 1);
+ JXL_ASSIGN_OR_RETURN(Channel chout,
+ Channel::Create(chin.w, chin.h + chin_residual.h,
+ chin.hshift, chin.vshift - 1));
JXL_DEBUG_V(
4,
"Undoing vertical squeeze of channel %i using residuals in channel "
@@ -238,7 +242,8 @@ Status InvVSqueeze(Image &input, uint32_t c, uint32_t rc, ThreadPool *pool) {
static constexpr const int kColsPerThread = 64;
const auto unsqueeze_slice = [&](const uint32_t task, size_t /* thread */) {
const size_t x0 = task * kColsPerThread;
- const size_t x1 = std::min((size_t)(task + 1) * kColsPerThread, chin.w);
+ const size_t x1 =
+ std::min(static_cast<size_t>(task + 1) * kColsPerThread, chin.w);
const size_t w = x1 - x0;
// We only iterate up to std::min(chin_residual.h, chin.h) which is
// always chin_residual.h.
@@ -289,7 +294,7 @@ Status InvVSqueeze(Image &input, uint32_t c, uint32_t rc, ThreadPool *pool) {
return true;
}
-Status InvSqueeze(Image &input, std::vector<SqueezeParams> parameters,
+Status InvSqueeze(Image &input, const std::vector<SqueezeParams> &parameters,
ThreadPool *pool) {
for (int i = parameters.size() - 1; i >= 0; i--) {
JXL_RETURN_IF_ERROR(
@@ -340,7 +345,7 @@ HWY_AFTER_NAMESPACE();
namespace jxl {
HWY_EXPORT(InvSqueeze);
-Status InvSqueeze(Image &input, std::vector<SqueezeParams> parameters,
+Status InvSqueeze(Image &input, const std::vector<SqueezeParams> &parameters,
ThreadPool *pool) {
return HWY_DYNAMIC_DISPATCH(InvSqueeze)(input, parameters, pool);
}
@@ -459,8 +464,8 @@ Status MetaSqueeze(Image &image, std::vector<SqueezeParams> *parameters) {
if (image.channel[c].vshift >= 0) image.channel[c].vshift++;
h = h - (h + 1) / 2;
}
- image.channel[c].shrink();
- Channel placeholder(w, h);
+ JXL_RETURN_IF_ERROR(image.channel[c].shrink());
+ JXL_ASSIGN_OR_RETURN(Channel placeholder, Channel::Create(w, h));
placeholder.hshift = image.channel[c].hshift;
placeholder.vshift = image.channel[c].vshift;
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.h b/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.h
index 305a0ca3ec..bbd16c59c0 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.h
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/squeeze.h
@@ -81,7 +81,7 @@ Status CheckMetaSqueezeParams(const SqueezeParams &parameter, int num_channels);
Status MetaSqueeze(Image &image, std::vector<SqueezeParams> *parameters);
-Status InvSqueeze(Image &input, std::vector<SqueezeParams> parameters,
+Status InvSqueeze(Image &input, const std::vector<SqueezeParams> &parameters,
ThreadPool *pool);
} // namespace jxl
diff --git a/third_party/jpeg-xl/lib/jxl/modular/transform/transform.h b/third_party/jpeg-xl/lib/jxl/modular/transform/transform.h
index d5d3259f7a..b68861706f 100644
--- a/third_party/jpeg-xl/lib/jxl/modular/transform/transform.h
+++ b/third_party/jpeg-xl/lib/jxl/modular/transform/transform.h
@@ -77,11 +77,13 @@ class Transform : public Fields {
Transform() : Transform(TransformId::kInvalid) {}
Status VisitFields(Visitor *JXL_RESTRICT visitor) override {
- JXL_QUIET_RETURN_IF_ERROR(visitor->U32(
- Val((uint32_t)TransformId::kRCT), Val((uint32_t)TransformId::kPalette),
- Val((uint32_t)TransformId::kSqueeze),
- Val((uint32_t)TransformId::kInvalid), (uint32_t)TransformId::kRCT,
- reinterpret_cast<uint32_t *>(&id)));
+ JXL_QUIET_RETURN_IF_ERROR(
+ visitor->U32(Val(static_cast<uint32_t>(TransformId::kRCT)),
+ Val(static_cast<uint32_t>(TransformId::kPalette)),
+ Val(static_cast<uint32_t>(TransformId::kSqueeze)),
+ Val(static_cast<uint32_t>(TransformId::kInvalid)),
+ static_cast<uint32_t>(TransformId::kRCT),
+ reinterpret_cast<uint32_t *>(&id)));
if (id == TransformId::kInvalid) {
return JXL_FAILURE("Invalid transform ID");
}
@@ -109,7 +111,7 @@ class Transform : public Fields {
visitor->U32(Val(0), BitsOffset(8, 1), BitsOffset(10, 257),
BitsOffset(16, 1281), 0, &nb_deltas));
JXL_QUIET_RETURN_IF_ERROR(
- visitor->Bits(4, (uint32_t)Predictor::Zero,
+ visitor->Bits(4, static_cast<uint32_t>(Predictor::Zero),
reinterpret_cast<uint32_t *>(&predictor)));
if (predictor >= Predictor::Best) {
return JXL_FAILURE("Invalid predictor");