summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/splines.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/jpeg-xl/lib/jxl/splines.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/splines.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/splines.cc721
1 files changed, 721 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/splines.cc b/third_party/jpeg-xl/lib/jxl/splines.cc
new file mode 100644
index 0000000000..acbaf38428
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/splines.cc
@@ -0,0 +1,721 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/splines.h"
+
+#include <algorithm>
+#include <cinttypes>
+#include <cmath>
+#include <limits>
+
+#include "lib/jxl/base/common.h"
+#include "lib/jxl/base/printf_macros.h"
+#include "lib/jxl/base/status.h"
+#include "lib/jxl/chroma_from_luma.h"
+#include "lib/jxl/common.h" // JXL_HIGH_PRECISION
+#include "lib/jxl/dct_scales.h"
+#include "lib/jxl/dec_ans.h"
+#include "lib/jxl/dec_bit_reader.h"
+#include "lib/jxl/pack_signed.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/splines.cc"
+#include <hwy/foreach_target.h>
+#include <hwy/highway.h>
+
+#include "lib/jxl/base/fast_math-inl.h"
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+namespace {
+
+// These templates are not found via ADL.
+using hwy::HWY_NAMESPACE::Mul;
+using hwy::HWY_NAMESPACE::MulAdd;
+using hwy::HWY_NAMESPACE::MulSub;
+using hwy::HWY_NAMESPACE::Sqrt;
+using hwy::HWY_NAMESPACE::Sub;
+
+// Given a set of DCT coefficients, this returns the result of performing cosine
+// interpolation on the original samples.
+float ContinuousIDCT(const float dct[32], const float t) {
+ // We compute here the DCT-3 of the `dct` vector, rescaled by a factor of
+ // sqrt(32). This is such that an input vector vector {x, 0, ..., 0} produces
+ // a constant result of x. dct[0] was scaled in Dequantize() to allow uniform
+ // treatment of all the coefficients.
+ constexpr float kMultipliers[32] = {
+ kPi / 32 * 0, kPi / 32 * 1, kPi / 32 * 2, kPi / 32 * 3, kPi / 32 * 4,
+ kPi / 32 * 5, kPi / 32 * 6, kPi / 32 * 7, kPi / 32 * 8, kPi / 32 * 9,
+ kPi / 32 * 10, kPi / 32 * 11, kPi / 32 * 12, kPi / 32 * 13, kPi / 32 * 14,
+ kPi / 32 * 15, kPi / 32 * 16, kPi / 32 * 17, kPi / 32 * 18, kPi / 32 * 19,
+ kPi / 32 * 20, kPi / 32 * 21, kPi / 32 * 22, kPi / 32 * 23, kPi / 32 * 24,
+ kPi / 32 * 25, kPi / 32 * 26, kPi / 32 * 27, kPi / 32 * 28, kPi / 32 * 29,
+ kPi / 32 * 30, kPi / 32 * 31,
+ };
+ HWY_CAPPED(float, 32) df;
+ auto result = Zero(df);
+ const auto tandhalf = Set(df, t + 0.5f);
+ for (int i = 0; i < 32; i += Lanes(df)) {
+ auto cos_arg = Mul(LoadU(df, kMultipliers + i), tandhalf);
+ auto cos = FastCosf(df, cos_arg);
+ auto local_res = Mul(LoadU(df, dct + i), cos);
+ result = MulAdd(Set(df, kSqrt2), local_res, result);
+ }
+ return GetLane(SumOfLanes(df, result));
+}
+
+template <typename DF>
+void DrawSegment(DF df, const SplineSegment& segment, const bool add,
+ const size_t y, const size_t x, float* JXL_RESTRICT rows[3]) {
+ Rebind<int32_t, DF> di;
+ const auto inv_sigma = Set(df, segment.inv_sigma);
+ const auto half = Set(df, 0.5f);
+ const auto one_over_2s2 = Set(df, 0.353553391f);
+ const auto sigma_over_4_times_intensity =
+ Set(df, segment.sigma_over_4_times_intensity);
+ const auto dx = Sub(ConvertTo(df, Iota(di, x)), Set(df, segment.center_x));
+ const auto dy = Set(df, y - segment.center_y);
+ const auto sqd = MulAdd(dx, dx, Mul(dy, dy));
+ const auto distance = Sqrt(sqd);
+ const auto one_dimensional_factor =
+ Sub(FastErff(df, Mul(MulAdd(distance, half, one_over_2s2), inv_sigma)),
+ FastErff(df, Mul(MulSub(distance, half, one_over_2s2), inv_sigma)));
+ auto local_intensity =
+ Mul(sigma_over_4_times_intensity,
+ Mul(one_dimensional_factor, one_dimensional_factor));
+ for (size_t c = 0; c < 3; ++c) {
+ const auto cm = Set(df, add ? segment.color[c] : -segment.color[c]);
+ const auto in = LoadU(df, rows[c] + x);
+ StoreU(MulAdd(cm, local_intensity, in), df, rows[c] + x);
+ }
+}
+
+void DrawSegment(const SplineSegment& segment, const bool add, const size_t y,
+ const ssize_t x0, ssize_t x1, float* JXL_RESTRICT rows[3]) {
+ ssize_t x =
+ std::max<ssize_t>(x0, segment.center_x - segment.maximum_distance + 0.5f);
+ // one-past-the-end
+ x1 =
+ std::min<ssize_t>(x1, segment.center_x + segment.maximum_distance + 1.5f);
+ HWY_FULL(float) df;
+ for (; x + static_cast<ssize_t>(Lanes(df)) <= x1; x += Lanes(df)) {
+ DrawSegment(df, segment, add, y, x, rows);
+ }
+ for (; x < x1; ++x) {
+ DrawSegment(HWY_CAPPED(float, 1)(), segment, add, y, x, rows);
+ }
+}
+
+void ComputeSegments(const Spline::Point& center, const float intensity,
+ const float color[3], const float sigma,
+ std::vector<SplineSegment>& segments,
+ std::vector<std::pair<size_t, size_t>>& segments_by_y) {
+ // Sanity check sigma, inverse sigma and intensity
+ if (!(std::isfinite(sigma) && sigma != 0.0f && std::isfinite(1.0f / sigma) &&
+ std::isfinite(intensity))) {
+ return;
+ }
+#if JXL_HIGH_PRECISION
+ constexpr float kDistanceExp = 5;
+#else
+ // About 30% faster.
+ constexpr float kDistanceExp = 3;
+#endif
+ // We cap from below colors to at least 0.01.
+ float max_color = 0.01f;
+ for (size_t c = 0; c < 3; c++) {
+ max_color = std::max(max_color, std::abs(color[c] * intensity));
+ }
+ // Distance beyond which max_color*intensity*exp(-d^2 / (2 * sigma^2)) drops
+ // below 10^-kDistanceExp.
+ const float maximum_distance =
+ std::sqrt(-2 * sigma * sigma *
+ (std::log(0.1) * kDistanceExp - std::log(max_color)));
+ SplineSegment segment;
+ segment.center_y = center.y;
+ segment.center_x = center.x;
+ memcpy(segment.color, color, sizeof(segment.color));
+ segment.inv_sigma = 1.0f / sigma;
+ segment.sigma_over_4_times_intensity = .25f * sigma * intensity;
+ segment.maximum_distance = maximum_distance;
+ ssize_t y0 = center.y - maximum_distance + .5f;
+ ssize_t y1 = center.y + maximum_distance + 1.5f; // one-past-the-end
+ for (ssize_t y = std::max<ssize_t>(y0, 0); y < y1; y++) {
+ segments_by_y.emplace_back(y, segments.size());
+ }
+ segments.push_back(segment);
+}
+
+void DrawSegments(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
+ float* JXL_RESTRICT row_b, const Rect& image_rect,
+ const bool add, const SplineSegment* segments,
+ const size_t* segment_indices,
+ const size_t* segment_y_start) {
+ JXL_ASSERT(image_rect.ysize() == 1);
+ float* JXL_RESTRICT rows[3] = {row_x - image_rect.x0(),
+ row_y - image_rect.x0(),
+ row_b - image_rect.x0()};
+ size_t y = image_rect.y0();
+ for (size_t i = segment_y_start[y]; i < segment_y_start[y + 1]; i++) {
+ DrawSegment(segments[segment_indices[i]], add, y, image_rect.x0(),
+ image_rect.x0() + image_rect.xsize(), rows);
+ }
+}
+
+void SegmentsFromPoints(
+ const Spline& spline,
+ const std::vector<std::pair<Spline::Point, float>>& points_to_draw,
+ const float arc_length, std::vector<SplineSegment>& segments,
+ std::vector<std::pair<size_t, size_t>>& segments_by_y) {
+ const float inv_arc_length = 1.0f / arc_length;
+ int k = 0;
+ for (const auto& point_to_draw : points_to_draw) {
+ const Spline::Point& point = point_to_draw.first;
+ const float multiplier = point_to_draw.second;
+ const float progress_along_arc =
+ std::min(1.f, (k * kDesiredRenderingDistance) * inv_arc_length);
+ ++k;
+ float color[3];
+ for (size_t c = 0; c < 3; ++c) {
+ color[c] =
+ ContinuousIDCT(spline.color_dct[c], (32 - 1) * progress_along_arc);
+ }
+ const float sigma =
+ ContinuousIDCT(spline.sigma_dct, (32 - 1) * progress_along_arc);
+ ComputeSegments(point, multiplier, color, sigma, segments, segments_by_y);
+ }
+}
+} // namespace
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace jxl {
+HWY_EXPORT(SegmentsFromPoints);
+HWY_EXPORT(DrawSegments);
+
+namespace {
+
+// It is not in spec, but reasonable limit to avoid overflows.
+template <typename T>
+Status ValidateSplinePointPos(const T& x, const T& y) {
+ constexpr T kSplinePosLimit = 1u << 23;
+ if ((x >= kSplinePosLimit) || (x <= -kSplinePosLimit) ||
+ (y >= kSplinePosLimit) || (y <= -kSplinePosLimit)) {
+ return JXL_FAILURE("Spline coordinates out of bounds");
+ }
+ return true;
+}
+
+// Maximum number of spline control points per frame is
+// std::min(kMaxNumControlPoints, xsize * ysize / 2)
+constexpr size_t kMaxNumControlPoints = 1u << 20u;
+constexpr size_t kMaxNumControlPointsPerPixelRatio = 2;
+
+float AdjustedQuant(const int32_t adjustment) {
+ return (adjustment >= 0) ? (1.f + .125f * adjustment)
+ : 1.f / (1.f - .125f * adjustment);
+}
+
+float InvAdjustedQuant(const int32_t adjustment) {
+ return (adjustment >= 0) ? 1.f / (1.f + .125f * adjustment)
+ : (1.f - .125f * adjustment);
+}
+
+// X, Y, B, sigma.
+static constexpr float kChannelWeight[] = {0.0042f, 0.075f, 0.07f, .3333f};
+
+Status DecodeAllStartingPoints(std::vector<Spline::Point>* const points,
+ BitReader* const br, ANSSymbolReader* reader,
+ const std::vector<uint8_t>& context_map,
+ const size_t num_splines) {
+ points->clear();
+ points->reserve(num_splines);
+ int64_t last_x = 0;
+ int64_t last_y = 0;
+ for (size_t i = 0; i < num_splines; i++) {
+ int64_t x =
+ reader->ReadHybridUint(kStartingPositionContext, br, context_map);
+ int64_t y =
+ reader->ReadHybridUint(kStartingPositionContext, br, context_map);
+ if (i != 0) {
+ x = UnpackSigned(x) + last_x;
+ y = UnpackSigned(y) + last_y;
+ }
+ JXL_RETURN_IF_ERROR(ValidateSplinePointPos(x, y));
+ points->emplace_back(static_cast<float>(x), static_cast<float>(y));
+ last_x = x;
+ last_y = y;
+ }
+ return true;
+}
+
+struct Vector {
+ float x, y;
+ Vector operator-() const { return {-x, -y}; }
+ Vector operator+(const Vector& other) const {
+ return {x + other.x, y + other.y};
+ }
+ float SquaredNorm() const { return x * x + y * y; }
+};
+Vector operator*(const float k, const Vector& vec) {
+ return {k * vec.x, k * vec.y};
+}
+
+Spline::Point operator+(const Spline::Point& p, const Vector& vec) {
+ return {p.x + vec.x, p.y + vec.y};
+}
+Vector operator-(const Spline::Point& a, const Spline::Point& b) {
+ return {a.x - b.x, a.y - b.y};
+}
+
+// TODO(eustas): avoid making a copy of "points".
+void DrawCentripetalCatmullRomSpline(std::vector<Spline::Point> points,
+ std::vector<Spline::Point>& result) {
+ if (points.empty()) return;
+ if (points.size() == 1) {
+ result.push_back(points[0]);
+ return;
+ }
+ // Number of points to compute between each control point.
+ static constexpr int kNumPoints = 16;
+ result.reserve((points.size() - 1) * kNumPoints + 1);
+ points.insert(points.begin(), points[0] + (points[0] - points[1]));
+ points.push_back(points[points.size() - 1] +
+ (points[points.size() - 1] - points[points.size() - 2]));
+ // points has at least 4 elements at this point.
+ for (size_t start = 0; start < points.size() - 3; ++start) {
+ // 4 of them are used, and we draw from p[1] to p[2].
+ const Spline::Point* const p = &points[start];
+ result.push_back(p[1]);
+ float d[3];
+ float t[4];
+ t[0] = 0;
+ for (int k = 0; k < 3; ++k) {
+ // TODO(eustas): for each segment delta is calculated 3 times...
+ // TODO(eustas): restrict d[k] with reasonable limit and spec it.
+ d[k] = std::sqrt(hypotf(p[k + 1].x - p[k].x, p[k + 1].y - p[k].y));
+ t[k + 1] = t[k] + d[k];
+ }
+ for (int i = 1; i < kNumPoints; ++i) {
+ const float tt = d[0] + (static_cast<float>(i) / kNumPoints) * d[1];
+ Spline::Point a[3];
+ for (int k = 0; k < 3; ++k) {
+ // TODO(eustas): reciprocal multiplication would be faster.
+ a[k] = p[k] + ((tt - t[k]) / d[k]) * (p[k + 1] - p[k]);
+ }
+ Spline::Point b[2];
+ for (int k = 0; k < 2; ++k) {
+ b[k] = a[k] + ((tt - t[k]) / (d[k] + d[k + 1])) * (a[k + 1] - a[k]);
+ }
+ result.push_back(b[0] + ((tt - t[1]) / d[1]) * (b[1] - b[0]));
+ }
+ }
+ result.push_back(points[points.size() - 2]);
+}
+
+// Move along the line segments defined by `points`, `kDesiredRenderingDistance`
+// pixels at a time, and call `functor` with each point and the actual distance
+// to the previous point (which will always be kDesiredRenderingDistance except
+// possibly for the very last point).
+// TODO(eustas): this method always adds the last point, but never the first
+// (unless those are one); I believe both ends matter.
+template <typename Points, typename Functor>
+void ForEachEquallySpacedPoint(const Points& points, const Functor& functor) {
+ JXL_ASSERT(!points.empty());
+ Spline::Point current = points.front();
+ functor(current, kDesiredRenderingDistance);
+ auto next = points.begin();
+ while (next != points.end()) {
+ const Spline::Point* previous = &current;
+ float arclength_from_previous = 0.f;
+ for (;;) {
+ if (next == points.end()) {
+ functor(*previous, arclength_from_previous);
+ return;
+ }
+ const float arclength_to_next =
+ std::sqrt((*next - *previous).SquaredNorm());
+ if (arclength_from_previous + arclength_to_next >=
+ kDesiredRenderingDistance) {
+ current =
+ *previous + ((kDesiredRenderingDistance - arclength_from_previous) /
+ arclength_to_next) *
+ (*next - *previous);
+ functor(current, kDesiredRenderingDistance);
+ break;
+ }
+ arclength_from_previous += arclength_to_next;
+ previous = &*next;
+ ++next;
+ }
+ }
+}
+
+} // namespace
+
+QuantizedSpline::QuantizedSpline(const Spline& original,
+ const int32_t quantization_adjustment,
+ const float y_to_x, const float y_to_b) {
+ JXL_ASSERT(!original.control_points.empty());
+ control_points_.reserve(original.control_points.size() - 1);
+ const Spline::Point& starting_point = original.control_points.front();
+ int previous_x = static_cast<int>(std::roundf(starting_point.x));
+ int previous_y = static_cast<int>(std::roundf(starting_point.y));
+ int previous_delta_x = 0, previous_delta_y = 0;
+ for (auto it = original.control_points.begin() + 1;
+ it != original.control_points.end(); ++it) {
+ const int new_x = static_cast<int>(std::roundf(it->x));
+ const int new_y = static_cast<int>(std::roundf(it->y));
+ const int new_delta_x = new_x - previous_x;
+ const int new_delta_y = new_y - previous_y;
+ control_points_.emplace_back(new_delta_x - previous_delta_x,
+ new_delta_y - previous_delta_y);
+ previous_delta_x = new_delta_x;
+ previous_delta_y = new_delta_y;
+ previous_x = new_x;
+ previous_y = new_y;
+ }
+
+ const auto to_int = [](float v) -> int {
+ // Maximal int representable with float.
+ constexpr float kMax = std::numeric_limits<int>::max() - 127;
+ constexpr float kMin = -kMax;
+ return static_cast<int>(std::roundf(Clamp1(v, kMin, kMax)));
+ };
+
+ const auto quant = AdjustedQuant(quantization_adjustment);
+ const auto inv_quant = InvAdjustedQuant(quantization_adjustment);
+ for (int c : {1, 0, 2}) {
+ float factor = (c == 0) ? y_to_x : (c == 1) ? 0 : y_to_b;
+ for (int i = 0; i < 32; ++i) {
+ const float dct_factor = (i == 0) ? kSqrt2 : 1.0f;
+ const float inv_dct_factor = (i == 0) ? kSqrt0_5 : 1.0f;
+ auto restored_y =
+ color_dct_[1][i] * inv_dct_factor * kChannelWeight[1] * inv_quant;
+ auto decorellated = original.color_dct[c][i] - factor * restored_y;
+ color_dct_[c][i] =
+ to_int(decorellated * dct_factor * quant / kChannelWeight[c]);
+ }
+ }
+ for (int i = 0; i < 32; ++i) {
+ const float dct_factor = (i == 0) ? kSqrt2 : 1.0f;
+ sigma_dct_[i] =
+ to_int(original.sigma_dct[i] * dct_factor * quant / kChannelWeight[3]);
+ }
+}
+
+Status QuantizedSpline::Dequantize(const Spline::Point& starting_point,
+ const int32_t quantization_adjustment,
+ const float y_to_x, const float y_to_b,
+ const uint64_t image_size,
+ uint64_t* total_estimated_area_reached,
+ Spline& result) const {
+ constexpr uint64_t kOne = static_cast<uint64_t>(1);
+ const uint64_t area_limit =
+ std::min(1024 * image_size + (kOne << 32), kOne << 42);
+
+ result.control_points.clear();
+ result.control_points.reserve(control_points_.size() + 1);
+ float px = std::roundf(starting_point.x);
+ float py = std::roundf(starting_point.y);
+ JXL_RETURN_IF_ERROR(ValidateSplinePointPos(px, py));
+ int current_x = static_cast<int>(px);
+ int current_y = static_cast<int>(py);
+ result.control_points.push_back(Spline::Point{static_cast<float>(current_x),
+ static_cast<float>(current_y)});
+ int current_delta_x = 0, current_delta_y = 0;
+ uint64_t manhattan_distance = 0;
+ for (const auto& point : control_points_) {
+ current_delta_x += point.first;
+ current_delta_y += point.second;
+ manhattan_distance += std::abs(current_delta_x) + std::abs(current_delta_y);
+ if (manhattan_distance > area_limit) {
+ return JXL_FAILURE("Too large manhattan_distance reached: %" PRIu64,
+ manhattan_distance);
+ }
+ JXL_RETURN_IF_ERROR(
+ ValidateSplinePointPos(current_delta_x, current_delta_y));
+ current_x += current_delta_x;
+ current_y += current_delta_y;
+ JXL_RETURN_IF_ERROR(ValidateSplinePointPos(current_x, current_y));
+ result.control_points.push_back(Spline::Point{
+ static_cast<float>(current_x), static_cast<float>(current_y)});
+ }
+
+ const auto inv_quant = InvAdjustedQuant(quantization_adjustment);
+ for (int c = 0; c < 3; ++c) {
+ for (int i = 0; i < 32; ++i) {
+ const float inv_dct_factor = (i == 0) ? kSqrt0_5 : 1.0f;
+ result.color_dct[c][i] =
+ color_dct_[c][i] * inv_dct_factor * kChannelWeight[c] * inv_quant;
+ }
+ }
+ for (int i = 0; i < 32; ++i) {
+ result.color_dct[0][i] += y_to_x * result.color_dct[1][i];
+ result.color_dct[2][i] += y_to_b * result.color_dct[1][i];
+ }
+ uint64_t width_estimate = 0;
+
+ uint64_t color[3] = {};
+ for (int c = 0; c < 3; ++c) {
+ for (int i = 0; i < 32; ++i) {
+ color[c] += static_cast<uint64_t>(
+ std::ceil(inv_quant * std::abs(color_dct_[c][i])));
+ }
+ }
+ color[0] += static_cast<uint64_t>(std::ceil(std::abs(y_to_x))) * color[1];
+ color[2] += static_cast<uint64_t>(std::ceil(std::abs(y_to_b))) * color[1];
+ // This is not taking kChannelWeight into account, but up to constant factors
+ // it gives an indication of the influence of the color values on the area
+ // that will need to be rendered.
+ const uint64_t max_color = std::max({color[1], color[0], color[2]});
+ uint64_t logcolor =
+ std::max(kOne, static_cast<uint64_t>(CeilLog2Nonzero(kOne + max_color)));
+
+ const float weight_limit =
+ std::ceil(std::sqrt((static_cast<float>(area_limit) / logcolor) /
+ std::max<size_t>(1, manhattan_distance)));
+
+ for (int i = 0; i < 32; ++i) {
+ const float inv_dct_factor = (i == 0) ? kSqrt0_5 : 1.0f;
+ result.sigma_dct[i] =
+ sigma_dct_[i] * inv_dct_factor * kChannelWeight[3] * inv_quant;
+ // If we include the factor kChannelWeight[3]=.3333f here, we get a
+ // realistic area estimate. We leave it out to simplify the calculations,
+ // and understand that this way we underestimate the area by a factor of
+ // 1/(0.3333*0.3333). This is taken into account in the limits below.
+ float weight_f = std::ceil(inv_quant * std::abs(sigma_dct_[i]));
+ uint64_t weight =
+ static_cast<uint64_t>(std::min(weight_limit, std::max(1.0f, weight_f)));
+ width_estimate += weight * weight * logcolor;
+ }
+ *total_estimated_area_reached += (width_estimate * manhattan_distance);
+ if (*total_estimated_area_reached > area_limit) {
+ return JXL_FAILURE("Too large total_estimated_area eached: %" PRIu64,
+ *total_estimated_area_reached);
+ }
+
+ return true;
+}
+
+Status QuantizedSpline::Decode(const std::vector<uint8_t>& context_map,
+ ANSSymbolReader* const decoder,
+ BitReader* const br,
+ const size_t max_control_points,
+ size_t* total_num_control_points) {
+ const size_t num_control_points =
+ decoder->ReadHybridUint(kNumControlPointsContext, br, context_map);
+ if (num_control_points > max_control_points) {
+ return JXL_FAILURE("Too many control points: %" PRIuS, num_control_points);
+ }
+ *total_num_control_points += num_control_points;
+ if (*total_num_control_points > max_control_points) {
+ return JXL_FAILURE("Too many control points: %" PRIuS,
+ *total_num_control_points);
+ }
+ control_points_.resize(num_control_points);
+ // Maximal image dimension.
+ constexpr int64_t kDeltaLimit = 1u << 30;
+ for (std::pair<int64_t, int64_t>& control_point : control_points_) {
+ control_point.first = UnpackSigned(
+ decoder->ReadHybridUint(kControlPointsContext, br, context_map));
+ control_point.second = UnpackSigned(
+ decoder->ReadHybridUint(kControlPointsContext, br, context_map));
+ // Check delta-deltas are not outrageous; it is not in spec, but there is
+ // no reason to allow larger values.
+ if ((control_point.first >= kDeltaLimit) ||
+ (control_point.first <= -kDeltaLimit) ||
+ (control_point.second >= kDeltaLimit) ||
+ (control_point.second <= -kDeltaLimit)) {
+ return JXL_FAILURE("Spline delta-delta is out of bounds");
+ }
+ }
+
+ const auto decode_dct = [decoder, br, &context_map](int dct[32]) -> Status {
+ constexpr int kWeirdNumber = std::numeric_limits<int>::min();
+ for (int i = 0; i < 32; ++i) {
+ dct[i] =
+ UnpackSigned(decoder->ReadHybridUint(kDCTContext, br, context_map));
+ if (dct[i] == kWeirdNumber) {
+ return JXL_FAILURE("The weird number in spline DCT");
+ }
+ }
+ return true;
+ };
+ for (int c = 0; c < 3; ++c) {
+ JXL_RETURN_IF_ERROR(decode_dct(color_dct_[c]));
+ }
+ JXL_RETURN_IF_ERROR(decode_dct(sigma_dct_));
+ return true;
+}
+
+void Splines::Clear() {
+ quantization_adjustment_ = 0;
+ splines_.clear();
+ starting_points_.clear();
+ segments_.clear();
+ segment_indices_.clear();
+ segment_y_start_.clear();
+}
+
+Status Splines::Decode(jxl::BitReader* br, const size_t num_pixels) {
+ std::vector<uint8_t> context_map;
+ ANSCode code;
+ JXL_RETURN_IF_ERROR(
+ DecodeHistograms(br, kNumSplineContexts, &code, &context_map));
+ ANSSymbolReader decoder(&code, br);
+ size_t num_splines =
+ decoder.ReadHybridUint(kNumSplinesContext, br, context_map);
+ size_t max_control_points = std::min(
+ kMaxNumControlPoints, num_pixels / kMaxNumControlPointsPerPixelRatio);
+ if (num_splines > max_control_points ||
+ num_splines + 1 > max_control_points) {
+ return JXL_FAILURE("Too many splines: %" PRIuS, num_splines);
+ }
+ num_splines++;
+ JXL_RETURN_IF_ERROR(DecodeAllStartingPoints(&starting_points_, br, &decoder,
+ context_map, num_splines));
+
+ quantization_adjustment_ = UnpackSigned(
+ decoder.ReadHybridUint(kQuantizationAdjustmentContext, br, context_map));
+
+ splines_.clear();
+ splines_.reserve(num_splines);
+ size_t num_control_points = num_splines;
+ for (size_t i = 0; i < num_splines; ++i) {
+ QuantizedSpline spline;
+ JXL_RETURN_IF_ERROR(spline.Decode(context_map, &decoder, br,
+ max_control_points, &num_control_points));
+ splines_.push_back(std::move(spline));
+ }
+
+ JXL_RETURN_IF_ERROR(decoder.CheckANSFinalState());
+
+ if (!HasAny()) {
+ return JXL_FAILURE("Decoded splines but got none");
+ }
+
+ return true;
+}
+
+void Splines::AddTo(Image3F* const opsin, const Rect& opsin_rect,
+ const Rect& image_rect) const {
+ return Apply</*add=*/true>(opsin, opsin_rect, image_rect);
+}
+void Splines::AddToRow(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
+ float* JXL_RESTRICT row_b, const Rect& image_row) const {
+ return ApplyToRow</*add=*/true>(row_x, row_y, row_b, image_row);
+}
+
+void Splines::SubtractFrom(Image3F* const opsin) const {
+ return Apply</*add=*/false>(opsin, Rect(*opsin), Rect(*opsin));
+}
+
+Status Splines::InitializeDrawCache(const size_t image_xsize,
+ const size_t image_ysize,
+ const ColorCorrelationMap& cmap) {
+ // TODO(veluca): avoid storing segments that are entirely outside image
+ // boundaries.
+ segments_.clear();
+ segment_indices_.clear();
+ segment_y_start_.clear();
+ std::vector<std::pair<size_t, size_t>> segments_by_y;
+ std::vector<Spline::Point> intermediate_points;
+ uint64_t total_estimated_area_reached = 0;
+ std::vector<Spline> splines;
+ for (size_t i = 0; i < splines_.size(); ++i) {
+ Spline spline;
+ JXL_RETURN_IF_ERROR(splines_[i].Dequantize(
+ starting_points_[i], quantization_adjustment_, cmap.YtoXRatio(0),
+ cmap.YtoBRatio(0), image_xsize * image_ysize,
+ &total_estimated_area_reached, spline));
+ if (std::adjacent_find(spline.control_points.begin(),
+ spline.control_points.end()) !=
+ spline.control_points.end()) {
+ // Otherwise division by zero might occur. Once control points coincide,
+ // the direction of curve is undefined...
+ return JXL_FAILURE(
+ "identical successive control points in spline %" PRIuS, i);
+ }
+ splines.push_back(spline);
+ }
+ // TODO(firsching) Change this into a JXL_FAILURE for level 5 codestreams.
+ if (total_estimated_area_reached >
+ std::min((8 * image_xsize * image_ysize + (uint64_t(1) << 25)),
+ (uint64_t(1) << 30))) {
+ JXL_WARNING(
+ "Large total_estimated_area_reached, expect slower decoding: %" PRIu64,
+ total_estimated_area_reached);
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ return JXL_FAILURE("Total spline area is too large");
+#endif
+ }
+
+ for (Spline& spline : splines) {
+ std::vector<std::pair<Spline::Point, float>> points_to_draw;
+ auto add_point = [&](const Spline::Point& point, const float multiplier) {
+ points_to_draw.emplace_back(point, multiplier);
+ };
+ intermediate_points.clear();
+ DrawCentripetalCatmullRomSpline(spline.control_points, intermediate_points);
+ ForEachEquallySpacedPoint(intermediate_points, add_point);
+ const float arc_length =
+ (points_to_draw.size() - 2) * kDesiredRenderingDistance +
+ points_to_draw.back().second;
+ if (arc_length <= 0.f) {
+ // This spline wouldn't have any effect.
+ continue;
+ }
+ HWY_DYNAMIC_DISPATCH(SegmentsFromPoints)
+ (spline, points_to_draw, arc_length, segments_, segments_by_y);
+ }
+
+ // TODO(eustas): consider linear sorting here.
+ std::sort(segments_by_y.begin(), segments_by_y.end());
+ segment_indices_.resize(segments_by_y.size());
+ segment_y_start_.resize(image_ysize + 1);
+ for (size_t i = 0; i < segments_by_y.size(); i++) {
+ segment_indices_[i] = segments_by_y[i].second;
+ size_t y = segments_by_y[i].first;
+ if (y < image_ysize) {
+ segment_y_start_[y + 1]++;
+ }
+ }
+ for (size_t y = 0; y < image_ysize; y++) {
+ segment_y_start_[y + 1] += segment_y_start_[y];
+ }
+ return true;
+}
+
+template <bool add>
+void Splines::ApplyToRow(float* JXL_RESTRICT row_x, float* JXL_RESTRICT row_y,
+ float* JXL_RESTRICT row_b,
+ const Rect& image_row) const {
+ if (segments_.empty()) return;
+ JXL_ASSERT(image_row.ysize() == 1);
+ for (size_t iy = 0; iy < image_row.ysize(); iy++) {
+ HWY_DYNAMIC_DISPATCH(DrawSegments)
+ (row_x, row_y, row_b, image_row.Line(iy), add, segments_.data(),
+ segment_indices_.data(), segment_y_start_.data());
+ }
+}
+
+template <bool add>
+void Splines::Apply(Image3F* const opsin, const Rect& opsin_rect,
+ const Rect& image_rect) const {
+ if (segments_.empty()) return;
+ for (size_t iy = 0; iy < image_rect.ysize(); iy++) {
+ const size_t y0 = opsin_rect.Line(iy).y0();
+ const size_t x0 = opsin_rect.x0();
+ ApplyToRow<add>(opsin->PlaneRow(0, y0) + x0, opsin->PlaneRow(1, y0) + x0,
+ opsin->PlaneRow(2, y0) + x0, image_rect.Line(iy));
+ }
+}
+
+} // namespace jxl
+#endif // HWY_ONCE