summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc')
-rw-r--r--third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc465
1 files changed, 465 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc b/third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc
new file mode 100644
index 0000000000..037dabaabe
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_processing/aec3/suppression_gain.cc
@@ -0,0 +1,465 @@
+/*
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_processing/aec3/suppression_gain.h"
+
+#include <math.h>
+#include <stddef.h>
+
+#include <algorithm>
+#include <numeric>
+
+#include "modules/audio_processing/aec3/dominant_nearend_detector.h"
+#include "modules/audio_processing/aec3/moving_average.h"
+#include "modules/audio_processing/aec3/subband_nearend_detector.h"
+#include "modules/audio_processing/aec3/vector_math.h"
+#include "modules/audio_processing/logging/apm_data_dumper.h"
+#include "rtc_base/checks.h"
+#include "system_wrappers/include/field_trial.h"
+
+namespace webrtc {
+namespace {
+
+void LimitLowFrequencyGains(std::array<float, kFftLengthBy2Plus1>* gain) {
+ // Limit the low frequency gains to avoid the impact of the high-pass filter
+ // on the lower-frequency gain influencing the overall achieved gain.
+ (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
+}
+
+void LimitHighFrequencyGains(bool conservative_hf_suppression,
+ std::array<float, kFftLengthBy2Plus1>* gain) {
+ // Limit the high frequency gains to avoid echo leakage due to an imperfect
+ // filter.
+ constexpr size_t kFirstBandToLimit = (64 * 2000) / 8000;
+ const float min_upper_gain = (*gain)[kFirstBandToLimit];
+ std::for_each(
+ gain->begin() + kFirstBandToLimit + 1, gain->end(),
+ [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
+ (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
+
+ if (conservative_hf_suppression) {
+ // Limits the gain in the frequencies for which the adaptive filter has not
+ // converged.
+ // TODO(peah): Make adaptive to take the actual filter error into account.
+ constexpr size_t kUpperAccurateBandPlus1 = 29;
+
+ constexpr float oneByBandsInSum =
+ 1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
+ const float hf_gain_bound =
+ std::accumulate(gain->begin() + 20,
+ gain->begin() + kUpperAccurateBandPlus1, 0.f) *
+ oneByBandsInSum;
+
+ std::for_each(
+ gain->begin() + kUpperAccurateBandPlus1, gain->end(),
+ [hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
+ }
+}
+
+// Scales the echo according to assessed audibility at the other end.
+void WeightEchoForAudibility(const EchoCanceller3Config& config,
+ rtc::ArrayView<const float> echo,
+ rtc::ArrayView<float> weighted_echo) {
+ RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size());
+ RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size());
+
+ auto weigh = [](float threshold, float normalizer, size_t begin, size_t end,
+ rtc::ArrayView<const float> echo,
+ rtc::ArrayView<float> weighted_echo) {
+ for (size_t k = begin; k < end; ++k) {
+ if (echo[k] < threshold) {
+ float tmp = (threshold - echo[k]) * normalizer;
+ weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp);
+ } else {
+ weighted_echo[k] = echo[k];
+ }
+ }
+ };
+
+ float threshold = config.echo_audibility.floor_power *
+ config.echo_audibility.audibility_threshold_lf;
+ float normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
+ weigh(threshold, normalizer, 0, 3, echo, weighted_echo);
+
+ threshold = config.echo_audibility.floor_power *
+ config.echo_audibility.audibility_threshold_mf;
+ normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
+ weigh(threshold, normalizer, 3, 7, echo, weighted_echo);
+
+ threshold = config.echo_audibility.floor_power *
+ config.echo_audibility.audibility_threshold_hf;
+ normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
+ weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo);
+}
+
+} // namespace
+
+std::atomic<int> SuppressionGain::instance_count_(0);
+
+float SuppressionGain::UpperBandsGain(
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
+ comfort_noise_spectrum,
+ const absl::optional<int>& narrow_peak_band,
+ bool saturated_echo,
+ const Block& render,
+ const std::array<float, kFftLengthBy2Plus1>& low_band_gain) const {
+ RTC_DCHECK_LT(0, render.NumBands());
+ if (render.NumBands() == 1) {
+ return 1.f;
+ }
+ const int num_render_channels = render.NumChannels();
+
+ if (narrow_peak_band &&
+ (*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) {
+ return 0.001f;
+ }
+
+ constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
+ const float gain_below_8_khz = *std::min_element(
+ low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
+
+ // Always attenuate the upper bands when there is saturated echo.
+ if (saturated_echo) {
+ return std::min(0.001f, gain_below_8_khz);
+ }
+
+ // Compute the upper and lower band energies.
+ const auto sum_of_squares = [](float a, float b) { return a + b * b; };
+ float low_band_energy = 0.f;
+ for (int ch = 0; ch < num_render_channels; ++ch) {
+ const float channel_energy =
+ std::accumulate(render.begin(/*band=*/0, ch),
+ render.end(/*band=*/0, ch), 0.0f, sum_of_squares);
+ low_band_energy = std::max(low_band_energy, channel_energy);
+ }
+ float high_band_energy = 0.f;
+ for (int k = 1; k < render.NumBands(); ++k) {
+ for (int ch = 0; ch < num_render_channels; ++ch) {
+ const float energy = std::accumulate(
+ render.begin(k, ch), render.end(k, ch), 0.f, sum_of_squares);
+ high_band_energy = std::max(high_band_energy, energy);
+ }
+ }
+
+ // If there is more power in the lower frequencies than the upper frequencies,
+ // or if the power in upper frequencies is low, do not bound the gain in the
+ // upper bands.
+ float anti_howling_gain;
+ const float activation_threshold =
+ kBlockSize * config_.suppressor.high_bands_suppression
+ .anti_howling_activation_threshold;
+ if (high_band_energy < std::max(low_band_energy, activation_threshold)) {
+ anti_howling_gain = 1.f;
+ } else {
+ // In all other cases, bound the gain for upper frequencies.
+ RTC_DCHECK_LE(low_band_energy, high_band_energy);
+ RTC_DCHECK_NE(0.f, high_band_energy);
+ anti_howling_gain =
+ config_.suppressor.high_bands_suppression.anti_howling_gain *
+ sqrtf(low_band_energy / high_band_energy);
+ }
+
+ float gain_bound = 1.f;
+ if (!dominant_nearend_detector_->IsNearendState()) {
+ // Bound the upper gain during significant echo activity.
+ const auto& cfg = config_.suppressor.high_bands_suppression;
+ auto low_frequency_energy = [](rtc::ArrayView<const float> spectrum) {
+ RTC_DCHECK_LE(16, spectrum.size());
+ return std::accumulate(spectrum.begin() + 1, spectrum.begin() + 16, 0.f);
+ };
+ for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
+ const float echo_sum = low_frequency_energy(echo_spectrum[ch]);
+ const float noise_sum = low_frequency_energy(comfort_noise_spectrum[ch]);
+ if (echo_sum > cfg.enr_threshold * noise_sum) {
+ gain_bound = cfg.max_gain_during_echo;
+ break;
+ }
+ }
+ }
+
+ // Choose the gain as the minimum of the lower and upper gains.
+ return std::min(std::min(gain_below_8_khz, anti_howling_gain), gain_bound);
+}
+
+// Computes the gain to reduce the echo to a non audible level.
+void SuppressionGain::GainToNoAudibleEcho(
+ const std::array<float, kFftLengthBy2Plus1>& nearend,
+ const std::array<float, kFftLengthBy2Plus1>& echo,
+ const std::array<float, kFftLengthBy2Plus1>& masker,
+ std::array<float, kFftLengthBy2Plus1>* gain) const {
+ const auto& p = dominant_nearend_detector_->IsNearendState() ? nearend_params_
+ : normal_params_;
+ for (size_t k = 0; k < gain->size(); ++k) {
+ float enr = echo[k] / (nearend[k] + 1.f); // Echo-to-nearend ratio.
+ float emr = echo[k] / (masker[k] + 1.f); // Echo-to-masker (noise) ratio.
+ float g = 1.0f;
+ if (enr > p.enr_transparent_[k] && emr > p.emr_transparent_[k]) {
+ g = (p.enr_suppress_[k] - enr) /
+ (p.enr_suppress_[k] - p.enr_transparent_[k]);
+ g = std::max(g, p.emr_transparent_[k] / emr);
+ }
+ (*gain)[k] = g;
+ }
+}
+
+// Compute the minimum gain as the attenuating gain to put the signal just
+// above the zero sample values.
+void SuppressionGain::GetMinGain(
+ rtc::ArrayView<const float> weighted_residual_echo,
+ rtc::ArrayView<const float> last_nearend,
+ rtc::ArrayView<const float> last_echo,
+ bool low_noise_render,
+ bool saturated_echo,
+ rtc::ArrayView<float> min_gain) const {
+ if (!saturated_echo) {
+ const float min_echo_power =
+ low_noise_render ? config_.echo_audibility.low_render_limit
+ : config_.echo_audibility.normal_render_limit;
+
+ for (size_t k = 0; k < min_gain.size(); ++k) {
+ min_gain[k] = weighted_residual_echo[k] > 0.f
+ ? min_echo_power / weighted_residual_echo[k]
+ : 1.f;
+ min_gain[k] = std::min(min_gain[k], 1.f);
+ }
+
+ if (!initial_state_ ||
+ config_.suppressor.lf_smoothing_during_initial_phase) {
+ const float& dec = dominant_nearend_detector_->IsNearendState()
+ ? nearend_params_.max_dec_factor_lf
+ : normal_params_.max_dec_factor_lf;
+
+ for (int k = 0; k <= config_.suppressor.last_lf_smoothing_band; ++k) {
+ // Make sure the gains of the low frequencies do not decrease too
+ // quickly after strong nearend.
+ if (last_nearend[k] > last_echo[k] ||
+ k <= config_.suppressor.last_permanent_lf_smoothing_band) {
+ min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec);
+ min_gain[k] = std::min(min_gain[k], 1.f);
+ }
+ }
+ }
+ } else {
+ std::fill(min_gain.begin(), min_gain.end(), 0.f);
+ }
+}
+
+// Compute the maximum gain by limiting the gain increase from the previous
+// gain.
+void SuppressionGain::GetMaxGain(rtc::ArrayView<float> max_gain) const {
+ const auto& inc = dominant_nearend_detector_->IsNearendState()
+ ? nearend_params_.max_inc_factor
+ : normal_params_.max_inc_factor;
+ const auto& floor = config_.suppressor.floor_first_increase;
+ for (size_t k = 0; k < max_gain.size(); ++k) {
+ max_gain[k] = std::min(std::max(last_gain_[k] * inc, floor), 1.f);
+ }
+}
+
+void SuppressionGain::LowerBandGain(
+ bool low_noise_render,
+ const AecState& aec_state,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
+ suppressor_input,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> residual_echo,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> comfort_noise,
+ bool clock_drift,
+ std::array<float, kFftLengthBy2Plus1>* gain) {
+ gain->fill(1.f);
+ const bool saturated_echo = aec_state.SaturatedEcho();
+ std::array<float, kFftLengthBy2Plus1> max_gain;
+ GetMaxGain(max_gain);
+
+ for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
+ std::array<float, kFftLengthBy2Plus1> G;
+ std::array<float, kFftLengthBy2Plus1> nearend;
+ nearend_smoothers_[ch].Average(suppressor_input[ch], nearend);
+
+ // Weight echo power in terms of audibility.
+ std::array<float, kFftLengthBy2Plus1> weighted_residual_echo;
+ WeightEchoForAudibility(config_, residual_echo[ch], weighted_residual_echo);
+
+ std::array<float, kFftLengthBy2Plus1> min_gain;
+ GetMinGain(weighted_residual_echo, last_nearend_[ch], last_echo_[ch],
+ low_noise_render, saturated_echo, min_gain);
+
+ GainToNoAudibleEcho(nearend, weighted_residual_echo, comfort_noise[0], &G);
+
+ // Clamp gains.
+ for (size_t k = 0; k < gain->size(); ++k) {
+ G[k] = std::max(std::min(G[k], max_gain[k]), min_gain[k]);
+ (*gain)[k] = std::min((*gain)[k], G[k]);
+ }
+
+ // Store data required for the gain computation of the next block.
+ std::copy(nearend.begin(), nearend.end(), last_nearend_[ch].begin());
+ std::copy(weighted_residual_echo.begin(), weighted_residual_echo.end(),
+ last_echo_[ch].begin());
+ }
+
+ LimitLowFrequencyGains(gain);
+ // Use conservative high-frequency gains during clock-drift or when not in
+ // dominant nearend.
+ if (!dominant_nearend_detector_->IsNearendState() || clock_drift ||
+ config_.suppressor.conservative_hf_suppression) {
+ LimitHighFrequencyGains(config_.suppressor.conservative_hf_suppression,
+ gain);
+ }
+
+ // Store computed gains.
+ std::copy(gain->begin(), gain->end(), last_gain_.begin());
+
+ // Transform gains to amplitude domain.
+ aec3::VectorMath(optimization_).Sqrt(*gain);
+}
+
+SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
+ Aec3Optimization optimization,
+ int sample_rate_hz,
+ size_t num_capture_channels)
+ : data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)),
+ optimization_(optimization),
+ config_(config),
+ num_capture_channels_(num_capture_channels),
+ state_change_duration_blocks_(
+ static_cast<int>(config_.filter.config_change_duration_blocks)),
+ last_nearend_(num_capture_channels_, {0}),
+ last_echo_(num_capture_channels_, {0}),
+ nearend_smoothers_(
+ num_capture_channels_,
+ aec3::MovingAverage(kFftLengthBy2Plus1,
+ config.suppressor.nearend_average_blocks)),
+ nearend_params_(config_.suppressor.last_lf_band,
+ config_.suppressor.first_hf_band,
+ config_.suppressor.nearend_tuning),
+ normal_params_(config_.suppressor.last_lf_band,
+ config_.suppressor.first_hf_band,
+ config_.suppressor.normal_tuning),
+ use_unbounded_echo_spectrum_(config.suppressor.dominant_nearend_detection
+ .use_unbounded_echo_spectrum) {
+ RTC_DCHECK_LT(0, state_change_duration_blocks_);
+ last_gain_.fill(1.f);
+ if (config_.suppressor.use_subband_nearend_detection) {
+ dominant_nearend_detector_ = std::make_unique<SubbandNearendDetector>(
+ config_.suppressor.subband_nearend_detection, num_capture_channels_);
+ } else {
+ dominant_nearend_detector_ = std::make_unique<DominantNearendDetector>(
+ config_.suppressor.dominant_nearend_detection, num_capture_channels_);
+ }
+ RTC_DCHECK(dominant_nearend_detector_);
+}
+
+SuppressionGain::~SuppressionGain() = default;
+
+void SuppressionGain::GetGain(
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
+ nearend_spectrum,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
+ residual_echo_spectrum,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
+ residual_echo_spectrum_unbounded,
+ rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
+ comfort_noise_spectrum,
+ const RenderSignalAnalyzer& render_signal_analyzer,
+ const AecState& aec_state,
+ const Block& render,
+ bool clock_drift,
+ float* high_bands_gain,
+ std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
+ RTC_DCHECK(high_bands_gain);
+ RTC_DCHECK(low_band_gain);
+
+ // Choose residual echo spectrum for dominant nearend detection.
+ const auto echo = use_unbounded_echo_spectrum_
+ ? residual_echo_spectrum_unbounded
+ : residual_echo_spectrum;
+
+ // Update the nearend state selection.
+ dominant_nearend_detector_->Update(nearend_spectrum, echo,
+ comfort_noise_spectrum, initial_state_);
+
+ // Compute gain for the lower band.
+ bool low_noise_render = low_render_detector_.Detect(render);
+ LowerBandGain(low_noise_render, aec_state, nearend_spectrum,
+ residual_echo_spectrum, comfort_noise_spectrum, clock_drift,
+ low_band_gain);
+
+ // Compute the gain for the upper bands.
+ const absl::optional<int> narrow_peak_band =
+ render_signal_analyzer.NarrowPeakBand();
+
+ *high_bands_gain =
+ UpperBandsGain(echo_spectrum, comfort_noise_spectrum, narrow_peak_band,
+ aec_state.SaturatedEcho(), render, *low_band_gain);
+
+ data_dumper_->DumpRaw("aec3_dominant_nearend",
+ dominant_nearend_detector_->IsNearendState());
+}
+
+void SuppressionGain::SetInitialState(bool state) {
+ initial_state_ = state;
+ if (state) {
+ initial_state_change_counter_ = state_change_duration_blocks_;
+ } else {
+ initial_state_change_counter_ = 0;
+ }
+}
+
+// Detects when the render signal can be considered to have low power and
+// consist of stationary noise.
+bool SuppressionGain::LowNoiseRenderDetector::Detect(const Block& render) {
+ float x2_sum = 0.f;
+ float x2_max = 0.f;
+ for (int ch = 0; ch < render.NumChannels(); ++ch) {
+ for (float x_k : render.View(/*band=*/0, ch)) {
+ const float x2 = x_k * x_k;
+ x2_sum += x2;
+ x2_max = std::max(x2_max, x2);
+ }
+ }
+ x2_sum = x2_sum / render.NumChannels();
+
+ constexpr float kThreshold = 50.f * 50.f * 64.f;
+ const bool low_noise_render =
+ average_power_ < kThreshold && x2_max < 3 * average_power_;
+ average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
+ return low_noise_render;
+}
+
+SuppressionGain::GainParameters::GainParameters(
+ int last_lf_band,
+ int first_hf_band,
+ const EchoCanceller3Config::Suppressor::Tuning& tuning)
+ : max_inc_factor(tuning.max_inc_factor),
+ max_dec_factor_lf(tuning.max_dec_factor_lf) {
+ // Compute per-band masking thresholds.
+ RTC_DCHECK_LT(last_lf_band, first_hf_band);
+ auto& lf = tuning.mask_lf;
+ auto& hf = tuning.mask_hf;
+ RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress);
+ RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress);
+ for (int k = 0; k < static_cast<int>(kFftLengthBy2Plus1); k++) {
+ float a;
+ if (k <= last_lf_band) {
+ a = 0.f;
+ } else if (k < first_hf_band) {
+ a = (k - last_lf_band) / static_cast<float>(first_hf_band - last_lf_band);
+ } else {
+ a = 1.f;
+ }
+ enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent;
+ enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress;
+ emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent;
+ }
+}
+
+} // namespace webrtc