summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc')
-rw-r--r--third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc2649
1 files changed, 2649 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc b/third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc
new file mode 100644
index 0000000000..c304453388
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_processing/audio_processing_impl.cc
@@ -0,0 +1,2649 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_processing/audio_processing_impl.h"
+
+#include <algorithm>
+#include <cstdint>
+#include <cstring>
+#include <memory>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+#include "absl/strings/match.h"
+#include "absl/strings/string_view.h"
+#include "absl/types/optional.h"
+#include "api/array_view.h"
+#include "api/audio/audio_frame.h"
+#include "common_audio/audio_converter.h"
+#include "common_audio/include/audio_util.h"
+#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
+#include "modules/audio_processing/audio_buffer.h"
+#include "modules/audio_processing/include/audio_frame_view.h"
+#include "modules/audio_processing/logging/apm_data_dumper.h"
+#include "modules/audio_processing/optionally_built_submodule_creators.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/experiments/field_trial_parser.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/time_utils.h"
+#include "rtc_base/trace_event.h"
+#include "system_wrappers/include/denormal_disabler.h"
+#include "system_wrappers/include/field_trial.h"
+#include "system_wrappers/include/metrics.h"
+
+#define RETURN_ON_ERR(expr) \
+ do { \
+ int err = (expr); \
+ if (err != kNoError) { \
+ return err; \
+ } \
+ } while (0)
+
+namespace webrtc {
+
+namespace {
+
+bool SampleRateSupportsMultiBand(int sample_rate_hz) {
+ return sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
+ sample_rate_hz == AudioProcessing::kSampleRate48kHz;
+}
+
+// Checks whether the high-pass filter should be done in the full-band.
+bool EnforceSplitBandHpf() {
+ return field_trial::IsEnabled("WebRTC-FullBandHpfKillSwitch");
+}
+
+// Checks whether AEC3 should be allowed to decide what the default
+// configuration should be based on the render and capture channel configuration
+// at hand.
+bool UseSetupSpecificDefaultAec3Congfig() {
+ return !field_trial::IsEnabled(
+ "WebRTC-Aec3SetupSpecificDefaultConfigDefaultsKillSwitch");
+}
+
+// Identify the native processing rate that best handles a sample rate.
+int SuitableProcessRate(int minimum_rate,
+ int max_splitting_rate,
+ bool band_splitting_required) {
+ const int uppermost_native_rate =
+ band_splitting_required ? max_splitting_rate : 48000;
+ for (auto rate : {16000, 32000, 48000}) {
+ if (rate >= uppermost_native_rate) {
+ return uppermost_native_rate;
+ }
+ if (rate >= minimum_rate) {
+ return rate;
+ }
+ }
+ RTC_DCHECK_NOTREACHED();
+ return uppermost_native_rate;
+}
+
+GainControl::Mode Agc1ConfigModeToInterfaceMode(
+ AudioProcessing::Config::GainController1::Mode mode) {
+ using Agc1Config = AudioProcessing::Config::GainController1;
+ switch (mode) {
+ case Agc1Config::kAdaptiveAnalog:
+ return GainControl::kAdaptiveAnalog;
+ case Agc1Config::kAdaptiveDigital:
+ return GainControl::kAdaptiveDigital;
+ case Agc1Config::kFixedDigital:
+ return GainControl::kFixedDigital;
+ }
+ RTC_CHECK_NOTREACHED();
+}
+
+bool MinimizeProcessingForUnusedOutput() {
+ return !field_trial::IsEnabled("WebRTC-MutedStateKillSwitch");
+}
+
+// Maximum lengths that frame of samples being passed from the render side to
+// the capture side can have (does not apply to AEC3).
+static const size_t kMaxAllowedValuesOfSamplesPerBand = 160;
+static const size_t kMaxAllowedValuesOfSamplesPerFrame = 480;
+
+// Maximum number of frames to buffer in the render queue.
+// TODO(peah): Decrease this once we properly handle hugely unbalanced
+// reverse and forward call numbers.
+static const size_t kMaxNumFramesToBuffer = 100;
+
+void PackRenderAudioBufferForEchoDetector(const AudioBuffer& audio,
+ std::vector<float>& packed_buffer) {
+ packed_buffer.clear();
+ packed_buffer.insert(packed_buffer.end(), audio.channels_const()[0],
+ audio.channels_const()[0] + audio.num_frames());
+}
+
+// Options for gracefully handling processing errors.
+enum class FormatErrorOutputOption {
+ kOutputExactCopyOfInput,
+ kOutputBroadcastCopyOfFirstInputChannel,
+ kOutputSilence,
+ kDoNothing
+};
+
+enum class AudioFormatValidity {
+ // Format is supported by APM.
+ kValidAndSupported,
+ // Format has a reasonable interpretation but is not supported.
+ kValidButUnsupportedSampleRate,
+ // The remaining enums values signal that the audio does not have a reasonable
+ // interpretation and cannot be used.
+ kInvalidSampleRate,
+ kInvalidChannelCount
+};
+
+AudioFormatValidity ValidateAudioFormat(const StreamConfig& config) {
+ if (config.sample_rate_hz() < 0)
+ return AudioFormatValidity::kInvalidSampleRate;
+ if (config.num_channels() == 0)
+ return AudioFormatValidity::kInvalidChannelCount;
+
+ // Format has a reasonable interpretation, but may still be unsupported.
+ if (config.sample_rate_hz() < 8000 ||
+ config.sample_rate_hz() > AudioBuffer::kMaxSampleRate)
+ return AudioFormatValidity::kValidButUnsupportedSampleRate;
+
+ // Format is fully supported.
+ return AudioFormatValidity::kValidAndSupported;
+}
+
+int AudioFormatValidityToErrorCode(AudioFormatValidity validity) {
+ switch (validity) {
+ case AudioFormatValidity::kValidAndSupported:
+ return AudioProcessing::kNoError;
+ case AudioFormatValidity::kValidButUnsupportedSampleRate: // fall-through
+ case AudioFormatValidity::kInvalidSampleRate:
+ return AudioProcessing::kBadSampleRateError;
+ case AudioFormatValidity::kInvalidChannelCount:
+ return AudioProcessing::kBadNumberChannelsError;
+ }
+ RTC_DCHECK(false);
+}
+
+// Returns an AudioProcessing::Error together with the best possible option for
+// output audio content.
+std::pair<int, FormatErrorOutputOption> ChooseErrorOutputOption(
+ const StreamConfig& input_config,
+ const StreamConfig& output_config) {
+ AudioFormatValidity input_validity = ValidateAudioFormat(input_config);
+ AudioFormatValidity output_validity = ValidateAudioFormat(output_config);
+
+ if (input_validity == AudioFormatValidity::kValidAndSupported &&
+ output_validity == AudioFormatValidity::kValidAndSupported &&
+ (output_config.num_channels() == 1 ||
+ output_config.num_channels() == input_config.num_channels())) {
+ return {AudioProcessing::kNoError, FormatErrorOutputOption::kDoNothing};
+ }
+
+ int error_code = AudioFormatValidityToErrorCode(input_validity);
+ if (error_code == AudioProcessing::kNoError) {
+ error_code = AudioFormatValidityToErrorCode(output_validity);
+ }
+ if (error_code == AudioProcessing::kNoError) {
+ // The individual formats are valid but there is some error - must be
+ // channel mismatch.
+ error_code = AudioProcessing::kBadNumberChannelsError;
+ }
+
+ FormatErrorOutputOption output_option;
+ if (output_validity != AudioFormatValidity::kValidAndSupported &&
+ output_validity != AudioFormatValidity::kValidButUnsupportedSampleRate) {
+ // The output format is uninterpretable: cannot do anything.
+ output_option = FormatErrorOutputOption::kDoNothing;
+ } else if (input_validity != AudioFormatValidity::kValidAndSupported &&
+ input_validity !=
+ AudioFormatValidity::kValidButUnsupportedSampleRate) {
+ // The input format is uninterpretable: cannot use it, must output silence.
+ output_option = FormatErrorOutputOption::kOutputSilence;
+ } else if (input_config.sample_rate_hz() != output_config.sample_rate_hz()) {
+ // Sample rates do not match: Cannot copy input into output, output silence.
+ // Note: If the sample rates are in a supported range, we could resample.
+ // However, that would significantly increase complexity of this error
+ // handling code.
+ output_option = FormatErrorOutputOption::kOutputSilence;
+ } else if (input_config.num_channels() != output_config.num_channels()) {
+ // Channel counts do not match: We cannot easily map input channels to
+ // output channels.
+ output_option =
+ FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel;
+ } else {
+ // The formats match exactly.
+ RTC_DCHECK(input_config == output_config);
+ output_option = FormatErrorOutputOption::kOutputExactCopyOfInput;
+ }
+ return std::make_pair(error_code, output_option);
+}
+
+// Checks if the audio format is supported. If not, the output is populated in a
+// best-effort manner and an APM error code is returned.
+int HandleUnsupportedAudioFormats(const int16_t* const src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config,
+ int16_t* const dest) {
+ RTC_DCHECK(src);
+ RTC_DCHECK(dest);
+
+ auto [error_code, output_option] =
+ ChooseErrorOutputOption(input_config, output_config);
+ if (error_code == AudioProcessing::kNoError)
+ return AudioProcessing::kNoError;
+
+ const size_t num_output_channels = output_config.num_channels();
+ switch (output_option) {
+ case FormatErrorOutputOption::kOutputSilence:
+ memset(dest, 0, output_config.num_samples() * sizeof(int16_t));
+ break;
+ case FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel:
+ for (size_t i = 0; i < output_config.num_frames(); ++i) {
+ int16_t sample = src[input_config.num_channels() * i];
+ for (size_t ch = 0; ch < num_output_channels; ++ch) {
+ dest[ch + num_output_channels * i] = sample;
+ }
+ }
+ break;
+ case FormatErrorOutputOption::kOutputExactCopyOfInput:
+ memcpy(dest, src, output_config.num_samples() * sizeof(int16_t));
+ break;
+ case FormatErrorOutputOption::kDoNothing:
+ break;
+ }
+ return error_code;
+}
+
+// Checks if the audio format is supported. If not, the output is populated in a
+// best-effort manner and an APM error code is returned.
+int HandleUnsupportedAudioFormats(const float* const* src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config,
+ float* const* dest) {
+ RTC_DCHECK(src);
+ RTC_DCHECK(dest);
+ for (size_t i = 0; i < input_config.num_channels(); ++i) {
+ RTC_DCHECK(src[i]);
+ }
+ for (size_t i = 0; i < output_config.num_channels(); ++i) {
+ RTC_DCHECK(dest[i]);
+ }
+
+ auto [error_code, output_option] =
+ ChooseErrorOutputOption(input_config, output_config);
+ if (error_code == AudioProcessing::kNoError)
+ return AudioProcessing::kNoError;
+
+ const size_t num_output_channels = output_config.num_channels();
+ switch (output_option) {
+ case FormatErrorOutputOption::kOutputSilence:
+ for (size_t ch = 0; ch < num_output_channels; ++ch) {
+ memset(dest[ch], 0, output_config.num_frames() * sizeof(float));
+ }
+ break;
+ case FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel:
+ for (size_t ch = 0; ch < num_output_channels; ++ch) {
+ memcpy(dest[ch], src[0], output_config.num_frames() * sizeof(float));
+ }
+ break;
+ case FormatErrorOutputOption::kOutputExactCopyOfInput:
+ for (size_t ch = 0; ch < num_output_channels; ++ch) {
+ memcpy(dest[ch], src[ch], output_config.num_frames() * sizeof(float));
+ }
+ break;
+ case FormatErrorOutputOption::kDoNothing:
+ break;
+ }
+ return error_code;
+}
+
+using DownmixMethod = AudioProcessing::Config::Pipeline::DownmixMethod;
+
+void SetDownmixMethod(AudioBuffer& buffer, DownmixMethod method) {
+ switch (method) {
+ case DownmixMethod::kAverageChannels:
+ buffer.set_downmixing_by_averaging();
+ break;
+ case DownmixMethod::kUseFirstChannel:
+ buffer.set_downmixing_to_specific_channel(/*channel=*/0);
+ break;
+ }
+}
+
+constexpr int kUnspecifiedDataDumpInputVolume = -100;
+
+} // namespace
+
+// Throughout webrtc, it's assumed that success is represented by zero.
+static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
+
+absl::optional<AudioProcessingImpl::GainController2ExperimentParams>
+AudioProcessingImpl::GetGainController2ExperimentParams() {
+ constexpr char kFieldTrialName[] = "WebRTC-Audio-GainController2";
+
+ if (!field_trial::IsEnabled(kFieldTrialName)) {
+ return absl::nullopt;
+ }
+
+ FieldTrialFlag enabled("Enabled", false);
+
+ // Whether the gain control should switch to AGC2. Enabled by default.
+ FieldTrialParameter<bool> switch_to_agc2("switch_to_agc2", true);
+
+ // AGC2 input volume controller configuration.
+ constexpr InputVolumeController::Config kDefaultInputVolumeControllerConfig;
+ FieldTrialConstrained<int> min_input_volume(
+ "min_input_volume", kDefaultInputVolumeControllerConfig.min_input_volume,
+ 0, 255);
+ FieldTrialConstrained<int> clipped_level_min(
+ "clipped_level_min",
+ kDefaultInputVolumeControllerConfig.clipped_level_min, 0, 255);
+ FieldTrialConstrained<int> clipped_level_step(
+ "clipped_level_step",
+ kDefaultInputVolumeControllerConfig.clipped_level_step, 0, 255);
+ FieldTrialConstrained<double> clipped_ratio_threshold(
+ "clipped_ratio_threshold",
+ kDefaultInputVolumeControllerConfig.clipped_ratio_threshold, 0, 1);
+ FieldTrialConstrained<int> clipped_wait_frames(
+ "clipped_wait_frames",
+ kDefaultInputVolumeControllerConfig.clipped_wait_frames, 0,
+ absl::nullopt);
+ FieldTrialParameter<bool> enable_clipping_predictor(
+ "enable_clipping_predictor",
+ kDefaultInputVolumeControllerConfig.enable_clipping_predictor);
+ FieldTrialConstrained<int> target_range_max_dbfs(
+ "target_range_max_dbfs",
+ kDefaultInputVolumeControllerConfig.target_range_max_dbfs, -90, 30);
+ FieldTrialConstrained<int> target_range_min_dbfs(
+ "target_range_min_dbfs",
+ kDefaultInputVolumeControllerConfig.target_range_min_dbfs, -90, 30);
+ FieldTrialConstrained<int> update_input_volume_wait_frames(
+ "update_input_volume_wait_frames",
+ kDefaultInputVolumeControllerConfig.update_input_volume_wait_frames, 0,
+ absl::nullopt);
+ FieldTrialConstrained<double> speech_probability_threshold(
+ "speech_probability_threshold",
+ kDefaultInputVolumeControllerConfig.speech_probability_threshold, 0, 1);
+ FieldTrialConstrained<double> speech_ratio_threshold(
+ "speech_ratio_threshold",
+ kDefaultInputVolumeControllerConfig.speech_ratio_threshold, 0, 1);
+
+ // AGC2 adaptive digital controller configuration.
+ constexpr AudioProcessing::Config::GainController2::AdaptiveDigital
+ kDefaultAdaptiveDigitalConfig;
+ FieldTrialConstrained<double> headroom_db(
+ "headroom_db", kDefaultAdaptiveDigitalConfig.headroom_db, 0,
+ absl::nullopt);
+ FieldTrialConstrained<double> max_gain_db(
+ "max_gain_db", kDefaultAdaptiveDigitalConfig.max_gain_db, 0,
+ absl::nullopt);
+ FieldTrialConstrained<double> initial_gain_db(
+ "initial_gain_db", kDefaultAdaptiveDigitalConfig.initial_gain_db, 0,
+ absl::nullopt);
+ FieldTrialConstrained<double> max_gain_change_db_per_second(
+ "max_gain_change_db_per_second",
+ kDefaultAdaptiveDigitalConfig.max_gain_change_db_per_second, 0,
+ absl::nullopt);
+ FieldTrialConstrained<double> max_output_noise_level_dbfs(
+ "max_output_noise_level_dbfs",
+ kDefaultAdaptiveDigitalConfig.max_output_noise_level_dbfs, absl::nullopt,
+ 0);
+
+ // Transient suppressor.
+ FieldTrialParameter<bool> disallow_transient_suppressor_usage(
+ "disallow_transient_suppressor_usage", false);
+
+ // Field-trial based override for the input volume controller and adaptive
+ // digital configs.
+ ParseFieldTrial(
+ {&enabled, &switch_to_agc2, &min_input_volume, &clipped_level_min,
+ &clipped_level_step, &clipped_ratio_threshold, &clipped_wait_frames,
+ &enable_clipping_predictor, &target_range_max_dbfs,
+ &target_range_min_dbfs, &update_input_volume_wait_frames,
+ &speech_probability_threshold, &speech_ratio_threshold, &headroom_db,
+ &max_gain_db, &initial_gain_db, &max_gain_change_db_per_second,
+ &max_output_noise_level_dbfs, &disallow_transient_suppressor_usage},
+ field_trial::FindFullName(kFieldTrialName));
+ // Checked already by `IsEnabled()` before parsing, therefore always true.
+ RTC_DCHECK(enabled);
+
+ const bool do_not_change_agc_config = !switch_to_agc2.Get();
+ if (do_not_change_agc_config && !disallow_transient_suppressor_usage.Get()) {
+ // Return an unspecifed value since, in this case, both the AGC2 and TS
+ // configurations won't be adjusted.
+ return absl::nullopt;
+ }
+ using Params = AudioProcessingImpl::GainController2ExperimentParams;
+ if (do_not_change_agc_config) {
+ // Return a value that leaves the AGC2 config unchanged and that always
+ // disables TS.
+ return Params{.agc2_config = absl::nullopt,
+ .disallow_transient_suppressor_usage = true};
+ }
+ // Return a value that switches all the gain control to AGC2.
+ return Params{
+ .agc2_config =
+ Params::Agc2Config{
+ .input_volume_controller =
+ {
+ .min_input_volume = min_input_volume.Get(),
+ .clipped_level_min = clipped_level_min.Get(),
+ .clipped_level_step = clipped_level_step.Get(),
+ .clipped_ratio_threshold =
+ static_cast<float>(clipped_ratio_threshold.Get()),
+ .clipped_wait_frames = clipped_wait_frames.Get(),
+ .enable_clipping_predictor =
+ enable_clipping_predictor.Get(),
+ .target_range_max_dbfs = target_range_max_dbfs.Get(),
+ .target_range_min_dbfs = target_range_min_dbfs.Get(),
+ .update_input_volume_wait_frames =
+ update_input_volume_wait_frames.Get(),
+ .speech_probability_threshold = static_cast<float>(
+ speech_probability_threshold.Get()),
+ .speech_ratio_threshold =
+ static_cast<float>(speech_ratio_threshold.Get()),
+ },
+ .adaptive_digital_controller =
+ {
+ .enabled = false,
+ .headroom_db = static_cast<float>(headroom_db.Get()),
+ .max_gain_db = static_cast<float>(max_gain_db.Get()),
+ .initial_gain_db =
+ static_cast<float>(initial_gain_db.Get()),
+ .max_gain_change_db_per_second = static_cast<float>(
+ max_gain_change_db_per_second.Get()),
+ .max_output_noise_level_dbfs =
+ static_cast<float>(max_output_noise_level_dbfs.Get()),
+ }},
+ .disallow_transient_suppressor_usage =
+ disallow_transient_suppressor_usage.Get()};
+}
+
+AudioProcessing::Config AudioProcessingImpl::AdjustConfig(
+ const AudioProcessing::Config& config,
+ const absl::optional<AudioProcessingImpl::GainController2ExperimentParams>&
+ experiment_params) {
+ if (!experiment_params.has_value() ||
+ (!experiment_params->agc2_config.has_value() &&
+ !experiment_params->disallow_transient_suppressor_usage)) {
+ // When the experiment parameters are unspecified or when the AGC and TS
+ // configuration are not overridden, return the unmodified configuration.
+ return config;
+ }
+
+ AudioProcessing::Config adjusted_config = config;
+
+ // Override the transient suppressor configuration.
+ if (experiment_params->disallow_transient_suppressor_usage) {
+ adjusted_config.transient_suppression.enabled = false;
+ }
+
+ // Override the auto gain control configuration if the AGC1 analog gain
+ // controller is active and `experiment_params->agc2_config` is specified.
+ const bool agc1_analog_enabled =
+ config.gain_controller1.enabled &&
+ (config.gain_controller1.mode ==
+ AudioProcessing::Config::GainController1::kAdaptiveAnalog ||
+ config.gain_controller1.analog_gain_controller.enabled);
+ if (agc1_analog_enabled && experiment_params->agc2_config.has_value()) {
+ // Check that the unadjusted AGC config meets the preconditions.
+ const bool hybrid_agc_config_detected =
+ config.gain_controller1.enabled &&
+ config.gain_controller1.analog_gain_controller.enabled &&
+ !config.gain_controller1.analog_gain_controller
+ .enable_digital_adaptive &&
+ config.gain_controller2.enabled &&
+ config.gain_controller2.adaptive_digital.enabled;
+ const bool full_agc1_config_detected =
+ config.gain_controller1.enabled &&
+ config.gain_controller1.analog_gain_controller.enabled &&
+ config.gain_controller1.analog_gain_controller
+ .enable_digital_adaptive &&
+ !config.gain_controller2.enabled;
+ const bool one_and_only_one_input_volume_controller =
+ hybrid_agc_config_detected != full_agc1_config_detected;
+ const bool agc2_input_volume_controller_enabled =
+ config.gain_controller2.enabled &&
+ config.gain_controller2.input_volume_controller.enabled;
+ if (!one_and_only_one_input_volume_controller ||
+ agc2_input_volume_controller_enabled) {
+ RTC_LOG(LS_ERROR) << "Cannot adjust AGC config (precondition failed)";
+ if (!one_and_only_one_input_volume_controller)
+ RTC_LOG(LS_ERROR)
+ << "One and only one input volume controller must be enabled.";
+ if (agc2_input_volume_controller_enabled)
+ RTC_LOG(LS_ERROR)
+ << "The AGC2 input volume controller must be disabled.";
+ } else {
+ adjusted_config.gain_controller1.enabled = false;
+ adjusted_config.gain_controller1.analog_gain_controller.enabled = false;
+
+ adjusted_config.gain_controller2.enabled = true;
+ adjusted_config.gain_controller2.input_volume_controller.enabled = true;
+ adjusted_config.gain_controller2.adaptive_digital =
+ experiment_params->agc2_config->adaptive_digital_controller;
+ adjusted_config.gain_controller2.adaptive_digital.enabled = true;
+ }
+ }
+
+ return adjusted_config;
+}
+
+bool AudioProcessingImpl::UseApmVadSubModule(
+ const AudioProcessing::Config& config,
+ const absl::optional<GainController2ExperimentParams>& experiment_params) {
+ // The VAD as an APM sub-module is needed only in one case, that is when TS
+ // and AGC2 are both enabled and when the AGC2 experiment is running and its
+ // parameters require to fully switch the gain control to AGC2.
+ return config.transient_suppression.enabled &&
+ config.gain_controller2.enabled &&
+ (config.gain_controller2.input_volume_controller.enabled ||
+ config.gain_controller2.adaptive_digital.enabled) &&
+ experiment_params.has_value() &&
+ experiment_params->agc2_config.has_value();
+}
+
+AudioProcessingImpl::SubmoduleStates::SubmoduleStates(
+ bool capture_post_processor_enabled,
+ bool render_pre_processor_enabled,
+ bool capture_analyzer_enabled)
+ : capture_post_processor_enabled_(capture_post_processor_enabled),
+ render_pre_processor_enabled_(render_pre_processor_enabled),
+ capture_analyzer_enabled_(capture_analyzer_enabled) {}
+
+bool AudioProcessingImpl::SubmoduleStates::Update(
+ bool high_pass_filter_enabled,
+ bool mobile_echo_controller_enabled,
+ bool noise_suppressor_enabled,
+ bool adaptive_gain_controller_enabled,
+ bool gain_controller2_enabled,
+ bool voice_activity_detector_enabled,
+ bool gain_adjustment_enabled,
+ bool echo_controller_enabled,
+ bool transient_suppressor_enabled) {
+ bool changed = false;
+ changed |= (high_pass_filter_enabled != high_pass_filter_enabled_);
+ changed |=
+ (mobile_echo_controller_enabled != mobile_echo_controller_enabled_);
+ changed |= (noise_suppressor_enabled != noise_suppressor_enabled_);
+ changed |=
+ (adaptive_gain_controller_enabled != adaptive_gain_controller_enabled_);
+ changed |= (gain_controller2_enabled != gain_controller2_enabled_);
+ changed |=
+ (voice_activity_detector_enabled != voice_activity_detector_enabled_);
+ changed |= (gain_adjustment_enabled != gain_adjustment_enabled_);
+ changed |= (echo_controller_enabled != echo_controller_enabled_);
+ changed |= (transient_suppressor_enabled != transient_suppressor_enabled_);
+ if (changed) {
+ high_pass_filter_enabled_ = high_pass_filter_enabled;
+ mobile_echo_controller_enabled_ = mobile_echo_controller_enabled;
+ noise_suppressor_enabled_ = noise_suppressor_enabled;
+ adaptive_gain_controller_enabled_ = adaptive_gain_controller_enabled;
+ gain_controller2_enabled_ = gain_controller2_enabled;
+ voice_activity_detector_enabled_ = voice_activity_detector_enabled;
+ gain_adjustment_enabled_ = gain_adjustment_enabled;
+ echo_controller_enabled_ = echo_controller_enabled;
+ transient_suppressor_enabled_ = transient_suppressor_enabled;
+ }
+
+ changed |= first_update_;
+ first_update_ = false;
+ return changed;
+}
+
+bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandSubModulesActive()
+ const {
+ return CaptureMultiBandProcessingPresent();
+}
+
+bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingPresent()
+ const {
+ // If echo controller is present, assume it performs active processing.
+ return CaptureMultiBandProcessingActive(/*ec_processing_active=*/true);
+}
+
+bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingActive(
+ bool ec_processing_active) const {
+ return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
+ noise_suppressor_enabled_ || adaptive_gain_controller_enabled_ ||
+ (echo_controller_enabled_ && ec_processing_active);
+}
+
+bool AudioProcessingImpl::SubmoduleStates::CaptureFullBandProcessingActive()
+ const {
+ return gain_controller2_enabled_ || capture_post_processor_enabled_ ||
+ gain_adjustment_enabled_;
+}
+
+bool AudioProcessingImpl::SubmoduleStates::CaptureAnalyzerActive() const {
+ return capture_analyzer_enabled_;
+}
+
+bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandSubModulesActive()
+ const {
+ return RenderMultiBandProcessingActive() || mobile_echo_controller_enabled_ ||
+ adaptive_gain_controller_enabled_ || echo_controller_enabled_;
+}
+
+bool AudioProcessingImpl::SubmoduleStates::RenderFullBandProcessingActive()
+ const {
+ return render_pre_processor_enabled_;
+}
+
+bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandProcessingActive()
+ const {
+ return false;
+}
+
+bool AudioProcessingImpl::SubmoduleStates::HighPassFilteringRequired() const {
+ return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
+ noise_suppressor_enabled_;
+}
+
+AudioProcessingImpl::AudioProcessingImpl()
+ : AudioProcessingImpl(/*config=*/{},
+ /*capture_post_processor=*/nullptr,
+ /*render_pre_processor=*/nullptr,
+ /*echo_control_factory=*/nullptr,
+ /*echo_detector=*/nullptr,
+ /*capture_analyzer=*/nullptr) {}
+
+std::atomic<int> AudioProcessingImpl::instance_count_(0);
+
+AudioProcessingImpl::AudioProcessingImpl(
+ const AudioProcessing::Config& config,
+ std::unique_ptr<CustomProcessing> capture_post_processor,
+ std::unique_ptr<CustomProcessing> render_pre_processor,
+ std::unique_ptr<EchoControlFactory> echo_control_factory,
+ rtc::scoped_refptr<EchoDetector> echo_detector,
+ std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)
+ : data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)),
+ use_setup_specific_default_aec3_config_(
+ UseSetupSpecificDefaultAec3Congfig()),
+ gain_controller2_experiment_params_(GetGainController2ExperimentParams()),
+ transient_suppressor_vad_mode_(TransientSuppressor::VadMode::kDefault),
+ capture_runtime_settings_(RuntimeSettingQueueSize()),
+ render_runtime_settings_(RuntimeSettingQueueSize()),
+ capture_runtime_settings_enqueuer_(&capture_runtime_settings_),
+ render_runtime_settings_enqueuer_(&render_runtime_settings_),
+ echo_control_factory_(std::move(echo_control_factory)),
+ config_(AdjustConfig(config, gain_controller2_experiment_params_)),
+ submodule_states_(!!capture_post_processor,
+ !!render_pre_processor,
+ !!capture_analyzer),
+ submodules_(std::move(capture_post_processor),
+ std::move(render_pre_processor),
+ std::move(echo_detector),
+ std::move(capture_analyzer)),
+ constants_(!field_trial::IsEnabled(
+ "WebRTC-ApmExperimentalMultiChannelRenderKillSwitch"),
+ !field_trial::IsEnabled(
+ "WebRTC-ApmExperimentalMultiChannelCaptureKillSwitch"),
+ EnforceSplitBandHpf(),
+ MinimizeProcessingForUnusedOutput(),
+ field_trial::IsEnabled("WebRTC-TransientSuppressorForcedOff")),
+ capture_(),
+ capture_nonlocked_(),
+ applied_input_volume_stats_reporter_(
+ InputVolumeStatsReporter::InputVolumeType::kApplied),
+ recommended_input_volume_stats_reporter_(
+ InputVolumeStatsReporter::InputVolumeType::kRecommended) {
+ RTC_LOG(LS_INFO) << "Injected APM submodules:"
+ "\nEcho control factory: "
+ << !!echo_control_factory_
+ << "\nEcho detector: " << !!submodules_.echo_detector
+ << "\nCapture analyzer: " << !!submodules_.capture_analyzer
+ << "\nCapture post processor: "
+ << !!submodules_.capture_post_processor
+ << "\nRender pre processor: "
+ << !!submodules_.render_pre_processor;
+ if (!DenormalDisabler::IsSupported()) {
+ RTC_LOG(LS_INFO) << "Denormal disabler unsupported";
+ }
+
+ RTC_LOG(LS_INFO) << "AudioProcessing: " << config_.ToString();
+
+ // Mark Echo Controller enabled if a factory is injected.
+ capture_nonlocked_.echo_controller_enabled =
+ static_cast<bool>(echo_control_factory_);
+
+ Initialize();
+}
+
+AudioProcessingImpl::~AudioProcessingImpl() = default;
+
+int AudioProcessingImpl::Initialize() {
+ // Run in a single-threaded manner during initialization.
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+ InitializeLocked();
+ return kNoError;
+}
+
+int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) {
+ // Run in a single-threaded manner during initialization.
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+ InitializeLocked(processing_config);
+ return kNoError;
+}
+
+void AudioProcessingImpl::MaybeInitializeRender(
+ const StreamConfig& input_config,
+ const StreamConfig& output_config) {
+ ProcessingConfig processing_config = formats_.api_format;
+ processing_config.reverse_input_stream() = input_config;
+ processing_config.reverse_output_stream() = output_config;
+
+ if (processing_config == formats_.api_format) {
+ return;
+ }
+
+ MutexLock lock_capture(&mutex_capture_);
+ InitializeLocked(processing_config);
+}
+
+void AudioProcessingImpl::InitializeLocked() {
+ UpdateActiveSubmoduleStates();
+
+ const int render_audiobuffer_sample_rate_hz =
+ formats_.api_format.reverse_output_stream().num_frames() == 0
+ ? formats_.render_processing_format.sample_rate_hz()
+ : formats_.api_format.reverse_output_stream().sample_rate_hz();
+ if (formats_.api_format.reverse_input_stream().num_channels() > 0) {
+ render_.render_audio.reset(new AudioBuffer(
+ formats_.api_format.reverse_input_stream().sample_rate_hz(),
+ formats_.api_format.reverse_input_stream().num_channels(),
+ formats_.render_processing_format.sample_rate_hz(),
+ formats_.render_processing_format.num_channels(),
+ render_audiobuffer_sample_rate_hz,
+ formats_.render_processing_format.num_channels()));
+ if (formats_.api_format.reverse_input_stream() !=
+ formats_.api_format.reverse_output_stream()) {
+ render_.render_converter = AudioConverter::Create(
+ formats_.api_format.reverse_input_stream().num_channels(),
+ formats_.api_format.reverse_input_stream().num_frames(),
+ formats_.api_format.reverse_output_stream().num_channels(),
+ formats_.api_format.reverse_output_stream().num_frames());
+ } else {
+ render_.render_converter.reset(nullptr);
+ }
+ } else {
+ render_.render_audio.reset(nullptr);
+ render_.render_converter.reset(nullptr);
+ }
+
+ capture_.capture_audio.reset(new AudioBuffer(
+ formats_.api_format.input_stream().sample_rate_hz(),
+ formats_.api_format.input_stream().num_channels(),
+ capture_nonlocked_.capture_processing_format.sample_rate_hz(),
+ formats_.api_format.output_stream().num_channels(),
+ formats_.api_format.output_stream().sample_rate_hz(),
+ formats_.api_format.output_stream().num_channels()));
+ SetDownmixMethod(*capture_.capture_audio,
+ config_.pipeline.capture_downmix_method);
+
+ if (capture_nonlocked_.capture_processing_format.sample_rate_hz() <
+ formats_.api_format.output_stream().sample_rate_hz() &&
+ formats_.api_format.output_stream().sample_rate_hz() == 48000) {
+ capture_.capture_fullband_audio.reset(
+ new AudioBuffer(formats_.api_format.input_stream().sample_rate_hz(),
+ formats_.api_format.input_stream().num_channels(),
+ formats_.api_format.output_stream().sample_rate_hz(),
+ formats_.api_format.output_stream().num_channels(),
+ formats_.api_format.output_stream().sample_rate_hz(),
+ formats_.api_format.output_stream().num_channels()));
+ SetDownmixMethod(*capture_.capture_fullband_audio,
+ config_.pipeline.capture_downmix_method);
+ } else {
+ capture_.capture_fullband_audio.reset();
+ }
+
+ AllocateRenderQueue();
+
+ InitializeGainController1();
+ InitializeTransientSuppressor();
+ InitializeHighPassFilter(true);
+ InitializeResidualEchoDetector();
+ InitializeEchoController();
+ InitializeGainController2();
+ InitializeVoiceActivityDetector();
+ InitializeNoiseSuppressor();
+ InitializeAnalyzer();
+ InitializePostProcessor();
+ InitializePreProcessor();
+ InitializeCaptureLevelsAdjuster();
+
+ if (aec_dump_) {
+ aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
+ }
+}
+
+void AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) {
+ UpdateActiveSubmoduleStates();
+
+ formats_.api_format = config;
+
+ // Choose maximum rate to use for the split filtering.
+ RTC_DCHECK(config_.pipeline.maximum_internal_processing_rate == 48000 ||
+ config_.pipeline.maximum_internal_processing_rate == 32000);
+ int max_splitting_rate = 48000;
+ if (config_.pipeline.maximum_internal_processing_rate == 32000) {
+ max_splitting_rate = config_.pipeline.maximum_internal_processing_rate;
+ }
+
+ int capture_processing_rate = SuitableProcessRate(
+ std::min(formats_.api_format.input_stream().sample_rate_hz(),
+ formats_.api_format.output_stream().sample_rate_hz()),
+ max_splitting_rate,
+ submodule_states_.CaptureMultiBandSubModulesActive() ||
+ submodule_states_.RenderMultiBandSubModulesActive());
+ RTC_DCHECK_NE(8000, capture_processing_rate);
+
+ capture_nonlocked_.capture_processing_format =
+ StreamConfig(capture_processing_rate);
+
+ int render_processing_rate;
+ if (!capture_nonlocked_.echo_controller_enabled) {
+ render_processing_rate = SuitableProcessRate(
+ std::min(formats_.api_format.reverse_input_stream().sample_rate_hz(),
+ formats_.api_format.reverse_output_stream().sample_rate_hz()),
+ max_splitting_rate,
+ submodule_states_.CaptureMultiBandSubModulesActive() ||
+ submodule_states_.RenderMultiBandSubModulesActive());
+ } else {
+ render_processing_rate = capture_processing_rate;
+ }
+
+ // If the forward sample rate is 8 kHz, the render stream is also processed
+ // at this rate.
+ if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
+ kSampleRate8kHz) {
+ render_processing_rate = kSampleRate8kHz;
+ } else {
+ render_processing_rate =
+ std::max(render_processing_rate, static_cast<int>(kSampleRate16kHz));
+ }
+
+ RTC_DCHECK_NE(8000, render_processing_rate);
+
+ if (submodule_states_.RenderMultiBandSubModulesActive()) {
+ // By default, downmix the render stream to mono for analysis. This has been
+ // demonstrated to work well for AEC in most practical scenarios.
+ const bool multi_channel_render = config_.pipeline.multi_channel_render &&
+ constants_.multi_channel_render_support;
+ int render_processing_num_channels =
+ multi_channel_render
+ ? formats_.api_format.reverse_input_stream().num_channels()
+ : 1;
+ formats_.render_processing_format =
+ StreamConfig(render_processing_rate, render_processing_num_channels);
+ } else {
+ formats_.render_processing_format = StreamConfig(
+ formats_.api_format.reverse_input_stream().sample_rate_hz(),
+ formats_.api_format.reverse_input_stream().num_channels());
+ }
+
+ if (capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
+ kSampleRate32kHz ||
+ capture_nonlocked_.capture_processing_format.sample_rate_hz() ==
+ kSampleRate48kHz) {
+ capture_nonlocked_.split_rate = kSampleRate16kHz;
+ } else {
+ capture_nonlocked_.split_rate =
+ capture_nonlocked_.capture_processing_format.sample_rate_hz();
+ }
+
+ InitializeLocked();
+}
+
+void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) {
+ // Run in a single-threaded manner when applying the settings.
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+
+ const auto adjusted_config =
+ AdjustConfig(config, gain_controller2_experiment_params_);
+ RTC_LOG(LS_INFO) << "AudioProcessing::ApplyConfig: "
+ << adjusted_config.ToString();
+
+ const bool pipeline_config_changed =
+ config_.pipeline.multi_channel_render !=
+ adjusted_config.pipeline.multi_channel_render ||
+ config_.pipeline.multi_channel_capture !=
+ adjusted_config.pipeline.multi_channel_capture ||
+ config_.pipeline.maximum_internal_processing_rate !=
+ adjusted_config.pipeline.maximum_internal_processing_rate ||
+ config_.pipeline.capture_downmix_method !=
+ adjusted_config.pipeline.capture_downmix_method;
+
+ const bool aec_config_changed =
+ config_.echo_canceller.enabled !=
+ adjusted_config.echo_canceller.enabled ||
+ config_.echo_canceller.mobile_mode !=
+ adjusted_config.echo_canceller.mobile_mode;
+
+ const bool agc1_config_changed =
+ config_.gain_controller1 != adjusted_config.gain_controller1;
+
+ const bool agc2_config_changed =
+ config_.gain_controller2 != adjusted_config.gain_controller2;
+
+ const bool ns_config_changed =
+ config_.noise_suppression.enabled !=
+ adjusted_config.noise_suppression.enabled ||
+ config_.noise_suppression.level !=
+ adjusted_config.noise_suppression.level;
+
+ const bool ts_config_changed = config_.transient_suppression.enabled !=
+ adjusted_config.transient_suppression.enabled;
+
+ const bool pre_amplifier_config_changed =
+ config_.pre_amplifier.enabled != adjusted_config.pre_amplifier.enabled ||
+ config_.pre_amplifier.fixed_gain_factor !=
+ adjusted_config.pre_amplifier.fixed_gain_factor;
+
+ const bool gain_adjustment_config_changed =
+ config_.capture_level_adjustment !=
+ adjusted_config.capture_level_adjustment;
+
+ config_ = adjusted_config;
+
+ if (aec_config_changed) {
+ InitializeEchoController();
+ }
+
+ if (ns_config_changed) {
+ InitializeNoiseSuppressor();
+ }
+
+ if (ts_config_changed) {
+ InitializeTransientSuppressor();
+ }
+
+ InitializeHighPassFilter(false);
+
+ if (agc1_config_changed) {
+ InitializeGainController1();
+ }
+
+ const bool config_ok = GainController2::Validate(config_.gain_controller2);
+ if (!config_ok) {
+ RTC_LOG(LS_ERROR)
+ << "Invalid Gain Controller 2 config; using the default config.";
+ config_.gain_controller2 = AudioProcessing::Config::GainController2();
+ }
+
+ if (agc2_config_changed || ts_config_changed) {
+ // AGC2 also depends on TS because of the possible dependency on the APM VAD
+ // sub-module.
+ InitializeGainController2();
+ InitializeVoiceActivityDetector();
+ }
+
+ if (pre_amplifier_config_changed || gain_adjustment_config_changed) {
+ InitializeCaptureLevelsAdjuster();
+ }
+
+ // Reinitialization must happen after all submodule configuration to avoid
+ // additional reinitializations on the next capture / render processing call.
+ if (pipeline_config_changed) {
+ InitializeLocked(formats_.api_format);
+ }
+}
+
+void AudioProcessingImpl::OverrideSubmoduleCreationForTesting(
+ const ApmSubmoduleCreationOverrides& overrides) {
+ MutexLock lock(&mutex_capture_);
+ submodule_creation_overrides_ = overrides;
+}
+
+int AudioProcessingImpl::proc_sample_rate_hz() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ return capture_nonlocked_.capture_processing_format.sample_rate_hz();
+}
+
+int AudioProcessingImpl::proc_fullband_sample_rate_hz() const {
+ return capture_.capture_fullband_audio
+ ? capture_.capture_fullband_audio->num_frames() * 100
+ : capture_nonlocked_.capture_processing_format.sample_rate_hz();
+}
+
+int AudioProcessingImpl::proc_split_sample_rate_hz() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ return capture_nonlocked_.split_rate;
+}
+
+size_t AudioProcessingImpl::num_reverse_channels() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ return formats_.render_processing_format.num_channels();
+}
+
+size_t AudioProcessingImpl::num_input_channels() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ return formats_.api_format.input_stream().num_channels();
+}
+
+size_t AudioProcessingImpl::num_proc_channels() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ const bool multi_channel_capture = config_.pipeline.multi_channel_capture &&
+ constants_.multi_channel_capture_support;
+ if (capture_nonlocked_.echo_controller_enabled && !multi_channel_capture) {
+ return 1;
+ }
+ return num_output_channels();
+}
+
+size_t AudioProcessingImpl::num_output_channels() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ return formats_.api_format.output_stream().num_channels();
+}
+
+void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
+ MutexLock lock(&mutex_capture_);
+ HandleCaptureOutputUsedSetting(!muted);
+}
+
+void AudioProcessingImpl::HandleCaptureOutputUsedSetting(
+ bool capture_output_used) {
+ capture_.capture_output_used =
+ capture_output_used || !constants_.minimize_processing_for_unused_output;
+
+ if (submodules_.agc_manager.get()) {
+ submodules_.agc_manager->HandleCaptureOutputUsedChange(
+ capture_.capture_output_used);
+ }
+ if (submodules_.echo_controller) {
+ submodules_.echo_controller->SetCaptureOutputUsage(
+ capture_.capture_output_used);
+ }
+ if (submodules_.noise_suppressor) {
+ submodules_.noise_suppressor->SetCaptureOutputUsage(
+ capture_.capture_output_used);
+ }
+ if (submodules_.gain_controller2) {
+ submodules_.gain_controller2->SetCaptureOutputUsed(
+ capture_.capture_output_used);
+ }
+}
+
+void AudioProcessingImpl::SetRuntimeSetting(RuntimeSetting setting) {
+ PostRuntimeSetting(setting);
+}
+
+bool AudioProcessingImpl::PostRuntimeSetting(RuntimeSetting setting) {
+ switch (setting.type()) {
+ case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
+ case RuntimeSetting::Type::kPlayoutAudioDeviceChange:
+ return render_runtime_settings_enqueuer_.Enqueue(setting);
+ case RuntimeSetting::Type::kCapturePreGain:
+ case RuntimeSetting::Type::kCapturePostGain:
+ case RuntimeSetting::Type::kCaptureCompressionGain:
+ case RuntimeSetting::Type::kCaptureFixedPostGain:
+ case RuntimeSetting::Type::kCaptureOutputUsed:
+ return capture_runtime_settings_enqueuer_.Enqueue(setting);
+ case RuntimeSetting::Type::kPlayoutVolumeChange: {
+ bool enqueueing_successful;
+ enqueueing_successful =
+ capture_runtime_settings_enqueuer_.Enqueue(setting);
+ enqueueing_successful =
+ render_runtime_settings_enqueuer_.Enqueue(setting) &&
+ enqueueing_successful;
+ return enqueueing_successful;
+ }
+ case RuntimeSetting::Type::kNotSpecified:
+ RTC_DCHECK_NOTREACHED();
+ return true;
+ }
+ // The language allows the enum to have a non-enumerator
+ // value. Check that this doesn't happen.
+ RTC_DCHECK_NOTREACHED();
+ return true;
+}
+
+AudioProcessingImpl::RuntimeSettingEnqueuer::RuntimeSettingEnqueuer(
+ SwapQueue<RuntimeSetting>* runtime_settings)
+ : runtime_settings_(*runtime_settings) {
+ RTC_DCHECK(runtime_settings);
+}
+
+AudioProcessingImpl::RuntimeSettingEnqueuer::~RuntimeSettingEnqueuer() =
+ default;
+
+bool AudioProcessingImpl::RuntimeSettingEnqueuer::Enqueue(
+ RuntimeSetting setting) {
+ const bool successful_insert = runtime_settings_.Insert(&setting);
+
+ if (!successful_insert) {
+ RTC_LOG(LS_ERROR) << "Cannot enqueue a new runtime setting.";
+ }
+ return successful_insert;
+}
+
+void AudioProcessingImpl::MaybeInitializeCapture(
+ const StreamConfig& input_config,
+ const StreamConfig& output_config) {
+ ProcessingConfig processing_config;
+ bool reinitialization_required = false;
+ {
+ // Acquire the capture lock in order to access api_format. The lock is
+ // released immediately, as we may need to acquire the render lock as part
+ // of the conditional reinitialization.
+ MutexLock lock_capture(&mutex_capture_);
+ processing_config = formats_.api_format;
+ reinitialization_required = UpdateActiveSubmoduleStates();
+ }
+
+ if (processing_config.input_stream() != input_config) {
+ reinitialization_required = true;
+ }
+
+ if (processing_config.output_stream() != output_config) {
+ reinitialization_required = true;
+ }
+
+ if (reinitialization_required) {
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+ // Reread the API format since the render format may have changed.
+ processing_config = formats_.api_format;
+ processing_config.input_stream() = input_config;
+ processing_config.output_stream() = output_config;
+ InitializeLocked(processing_config);
+ }
+}
+
+int AudioProcessingImpl::ProcessStream(const float* const* src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config,
+ float* const* dest) {
+ TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_StreamConfig");
+ DenormalDisabler denormal_disabler;
+ RETURN_ON_ERR(
+ HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
+ MaybeInitializeCapture(input_config, output_config);
+
+ MutexLock lock_capture(&mutex_capture_);
+
+ if (aec_dump_) {
+ RecordUnprocessedCaptureStream(src);
+ }
+
+ capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream());
+ if (capture_.capture_fullband_audio) {
+ capture_.capture_fullband_audio->CopyFrom(
+ src, formats_.api_format.input_stream());
+ }
+ RETURN_ON_ERR(ProcessCaptureStreamLocked());
+ if (capture_.capture_fullband_audio) {
+ capture_.capture_fullband_audio->CopyTo(formats_.api_format.output_stream(),
+ dest);
+ } else {
+ capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest);
+ }
+
+ if (aec_dump_) {
+ RecordProcessedCaptureStream(dest);
+ }
+ return kNoError;
+}
+
+void AudioProcessingImpl::HandleCaptureRuntimeSettings() {
+ RuntimeSetting setting;
+ int num_settings_processed = 0;
+ while (capture_runtime_settings_.Remove(&setting)) {
+ if (aec_dump_) {
+ aec_dump_->WriteRuntimeSetting(setting);
+ }
+ switch (setting.type()) {
+ case RuntimeSetting::Type::kCapturePreGain:
+ if (config_.pre_amplifier.enabled ||
+ config_.capture_level_adjustment.enabled) {
+ float value;
+ setting.GetFloat(&value);
+ // If the pre-amplifier is used, apply the new gain to the
+ // pre-amplifier regardless if the capture level adjustment is
+ // activated. This approach allows both functionalities to coexist
+ // until they have been properly merged.
+ if (config_.pre_amplifier.enabled) {
+ config_.pre_amplifier.fixed_gain_factor = value;
+ } else {
+ config_.capture_level_adjustment.pre_gain_factor = value;
+ }
+
+ // Use both the pre-amplifier and the capture level adjustment gains
+ // as pre-gains.
+ float gain = 1.f;
+ if (config_.pre_amplifier.enabled) {
+ gain *= config_.pre_amplifier.fixed_gain_factor;
+ }
+ if (config_.capture_level_adjustment.enabled) {
+ gain *= config_.capture_level_adjustment.pre_gain_factor;
+ }
+
+ submodules_.capture_levels_adjuster->SetPreGain(gain);
+ }
+ // TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump.
+ break;
+ case RuntimeSetting::Type::kCapturePostGain:
+ if (config_.capture_level_adjustment.enabled) {
+ float value;
+ setting.GetFloat(&value);
+ config_.capture_level_adjustment.post_gain_factor = value;
+ submodules_.capture_levels_adjuster->SetPostGain(
+ config_.capture_level_adjustment.post_gain_factor);
+ }
+ // TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump.
+ break;
+ case RuntimeSetting::Type::kCaptureCompressionGain: {
+ if (!submodules_.agc_manager &&
+ !(submodules_.gain_controller2 &&
+ config_.gain_controller2.input_volume_controller.enabled)) {
+ float value;
+ setting.GetFloat(&value);
+ int int_value = static_cast<int>(value + .5f);
+ config_.gain_controller1.compression_gain_db = int_value;
+ if (submodules_.gain_control) {
+ int error =
+ submodules_.gain_control->set_compression_gain_db(int_value);
+ RTC_DCHECK_EQ(kNoError, error);
+ }
+ }
+ break;
+ }
+ case RuntimeSetting::Type::kCaptureFixedPostGain: {
+ if (submodules_.gain_controller2) {
+ float value;
+ setting.GetFloat(&value);
+ config_.gain_controller2.fixed_digital.gain_db = value;
+ submodules_.gain_controller2->SetFixedGainDb(value);
+ }
+ break;
+ }
+ case RuntimeSetting::Type::kPlayoutVolumeChange: {
+ int value;
+ setting.GetInt(&value);
+ capture_.playout_volume = value;
+ break;
+ }
+ case RuntimeSetting::Type::kPlayoutAudioDeviceChange:
+ RTC_DCHECK_NOTREACHED();
+ break;
+ case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
+ RTC_DCHECK_NOTREACHED();
+ break;
+ case RuntimeSetting::Type::kNotSpecified:
+ RTC_DCHECK_NOTREACHED();
+ break;
+ case RuntimeSetting::Type::kCaptureOutputUsed:
+ bool value;
+ setting.GetBool(&value);
+ HandleCaptureOutputUsedSetting(value);
+ break;
+ }
+ ++num_settings_processed;
+ }
+
+ if (num_settings_processed >= RuntimeSettingQueueSize()) {
+ // Handle overrun of the runtime settings queue, which likely will has
+ // caused settings to be discarded.
+ HandleOverrunInCaptureRuntimeSettingsQueue();
+ }
+}
+
+void AudioProcessingImpl::HandleOverrunInCaptureRuntimeSettingsQueue() {
+ // Fall back to a safe state for the case when a setting for capture output
+ // usage setting has been missed.
+ HandleCaptureOutputUsedSetting(/*capture_output_used=*/true);
+}
+
+void AudioProcessingImpl::HandleRenderRuntimeSettings() {
+ RuntimeSetting setting;
+ while (render_runtime_settings_.Remove(&setting)) {
+ if (aec_dump_) {
+ aec_dump_->WriteRuntimeSetting(setting);
+ }
+ switch (setting.type()) {
+ case RuntimeSetting::Type::kPlayoutAudioDeviceChange: // fall-through
+ case RuntimeSetting::Type::kPlayoutVolumeChange: // fall-through
+ case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting:
+ if (submodules_.render_pre_processor) {
+ submodules_.render_pre_processor->SetRuntimeSetting(setting);
+ }
+ break;
+ case RuntimeSetting::Type::kCapturePreGain: // fall-through
+ case RuntimeSetting::Type::kCapturePostGain: // fall-through
+ case RuntimeSetting::Type::kCaptureCompressionGain: // fall-through
+ case RuntimeSetting::Type::kCaptureFixedPostGain: // fall-through
+ case RuntimeSetting::Type::kCaptureOutputUsed: // fall-through
+ case RuntimeSetting::Type::kNotSpecified:
+ RTC_DCHECK_NOTREACHED();
+ break;
+ }
+ }
+}
+
+void AudioProcessingImpl::QueueBandedRenderAudio(AudioBuffer* audio) {
+ RTC_DCHECK_GE(160, audio->num_frames_per_band());
+
+ if (submodules_.echo_control_mobile) {
+ EchoControlMobileImpl::PackRenderAudioBuffer(audio, num_output_channels(),
+ num_reverse_channels(),
+ &aecm_render_queue_buffer_);
+ RTC_DCHECK(aecm_render_signal_queue_);
+ // Insert the samples into the queue.
+ if (!aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_)) {
+ // The data queue is full and needs to be emptied.
+ EmptyQueuedRenderAudio();
+
+ // Retry the insert (should always work).
+ bool result =
+ aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_);
+ RTC_DCHECK(result);
+ }
+ }
+
+ if (!submodules_.agc_manager && submodules_.gain_control) {
+ GainControlImpl::PackRenderAudioBuffer(*audio, &agc_render_queue_buffer_);
+ // Insert the samples into the queue.
+ if (!agc_render_signal_queue_->Insert(&agc_render_queue_buffer_)) {
+ // The data queue is full and needs to be emptied.
+ EmptyQueuedRenderAudio();
+
+ // Retry the insert (should always work).
+ bool result = agc_render_signal_queue_->Insert(&agc_render_queue_buffer_);
+ RTC_DCHECK(result);
+ }
+ }
+}
+
+void AudioProcessingImpl::QueueNonbandedRenderAudio(AudioBuffer* audio) {
+ if (submodules_.echo_detector) {
+ PackRenderAudioBufferForEchoDetector(*audio, red_render_queue_buffer_);
+ RTC_DCHECK(red_render_signal_queue_);
+ // Insert the samples into the queue.
+ if (!red_render_signal_queue_->Insert(&red_render_queue_buffer_)) {
+ // The data queue is full and needs to be emptied.
+ EmptyQueuedRenderAudio();
+
+ // Retry the insert (should always work).
+ bool result = red_render_signal_queue_->Insert(&red_render_queue_buffer_);
+ RTC_DCHECK(result);
+ }
+ }
+}
+
+void AudioProcessingImpl::AllocateRenderQueue() {
+ const size_t new_agc_render_queue_element_max_size =
+ std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerBand);
+
+ const size_t new_red_render_queue_element_max_size =
+ std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerFrame);
+
+ // Reallocate the queues if the queue item sizes are too small to fit the
+ // data to put in the queues.
+
+ if (agc_render_queue_element_max_size_ <
+ new_agc_render_queue_element_max_size) {
+ agc_render_queue_element_max_size_ = new_agc_render_queue_element_max_size;
+
+ std::vector<int16_t> template_queue_element(
+ agc_render_queue_element_max_size_);
+
+ agc_render_signal_queue_.reset(
+ new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
+ kMaxNumFramesToBuffer, template_queue_element,
+ RenderQueueItemVerifier<int16_t>(
+ agc_render_queue_element_max_size_)));
+
+ agc_render_queue_buffer_.resize(agc_render_queue_element_max_size_);
+ agc_capture_queue_buffer_.resize(agc_render_queue_element_max_size_);
+ } else {
+ agc_render_signal_queue_->Clear();
+ }
+
+ if (submodules_.echo_detector) {
+ if (red_render_queue_element_max_size_ <
+ new_red_render_queue_element_max_size) {
+ red_render_queue_element_max_size_ =
+ new_red_render_queue_element_max_size;
+
+ std::vector<float> template_queue_element(
+ red_render_queue_element_max_size_);
+
+ red_render_signal_queue_.reset(
+ new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
+ kMaxNumFramesToBuffer, template_queue_element,
+ RenderQueueItemVerifier<float>(
+ red_render_queue_element_max_size_)));
+
+ red_render_queue_buffer_.resize(red_render_queue_element_max_size_);
+ red_capture_queue_buffer_.resize(red_render_queue_element_max_size_);
+ } else {
+ red_render_signal_queue_->Clear();
+ }
+ }
+}
+
+void AudioProcessingImpl::EmptyQueuedRenderAudio() {
+ MutexLock lock_capture(&mutex_capture_);
+ EmptyQueuedRenderAudioLocked();
+}
+
+void AudioProcessingImpl::EmptyQueuedRenderAudioLocked() {
+ if (submodules_.echo_control_mobile) {
+ RTC_DCHECK(aecm_render_signal_queue_);
+ while (aecm_render_signal_queue_->Remove(&aecm_capture_queue_buffer_)) {
+ submodules_.echo_control_mobile->ProcessRenderAudio(
+ aecm_capture_queue_buffer_);
+ }
+ }
+
+ if (submodules_.gain_control) {
+ while (agc_render_signal_queue_->Remove(&agc_capture_queue_buffer_)) {
+ submodules_.gain_control->ProcessRenderAudio(agc_capture_queue_buffer_);
+ }
+ }
+
+ if (submodules_.echo_detector) {
+ while (red_render_signal_queue_->Remove(&red_capture_queue_buffer_)) {
+ submodules_.echo_detector->AnalyzeRenderAudio(red_capture_queue_buffer_);
+ }
+ }
+}
+
+int AudioProcessingImpl::ProcessStream(const int16_t* const src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config,
+ int16_t* const dest) {
+ TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_AudioFrame");
+
+ RETURN_ON_ERR(
+ HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
+ MaybeInitializeCapture(input_config, output_config);
+
+ MutexLock lock_capture(&mutex_capture_);
+ DenormalDisabler denormal_disabler;
+
+ if (aec_dump_) {
+ RecordUnprocessedCaptureStream(src, input_config);
+ }
+
+ capture_.capture_audio->CopyFrom(src, input_config);
+ if (capture_.capture_fullband_audio) {
+ capture_.capture_fullband_audio->CopyFrom(src, input_config);
+ }
+ RETURN_ON_ERR(ProcessCaptureStreamLocked());
+ if (submodule_states_.CaptureMultiBandProcessingPresent() ||
+ submodule_states_.CaptureFullBandProcessingActive()) {
+ if (capture_.capture_fullband_audio) {
+ capture_.capture_fullband_audio->CopyTo(output_config, dest);
+ } else {
+ capture_.capture_audio->CopyTo(output_config, dest);
+ }
+ }
+
+ if (aec_dump_) {
+ RecordProcessedCaptureStream(dest, output_config);
+ }
+ return kNoError;
+}
+
+int AudioProcessingImpl::ProcessCaptureStreamLocked() {
+ EmptyQueuedRenderAudioLocked();
+ HandleCaptureRuntimeSettings();
+ DenormalDisabler denormal_disabler;
+
+ // Ensure that not both the AEC and AECM are active at the same time.
+ // TODO(peah): Simplify once the public API Enable functions for these
+ // are moved to APM.
+ RTC_DCHECK_LE(
+ !!submodules_.echo_controller + !!submodules_.echo_control_mobile, 1);
+
+ data_dumper_->DumpRaw(
+ "applied_input_volume",
+ capture_.applied_input_volume.value_or(kUnspecifiedDataDumpInputVolume));
+
+ AudioBuffer* capture_buffer = capture_.capture_audio.get(); // For brevity.
+ AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
+
+ if (submodules_.high_pass_filter &&
+ config_.high_pass_filter.apply_in_full_band &&
+ !constants_.enforce_split_band_hpf) {
+ submodules_.high_pass_filter->Process(capture_buffer,
+ /*use_split_band_data=*/false);
+ }
+
+ if (submodules_.capture_levels_adjuster) {
+ if (config_.capture_level_adjustment.analog_mic_gain_emulation.enabled) {
+ // When the input volume is emulated, retrieve the volume applied to the
+ // input audio and notify that to APM so that the volume is passed to the
+ // active AGC.
+ set_stream_analog_level_locked(
+ submodules_.capture_levels_adjuster->GetAnalogMicGainLevel());
+ }
+ submodules_.capture_levels_adjuster->ApplyPreLevelAdjustment(
+ *capture_buffer);
+ }
+
+ capture_input_rms_.Analyze(rtc::ArrayView<const float>(
+ capture_buffer->channels_const()[0],
+ capture_nonlocked_.capture_processing_format.num_frames()));
+ const bool log_rms = ++capture_rms_interval_counter_ >= 1000;
+ if (log_rms) {
+ capture_rms_interval_counter_ = 0;
+ RmsLevel::Levels levels = capture_input_rms_.AverageAndPeak();
+ RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelAverageRms",
+ levels.average, 1, RmsLevel::kMinLevelDb, 64);
+ RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelPeakRms",
+ levels.peak, 1, RmsLevel::kMinLevelDb, 64);
+ }
+
+ if (capture_.applied_input_volume.has_value()) {
+ applied_input_volume_stats_reporter_.UpdateStatistics(
+ *capture_.applied_input_volume);
+ }
+
+ if (submodules_.echo_controller) {
+ // Determine if the echo path gain has changed by checking all the gains
+ // applied before AEC.
+ capture_.echo_path_gain_change = capture_.applied_input_volume_changed;
+
+ // Detect and flag any change in the capture level adjustment pre-gain.
+ if (submodules_.capture_levels_adjuster) {
+ float pre_adjustment_gain =
+ submodules_.capture_levels_adjuster->GetPreAdjustmentGain();
+ capture_.echo_path_gain_change =
+ capture_.echo_path_gain_change ||
+ (capture_.prev_pre_adjustment_gain != pre_adjustment_gain &&
+ capture_.prev_pre_adjustment_gain >= 0.0f);
+ capture_.prev_pre_adjustment_gain = pre_adjustment_gain;
+ }
+
+ // Detect volume change.
+ capture_.echo_path_gain_change =
+ capture_.echo_path_gain_change ||
+ (capture_.prev_playout_volume != capture_.playout_volume &&
+ capture_.prev_playout_volume >= 0);
+ capture_.prev_playout_volume = capture_.playout_volume;
+
+ submodules_.echo_controller->AnalyzeCapture(capture_buffer);
+ }
+
+ if (submodules_.agc_manager) {
+ submodules_.agc_manager->AnalyzePreProcess(*capture_buffer);
+ }
+
+ if (submodules_.gain_controller2 &&
+ config_.gain_controller2.input_volume_controller.enabled) {
+ // Expect the volume to be available if the input controller is enabled.
+ RTC_DCHECK(capture_.applied_input_volume.has_value());
+ if (capture_.applied_input_volume.has_value()) {
+ submodules_.gain_controller2->Analyze(*capture_.applied_input_volume,
+ *capture_buffer);
+ }
+ }
+
+ if (submodule_states_.CaptureMultiBandSubModulesActive() &&
+ SampleRateSupportsMultiBand(
+ capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
+ capture_buffer->SplitIntoFrequencyBands();
+ }
+
+ const bool multi_channel_capture = config_.pipeline.multi_channel_capture &&
+ constants_.multi_channel_capture_support;
+ if (submodules_.echo_controller && !multi_channel_capture) {
+ // Force down-mixing of the number of channels after the detection of
+ // capture signal saturation.
+ // TODO(peah): Look into ensuring that this kind of tampering with the
+ // AudioBuffer functionality should not be needed.
+ capture_buffer->set_num_channels(1);
+ }
+
+ if (submodules_.high_pass_filter &&
+ (!config_.high_pass_filter.apply_in_full_band ||
+ constants_.enforce_split_band_hpf)) {
+ submodules_.high_pass_filter->Process(capture_buffer,
+ /*use_split_band_data=*/true);
+ }
+
+ if (submodules_.gain_control) {
+ RETURN_ON_ERR(
+ submodules_.gain_control->AnalyzeCaptureAudio(*capture_buffer));
+ }
+
+ if ((!config_.noise_suppression.analyze_linear_aec_output_when_available ||
+ !linear_aec_buffer || submodules_.echo_control_mobile) &&
+ submodules_.noise_suppressor) {
+ submodules_.noise_suppressor->Analyze(*capture_buffer);
+ }
+
+ if (submodules_.echo_control_mobile) {
+ // Ensure that the stream delay was set before the call to the
+ // AECM ProcessCaptureAudio function.
+ if (!capture_.was_stream_delay_set) {
+ return AudioProcessing::kStreamParameterNotSetError;
+ }
+
+ if (submodules_.noise_suppressor) {
+ submodules_.noise_suppressor->Process(capture_buffer);
+ }
+
+ RETURN_ON_ERR(submodules_.echo_control_mobile->ProcessCaptureAudio(
+ capture_buffer, stream_delay_ms()));
+ } else {
+ if (submodules_.echo_controller) {
+ data_dumper_->DumpRaw("stream_delay", stream_delay_ms());
+
+ if (capture_.was_stream_delay_set) {
+ submodules_.echo_controller->SetAudioBufferDelay(stream_delay_ms());
+ }
+
+ submodules_.echo_controller->ProcessCapture(
+ capture_buffer, linear_aec_buffer, capture_.echo_path_gain_change);
+ }
+
+ if (config_.noise_suppression.analyze_linear_aec_output_when_available &&
+ linear_aec_buffer && submodules_.noise_suppressor) {
+ submodules_.noise_suppressor->Analyze(*linear_aec_buffer);
+ }
+
+ if (submodules_.noise_suppressor) {
+ submodules_.noise_suppressor->Process(capture_buffer);
+ }
+ }
+
+ if (submodules_.agc_manager) {
+ submodules_.agc_manager->Process(*capture_buffer);
+
+ absl::optional<int> new_digital_gain =
+ submodules_.agc_manager->GetDigitalComressionGain();
+ if (new_digital_gain && submodules_.gain_control) {
+ submodules_.gain_control->set_compression_gain_db(*new_digital_gain);
+ }
+ }
+
+ if (submodules_.gain_control) {
+ // TODO(peah): Add reporting from AEC3 whether there is echo.
+ RETURN_ON_ERR(submodules_.gain_control->ProcessCaptureAudio(
+ capture_buffer, /*stream_has_echo*/ false));
+ }
+
+ if (submodule_states_.CaptureMultiBandProcessingPresent() &&
+ SampleRateSupportsMultiBand(
+ capture_nonlocked_.capture_processing_format.sample_rate_hz())) {
+ capture_buffer->MergeFrequencyBands();
+ }
+
+ if (capture_.capture_output_used) {
+ if (capture_.capture_fullband_audio) {
+ const auto& ec = submodules_.echo_controller;
+ bool ec_active = ec ? ec->ActiveProcessing() : false;
+ // Only update the fullband buffer if the multiband processing has changed
+ // the signal. Keep the original signal otherwise.
+ if (submodule_states_.CaptureMultiBandProcessingActive(ec_active)) {
+ capture_buffer->CopyTo(capture_.capture_fullband_audio.get());
+ }
+ capture_buffer = capture_.capture_fullband_audio.get();
+ }
+
+ if (submodules_.echo_detector) {
+ submodules_.echo_detector->AnalyzeCaptureAudio(
+ rtc::ArrayView<const float>(capture_buffer->channels()[0],
+ capture_buffer->num_frames()));
+ }
+
+ absl::optional<float> voice_probability;
+ if (!!submodules_.voice_activity_detector) {
+ voice_probability = submodules_.voice_activity_detector->Analyze(
+ AudioFrameView<const float>(capture_buffer->channels(),
+ capture_buffer->num_channels(),
+ capture_buffer->num_frames()));
+ }
+
+ if (submodules_.transient_suppressor) {
+ float transient_suppressor_voice_probability = 1.0f;
+ switch (transient_suppressor_vad_mode_) {
+ case TransientSuppressor::VadMode::kDefault:
+ if (submodules_.agc_manager) {
+ transient_suppressor_voice_probability =
+ submodules_.agc_manager->voice_probability();
+ }
+ break;
+ case TransientSuppressor::VadMode::kRnnVad:
+ RTC_DCHECK(voice_probability.has_value());
+ transient_suppressor_voice_probability = *voice_probability;
+ break;
+ case TransientSuppressor::VadMode::kNoVad:
+ // The transient suppressor will ignore `voice_probability`.
+ break;
+ }
+ float delayed_voice_probability =
+ submodules_.transient_suppressor->Suppress(
+ capture_buffer->channels()[0], capture_buffer->num_frames(),
+ capture_buffer->num_channels(),
+ capture_buffer->split_bands_const(0)[kBand0To8kHz],
+ capture_buffer->num_frames_per_band(),
+ /*reference_data=*/nullptr, /*reference_length=*/0,
+ transient_suppressor_voice_probability, capture_.key_pressed);
+ if (voice_probability.has_value()) {
+ *voice_probability = delayed_voice_probability;
+ }
+ }
+
+ // Experimental APM sub-module that analyzes `capture_buffer`.
+ if (submodules_.capture_analyzer) {
+ submodules_.capture_analyzer->Analyze(capture_buffer);
+ }
+
+ if (submodules_.gain_controller2) {
+ // TODO(bugs.webrtc.org/7494): Let AGC2 detect applied input volume
+ // changes.
+ submodules_.gain_controller2->Process(
+ voice_probability, capture_.applied_input_volume_changed,
+ capture_buffer);
+ }
+
+ if (submodules_.capture_post_processor) {
+ submodules_.capture_post_processor->Process(capture_buffer);
+ }
+
+ capture_output_rms_.Analyze(rtc::ArrayView<const float>(
+ capture_buffer->channels_const()[0],
+ capture_nonlocked_.capture_processing_format.num_frames()));
+ if (log_rms) {
+ RmsLevel::Levels levels = capture_output_rms_.AverageAndPeak();
+ RTC_HISTOGRAM_COUNTS_LINEAR(
+ "WebRTC.Audio.ApmCaptureOutputLevelAverageRms", levels.average, 1,
+ RmsLevel::kMinLevelDb, 64);
+ RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelPeakRms",
+ levels.peak, 1, RmsLevel::kMinLevelDb, 64);
+ }
+
+ // Compute echo-detector stats.
+ if (submodules_.echo_detector) {
+ auto ed_metrics = submodules_.echo_detector->GetMetrics();
+ capture_.stats.residual_echo_likelihood = ed_metrics.echo_likelihood;
+ capture_.stats.residual_echo_likelihood_recent_max =
+ ed_metrics.echo_likelihood_recent_max;
+ }
+ }
+
+ // Compute echo-controller stats.
+ if (submodules_.echo_controller) {
+ auto ec_metrics = submodules_.echo_controller->GetMetrics();
+ capture_.stats.echo_return_loss = ec_metrics.echo_return_loss;
+ capture_.stats.echo_return_loss_enhancement =
+ ec_metrics.echo_return_loss_enhancement;
+ capture_.stats.delay_ms = ec_metrics.delay_ms;
+ }
+
+ // Pass stats for reporting.
+ stats_reporter_.UpdateStatistics(capture_.stats);
+
+ UpdateRecommendedInputVolumeLocked();
+ if (capture_.recommended_input_volume.has_value()) {
+ recommended_input_volume_stats_reporter_.UpdateStatistics(
+ *capture_.recommended_input_volume);
+ }
+
+ if (submodules_.capture_levels_adjuster) {
+ submodules_.capture_levels_adjuster->ApplyPostLevelAdjustment(
+ *capture_buffer);
+
+ if (config_.capture_level_adjustment.analog_mic_gain_emulation.enabled) {
+ // If the input volume emulation is used, retrieve the recommended input
+ // volume and set that to emulate the input volume on the next processed
+ // audio frame.
+ RTC_DCHECK(capture_.recommended_input_volume.has_value());
+ submodules_.capture_levels_adjuster->SetAnalogMicGainLevel(
+ *capture_.recommended_input_volume);
+ }
+ }
+
+ // Temporarily set the output to zero after the stream has been unmuted
+ // (capture output is again used). The purpose of this is to avoid clicks and
+ // artefacts in the audio that results when the processing again is
+ // reactivated after unmuting.
+ if (!capture_.capture_output_used_last_frame &&
+ capture_.capture_output_used) {
+ for (size_t ch = 0; ch < capture_buffer->num_channels(); ++ch) {
+ rtc::ArrayView<float> channel_view(capture_buffer->channels()[ch],
+ capture_buffer->num_frames());
+ std::fill(channel_view.begin(), channel_view.end(), 0.f);
+ }
+ }
+ capture_.capture_output_used_last_frame = capture_.capture_output_used;
+
+ capture_.was_stream_delay_set = false;
+
+ data_dumper_->DumpRaw("recommended_input_volume",
+ capture_.recommended_input_volume.value_or(
+ kUnspecifiedDataDumpInputVolume));
+
+ return kNoError;
+}
+
+int AudioProcessingImpl::AnalyzeReverseStream(
+ const float* const* data,
+ const StreamConfig& reverse_config) {
+ TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_StreamConfig");
+ MutexLock lock(&mutex_render_);
+ DenormalDisabler denormal_disabler;
+ RTC_DCHECK(data);
+ for (size_t i = 0; i < reverse_config.num_channels(); ++i) {
+ RTC_DCHECK(data[i]);
+ }
+ RETURN_ON_ERR(
+ AudioFormatValidityToErrorCode(ValidateAudioFormat(reverse_config)));
+
+ MaybeInitializeRender(reverse_config, reverse_config);
+ return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config);
+}
+
+int AudioProcessingImpl::ProcessReverseStream(const float* const* src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config,
+ float* const* dest) {
+ TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_StreamConfig");
+ MutexLock lock(&mutex_render_);
+ DenormalDisabler denormal_disabler;
+ RETURN_ON_ERR(
+ HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
+
+ MaybeInitializeRender(input_config, output_config);
+
+ RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, input_config, output_config));
+
+ if (submodule_states_.RenderMultiBandProcessingActive() ||
+ submodule_states_.RenderFullBandProcessingActive()) {
+ render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(),
+ dest);
+ } else if (formats_.api_format.reverse_input_stream() !=
+ formats_.api_format.reverse_output_stream()) {
+ render_.render_converter->Convert(src, input_config.num_samples(), dest,
+ output_config.num_samples());
+ } else {
+ CopyAudioIfNeeded(src, input_config.num_frames(),
+ input_config.num_channels(), dest);
+ }
+
+ return kNoError;
+}
+
+int AudioProcessingImpl::AnalyzeReverseStreamLocked(
+ const float* const* src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config) {
+ if (aec_dump_) {
+ const size_t channel_size =
+ formats_.api_format.reverse_input_stream().num_frames();
+ const size_t num_channels =
+ formats_.api_format.reverse_input_stream().num_channels();
+ aec_dump_->WriteRenderStreamMessage(
+ AudioFrameView<const float>(src, num_channels, channel_size));
+ }
+ render_.render_audio->CopyFrom(src,
+ formats_.api_format.reverse_input_stream());
+ return ProcessRenderStreamLocked();
+}
+
+int AudioProcessingImpl::ProcessReverseStream(const int16_t* const src,
+ const StreamConfig& input_config,
+ const StreamConfig& output_config,
+ int16_t* const dest) {
+ TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_AudioFrame");
+
+ MutexLock lock(&mutex_render_);
+ DenormalDisabler denormal_disabler;
+
+ RETURN_ON_ERR(
+ HandleUnsupportedAudioFormats(src, input_config, output_config, dest));
+ MaybeInitializeRender(input_config, output_config);
+
+ if (aec_dump_) {
+ aec_dump_->WriteRenderStreamMessage(src, input_config.num_frames(),
+ input_config.num_channels());
+ }
+
+ render_.render_audio->CopyFrom(src, input_config);
+ RETURN_ON_ERR(ProcessRenderStreamLocked());
+ if (submodule_states_.RenderMultiBandProcessingActive() ||
+ submodule_states_.RenderFullBandProcessingActive()) {
+ render_.render_audio->CopyTo(output_config, dest);
+ }
+ return kNoError;
+}
+
+int AudioProcessingImpl::ProcessRenderStreamLocked() {
+ AudioBuffer* render_buffer = render_.render_audio.get(); // For brevity.
+
+ HandleRenderRuntimeSettings();
+ DenormalDisabler denormal_disabler;
+
+ if (submodules_.render_pre_processor) {
+ submodules_.render_pre_processor->Process(render_buffer);
+ }
+
+ QueueNonbandedRenderAudio(render_buffer);
+
+ if (submodule_states_.RenderMultiBandSubModulesActive() &&
+ SampleRateSupportsMultiBand(
+ formats_.render_processing_format.sample_rate_hz())) {
+ render_buffer->SplitIntoFrequencyBands();
+ }
+
+ if (submodule_states_.RenderMultiBandSubModulesActive()) {
+ QueueBandedRenderAudio(render_buffer);
+ }
+
+ // TODO(peah): Perform the queuing inside QueueRenderAudiuo().
+ if (submodules_.echo_controller) {
+ submodules_.echo_controller->AnalyzeRender(render_buffer);
+ }
+
+ if (submodule_states_.RenderMultiBandProcessingActive() &&
+ SampleRateSupportsMultiBand(
+ formats_.render_processing_format.sample_rate_hz())) {
+ render_buffer->MergeFrequencyBands();
+ }
+
+ return kNoError;
+}
+
+int AudioProcessingImpl::set_stream_delay_ms(int delay) {
+ MutexLock lock(&mutex_capture_);
+ Error retval = kNoError;
+ capture_.was_stream_delay_set = true;
+
+ if (delay < 0) {
+ delay = 0;
+ retval = kBadStreamParameterWarning;
+ }
+
+ // TODO(ajm): the max is rather arbitrarily chosen; investigate.
+ if (delay > 500) {
+ delay = 500;
+ retval = kBadStreamParameterWarning;
+ }
+
+ capture_nonlocked_.stream_delay_ms = delay;
+ return retval;
+}
+
+bool AudioProcessingImpl::GetLinearAecOutput(
+ rtc::ArrayView<std::array<float, 160>> linear_output) const {
+ MutexLock lock(&mutex_capture_);
+ AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
+
+ RTC_DCHECK(linear_aec_buffer);
+ if (linear_aec_buffer) {
+ RTC_DCHECK_EQ(1, linear_aec_buffer->num_bands());
+ RTC_DCHECK_EQ(linear_output.size(), linear_aec_buffer->num_channels());
+
+ for (size_t ch = 0; ch < linear_aec_buffer->num_channels(); ++ch) {
+ RTC_DCHECK_EQ(linear_output[ch].size(), linear_aec_buffer->num_frames());
+ rtc::ArrayView<const float> channel_view =
+ rtc::ArrayView<const float>(linear_aec_buffer->channels_const()[ch],
+ linear_aec_buffer->num_frames());
+ FloatS16ToFloat(channel_view.data(), channel_view.size(),
+ linear_output[ch].data());
+ }
+ return true;
+ }
+ RTC_LOG(LS_ERROR) << "No linear AEC output available";
+ RTC_DCHECK_NOTREACHED();
+ return false;
+}
+
+int AudioProcessingImpl::stream_delay_ms() const {
+ // Used as callback from submodules, hence locking is not allowed.
+ return capture_nonlocked_.stream_delay_ms;
+}
+
+void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
+ MutexLock lock(&mutex_capture_);
+ capture_.key_pressed = key_pressed;
+}
+
+void AudioProcessingImpl::set_stream_analog_level(int level) {
+ MutexLock lock_capture(&mutex_capture_);
+ set_stream_analog_level_locked(level);
+}
+
+void AudioProcessingImpl::set_stream_analog_level_locked(int level) {
+ capture_.applied_input_volume_changed =
+ capture_.applied_input_volume.has_value() &&
+ *capture_.applied_input_volume != level;
+ capture_.applied_input_volume = level;
+
+ // Invalidate any previously recommended input volume which will be updated by
+ // `ProcessStream()`.
+ capture_.recommended_input_volume = absl::nullopt;
+
+ if (submodules_.agc_manager) {
+ submodules_.agc_manager->set_stream_analog_level(level);
+ return;
+ }
+
+ if (submodules_.gain_control) {
+ int error = submodules_.gain_control->set_stream_analog_level(level);
+ RTC_DCHECK_EQ(kNoError, error);
+ return;
+ }
+}
+
+int AudioProcessingImpl::recommended_stream_analog_level() const {
+ MutexLock lock_capture(&mutex_capture_);
+ if (!capture_.applied_input_volume.has_value()) {
+ RTC_LOG(LS_ERROR) << "set_stream_analog_level has not been called";
+ }
+ // Input volume to recommend when `set_stream_analog_level()` is not called.
+ constexpr int kFallBackInputVolume = 255;
+ // When APM has no input volume to recommend, return the latest applied input
+ // volume that has been observed in order to possibly produce no input volume
+ // change. If no applied input volume has been observed, return a fall-back
+ // value.
+ return capture_.recommended_input_volume.value_or(
+ capture_.applied_input_volume.value_or(kFallBackInputVolume));
+}
+
+void AudioProcessingImpl::UpdateRecommendedInputVolumeLocked() {
+ if (!capture_.applied_input_volume.has_value()) {
+ // When `set_stream_analog_level()` is not called, no input level can be
+ // recommended.
+ capture_.recommended_input_volume = absl::nullopt;
+ return;
+ }
+
+ if (submodules_.agc_manager) {
+ capture_.recommended_input_volume =
+ submodules_.agc_manager->recommended_analog_level();
+ return;
+ }
+
+ if (submodules_.gain_control) {
+ capture_.recommended_input_volume =
+ submodules_.gain_control->stream_analog_level();
+ return;
+ }
+
+ if (submodules_.gain_controller2 &&
+ config_.gain_controller2.input_volume_controller.enabled) {
+ capture_.recommended_input_volume =
+ submodules_.gain_controller2->recommended_input_volume();
+ return;
+ }
+
+ capture_.recommended_input_volume = capture_.applied_input_volume;
+}
+
+bool AudioProcessingImpl::CreateAndAttachAecDump(absl::string_view file_name,
+ int64_t max_log_size_bytes,
+ rtc::TaskQueue* worker_queue) {
+ std::unique_ptr<AecDump> aec_dump =
+ AecDumpFactory::Create(file_name, max_log_size_bytes, worker_queue);
+ if (!aec_dump) {
+ return false;
+ }
+
+ AttachAecDump(std::move(aec_dump));
+ return true;
+}
+
+bool AudioProcessingImpl::CreateAndAttachAecDump(FILE* handle,
+ int64_t max_log_size_bytes,
+ rtc::TaskQueue* worker_queue) {
+ std::unique_ptr<AecDump> aec_dump =
+ AecDumpFactory::Create(handle, max_log_size_bytes, worker_queue);
+ if (!aec_dump) {
+ return false;
+ }
+
+ AttachAecDump(std::move(aec_dump));
+ return true;
+}
+
+void AudioProcessingImpl::AttachAecDump(std::unique_ptr<AecDump> aec_dump) {
+ RTC_DCHECK(aec_dump);
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+
+ // The previously attached AecDump will be destroyed with the
+ // 'aec_dump' parameter, which is after locks are released.
+ aec_dump_.swap(aec_dump);
+ WriteAecDumpConfigMessage(true);
+ aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis());
+}
+
+void AudioProcessingImpl::DetachAecDump() {
+ // The d-tor of a task-queue based AecDump blocks until all pending
+ // tasks are done. This construction avoids blocking while holding
+ // the render and capture locks.
+ std::unique_ptr<AecDump> aec_dump = nullptr;
+ {
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+ aec_dump = std::move(aec_dump_);
+ }
+}
+
+AudioProcessing::Config AudioProcessingImpl::GetConfig() const {
+ MutexLock lock_render(&mutex_render_);
+ MutexLock lock_capture(&mutex_capture_);
+ return config_;
+}
+
+bool AudioProcessingImpl::UpdateActiveSubmoduleStates() {
+ return submodule_states_.Update(
+ config_.high_pass_filter.enabled, !!submodules_.echo_control_mobile,
+ !!submodules_.noise_suppressor, !!submodules_.gain_control,
+ !!submodules_.gain_controller2, !!submodules_.voice_activity_detector,
+ config_.pre_amplifier.enabled || config_.capture_level_adjustment.enabled,
+ capture_nonlocked_.echo_controller_enabled,
+ !!submodules_.transient_suppressor);
+}
+
+void AudioProcessingImpl::InitializeTransientSuppressor() {
+ // Choose the VAD mode for TS and detect a VAD mode change.
+ const TransientSuppressor::VadMode previous_vad_mode =
+ transient_suppressor_vad_mode_;
+ transient_suppressor_vad_mode_ = TransientSuppressor::VadMode::kDefault;
+ if (UseApmVadSubModule(config_, gain_controller2_experiment_params_)) {
+ transient_suppressor_vad_mode_ = TransientSuppressor::VadMode::kRnnVad;
+ }
+ const bool vad_mode_changed =
+ previous_vad_mode != transient_suppressor_vad_mode_;
+
+ if (config_.transient_suppression.enabled &&
+ !constants_.transient_suppressor_forced_off) {
+ // Attempt to create a transient suppressor, if one is not already created.
+ if (!submodules_.transient_suppressor || vad_mode_changed) {
+ submodules_.transient_suppressor = CreateTransientSuppressor(
+ submodule_creation_overrides_, transient_suppressor_vad_mode_,
+ proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate,
+ num_proc_channels());
+ if (!submodules_.transient_suppressor) {
+ RTC_LOG(LS_WARNING)
+ << "No transient suppressor created (probably disabled)";
+ }
+ } else {
+ submodules_.transient_suppressor->Initialize(
+ proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate,
+ num_proc_channels());
+ }
+ } else {
+ submodules_.transient_suppressor.reset();
+ }
+}
+
+void AudioProcessingImpl::InitializeHighPassFilter(bool forced_reset) {
+ bool high_pass_filter_needed_by_aec =
+ config_.echo_canceller.enabled &&
+ config_.echo_canceller.enforce_high_pass_filtering &&
+ !config_.echo_canceller.mobile_mode;
+ if (submodule_states_.HighPassFilteringRequired() ||
+ high_pass_filter_needed_by_aec) {
+ bool use_full_band = config_.high_pass_filter.apply_in_full_band &&
+ !constants_.enforce_split_band_hpf;
+ int rate = use_full_band ? proc_fullband_sample_rate_hz()
+ : proc_split_sample_rate_hz();
+ size_t num_channels =
+ use_full_band ? num_output_channels() : num_proc_channels();
+
+ if (!submodules_.high_pass_filter ||
+ rate != submodules_.high_pass_filter->sample_rate_hz() ||
+ forced_reset ||
+ num_channels != submodules_.high_pass_filter->num_channels()) {
+ submodules_.high_pass_filter.reset(
+ new HighPassFilter(rate, num_channels));
+ }
+ } else {
+ submodules_.high_pass_filter.reset();
+ }
+}
+
+void AudioProcessingImpl::InitializeEchoController() {
+ bool use_echo_controller =
+ echo_control_factory_ ||
+ (config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode);
+
+ if (use_echo_controller) {
+ // Create and activate the echo controller.
+ if (echo_control_factory_) {
+ submodules_.echo_controller = echo_control_factory_->Create(
+ proc_sample_rate_hz(), num_reverse_channels(), num_proc_channels());
+ RTC_DCHECK(submodules_.echo_controller);
+ } else {
+ EchoCanceller3Config config;
+ absl::optional<EchoCanceller3Config> multichannel_config;
+ if (use_setup_specific_default_aec3_config_) {
+ multichannel_config = EchoCanceller3::CreateDefaultMultichannelConfig();
+ }
+ submodules_.echo_controller = std::make_unique<EchoCanceller3>(
+ config, multichannel_config, proc_sample_rate_hz(),
+ num_reverse_channels(), num_proc_channels());
+ }
+
+ // Setup the storage for returning the linear AEC output.
+ if (config_.echo_canceller.export_linear_aec_output) {
+ constexpr int kLinearOutputRateHz = 16000;
+ capture_.linear_aec_output = std::make_unique<AudioBuffer>(
+ kLinearOutputRateHz, num_proc_channels(), kLinearOutputRateHz,
+ num_proc_channels(), kLinearOutputRateHz, num_proc_channels());
+ } else {
+ capture_.linear_aec_output.reset();
+ }
+
+ capture_nonlocked_.echo_controller_enabled = true;
+
+ submodules_.echo_control_mobile.reset();
+ aecm_render_signal_queue_.reset();
+ return;
+ }
+
+ submodules_.echo_controller.reset();
+ capture_nonlocked_.echo_controller_enabled = false;
+ capture_.linear_aec_output.reset();
+
+ if (!config_.echo_canceller.enabled) {
+ submodules_.echo_control_mobile.reset();
+ aecm_render_signal_queue_.reset();
+ return;
+ }
+
+ if (config_.echo_canceller.mobile_mode) {
+ // Create and activate AECM.
+ size_t max_element_size =
+ std::max(static_cast<size_t>(1),
+ kMaxAllowedValuesOfSamplesPerBand *
+ EchoControlMobileImpl::NumCancellersRequired(
+ num_output_channels(), num_reverse_channels()));
+
+ std::vector<int16_t> template_queue_element(max_element_size);
+
+ aecm_render_signal_queue_.reset(
+ new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>(
+ kMaxNumFramesToBuffer, template_queue_element,
+ RenderQueueItemVerifier<int16_t>(max_element_size)));
+
+ aecm_render_queue_buffer_.resize(max_element_size);
+ aecm_capture_queue_buffer_.resize(max_element_size);
+
+ submodules_.echo_control_mobile.reset(new EchoControlMobileImpl());
+
+ submodules_.echo_control_mobile->Initialize(proc_split_sample_rate_hz(),
+ num_reverse_channels(),
+ num_output_channels());
+ return;
+ }
+
+ submodules_.echo_control_mobile.reset();
+ aecm_render_signal_queue_.reset();
+}
+
+void AudioProcessingImpl::InitializeGainController1() {
+ if (config_.gain_controller2.enabled &&
+ config_.gain_controller2.input_volume_controller.enabled &&
+ config_.gain_controller1.enabled &&
+ (config_.gain_controller1.mode ==
+ AudioProcessing::Config::GainController1::kAdaptiveAnalog ||
+ config_.gain_controller1.analog_gain_controller.enabled)) {
+ RTC_LOG(LS_ERROR) << "APM configuration not valid: "
+ << "Multiple input volume controllers enabled.";
+ }
+
+ if (!config_.gain_controller1.enabled) {
+ submodules_.agc_manager.reset();
+ submodules_.gain_control.reset();
+ return;
+ }
+
+ RTC_HISTOGRAM_BOOLEAN(
+ "WebRTC.Audio.GainController.Analog.Enabled",
+ config_.gain_controller1.analog_gain_controller.enabled);
+
+ if (!submodules_.gain_control) {
+ submodules_.gain_control.reset(new GainControlImpl());
+ }
+
+ submodules_.gain_control->Initialize(num_proc_channels(),
+ proc_sample_rate_hz());
+ if (!config_.gain_controller1.analog_gain_controller.enabled) {
+ int error = submodules_.gain_control->set_mode(
+ Agc1ConfigModeToInterfaceMode(config_.gain_controller1.mode));
+ RTC_DCHECK_EQ(kNoError, error);
+ error = submodules_.gain_control->set_target_level_dbfs(
+ config_.gain_controller1.target_level_dbfs);
+ RTC_DCHECK_EQ(kNoError, error);
+ error = submodules_.gain_control->set_compression_gain_db(
+ config_.gain_controller1.compression_gain_db);
+ RTC_DCHECK_EQ(kNoError, error);
+ error = submodules_.gain_control->enable_limiter(
+ config_.gain_controller1.enable_limiter);
+ RTC_DCHECK_EQ(kNoError, error);
+ constexpr int kAnalogLevelMinimum = 0;
+ constexpr int kAnalogLevelMaximum = 255;
+ error = submodules_.gain_control->set_analog_level_limits(
+ kAnalogLevelMinimum, kAnalogLevelMaximum);
+ RTC_DCHECK_EQ(kNoError, error);
+
+ submodules_.agc_manager.reset();
+ return;
+ }
+
+ if (!submodules_.agc_manager.get() ||
+ submodules_.agc_manager->num_channels() !=
+ static_cast<int>(num_proc_channels())) {
+ int stream_analog_level = -1;
+ const bool re_creation = !!submodules_.agc_manager;
+ if (re_creation) {
+ stream_analog_level = submodules_.agc_manager->recommended_analog_level();
+ }
+ submodules_.agc_manager.reset(new AgcManagerDirect(
+ num_proc_channels(), config_.gain_controller1.analog_gain_controller));
+ if (re_creation) {
+ submodules_.agc_manager->set_stream_analog_level(stream_analog_level);
+ }
+ }
+ submodules_.agc_manager->Initialize();
+ submodules_.agc_manager->SetupDigitalGainControl(*submodules_.gain_control);
+ submodules_.agc_manager->HandleCaptureOutputUsedChange(
+ capture_.capture_output_used);
+}
+
+void AudioProcessingImpl::InitializeGainController2() {
+ if (!config_.gain_controller2.enabled) {
+ submodules_.gain_controller2.reset();
+ return;
+ }
+ // Override the input volume controller configuration if the AGC2 experiment
+ // is running and its parameters require to fully switch the gain control to
+ // AGC2.
+ const bool input_volume_controller_config_overridden =
+ gain_controller2_experiment_params_.has_value() &&
+ gain_controller2_experiment_params_->agc2_config.has_value();
+ const InputVolumeController::Config input_volume_controller_config =
+ input_volume_controller_config_overridden
+ ? gain_controller2_experiment_params_->agc2_config
+ ->input_volume_controller
+ : InputVolumeController::Config{};
+ // If the APM VAD sub-module is not used, let AGC2 use its internal VAD.
+ const bool use_internal_vad =
+ !UseApmVadSubModule(config_, gain_controller2_experiment_params_);
+ submodules_.gain_controller2 = std::make_unique<GainController2>(
+ config_.gain_controller2, input_volume_controller_config,
+ proc_fullband_sample_rate_hz(), num_proc_channels(), use_internal_vad);
+ submodules_.gain_controller2->SetCaptureOutputUsed(
+ capture_.capture_output_used);
+}
+
+void AudioProcessingImpl::InitializeVoiceActivityDetector() {
+ if (!UseApmVadSubModule(config_, gain_controller2_experiment_params_)) {
+ submodules_.voice_activity_detector.reset();
+ return;
+ }
+
+ if (!submodules_.voice_activity_detector) {
+ RTC_DCHECK(!!submodules_.gain_controller2);
+ // TODO(bugs.webrtc.org/13663): Cache CPU features in APM and use here.
+ submodules_.voice_activity_detector =
+ std::make_unique<VoiceActivityDetectorWrapper>(
+ submodules_.gain_controller2->GetCpuFeatures(),
+ proc_fullband_sample_rate_hz());
+ } else {
+ submodules_.voice_activity_detector->Initialize(
+ proc_fullband_sample_rate_hz());
+ }
+}
+
+void AudioProcessingImpl::InitializeNoiseSuppressor() {
+ submodules_.noise_suppressor.reset();
+
+ if (config_.noise_suppression.enabled) {
+ auto map_level =
+ [](AudioProcessing::Config::NoiseSuppression::Level level) {
+ using NoiseSuppresionConfig =
+ AudioProcessing::Config::NoiseSuppression;
+ switch (level) {
+ case NoiseSuppresionConfig::kLow:
+ return NsConfig::SuppressionLevel::k6dB;
+ case NoiseSuppresionConfig::kModerate:
+ return NsConfig::SuppressionLevel::k12dB;
+ case NoiseSuppresionConfig::kHigh:
+ return NsConfig::SuppressionLevel::k18dB;
+ case NoiseSuppresionConfig::kVeryHigh:
+ return NsConfig::SuppressionLevel::k21dB;
+ }
+ RTC_CHECK_NOTREACHED();
+ };
+
+ NsConfig cfg;
+ cfg.target_level = map_level(config_.noise_suppression.level);
+ submodules_.noise_suppressor = std::make_unique<NoiseSuppressor>(
+ cfg, proc_sample_rate_hz(), num_proc_channels());
+ }
+}
+
+void AudioProcessingImpl::InitializeCaptureLevelsAdjuster() {
+ if (config_.pre_amplifier.enabled ||
+ config_.capture_level_adjustment.enabled) {
+ // Use both the pre-amplifier and the capture level adjustment gains as
+ // pre-gains.
+ float pre_gain = 1.f;
+ if (config_.pre_amplifier.enabled) {
+ pre_gain *= config_.pre_amplifier.fixed_gain_factor;
+ }
+ if (config_.capture_level_adjustment.enabled) {
+ pre_gain *= config_.capture_level_adjustment.pre_gain_factor;
+ }
+
+ submodules_.capture_levels_adjuster =
+ std::make_unique<CaptureLevelsAdjuster>(
+ config_.capture_level_adjustment.analog_mic_gain_emulation.enabled,
+ config_.capture_level_adjustment.analog_mic_gain_emulation
+ .initial_level,
+ pre_gain, config_.capture_level_adjustment.post_gain_factor);
+ } else {
+ submodules_.capture_levels_adjuster.reset();
+ }
+}
+
+void AudioProcessingImpl::InitializeResidualEchoDetector() {
+ if (submodules_.echo_detector) {
+ submodules_.echo_detector->Initialize(
+ proc_fullband_sample_rate_hz(), 1,
+ formats_.render_processing_format.sample_rate_hz(), 1);
+ }
+}
+
+void AudioProcessingImpl::InitializeAnalyzer() {
+ if (submodules_.capture_analyzer) {
+ submodules_.capture_analyzer->Initialize(proc_fullband_sample_rate_hz(),
+ num_proc_channels());
+ }
+}
+
+void AudioProcessingImpl::InitializePostProcessor() {
+ if (submodules_.capture_post_processor) {
+ submodules_.capture_post_processor->Initialize(
+ proc_fullband_sample_rate_hz(), num_proc_channels());
+ }
+}
+
+void AudioProcessingImpl::InitializePreProcessor() {
+ if (submodules_.render_pre_processor) {
+ submodules_.render_pre_processor->Initialize(
+ formats_.render_processing_format.sample_rate_hz(),
+ formats_.render_processing_format.num_channels());
+ }
+}
+
+void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) {
+ if (!aec_dump_) {
+ return;
+ }
+
+ std::string experiments_description = "";
+ // TODO(peah): Add semicolon-separated concatenations of experiment
+ // descriptions for other submodules.
+ if (!!submodules_.capture_post_processor) {
+ experiments_description += "CapturePostProcessor;";
+ }
+ if (!!submodules_.render_pre_processor) {
+ experiments_description += "RenderPreProcessor;";
+ }
+ if (capture_nonlocked_.echo_controller_enabled) {
+ experiments_description += "EchoController;";
+ }
+ if (config_.gain_controller2.enabled) {
+ experiments_description += "GainController2;";
+ }
+
+ InternalAPMConfig apm_config;
+
+ apm_config.aec_enabled = config_.echo_canceller.enabled;
+ apm_config.aec_delay_agnostic_enabled = false;
+ apm_config.aec_extended_filter_enabled = false;
+ apm_config.aec_suppression_level = 0;
+
+ apm_config.aecm_enabled = !!submodules_.echo_control_mobile;
+ apm_config.aecm_comfort_noise_enabled =
+ submodules_.echo_control_mobile &&
+ submodules_.echo_control_mobile->is_comfort_noise_enabled();
+ apm_config.aecm_routing_mode =
+ submodules_.echo_control_mobile
+ ? static_cast<int>(submodules_.echo_control_mobile->routing_mode())
+ : 0;
+
+ apm_config.agc_enabled = !!submodules_.gain_control;
+
+ apm_config.agc_mode = submodules_.gain_control
+ ? static_cast<int>(submodules_.gain_control->mode())
+ : GainControl::kAdaptiveAnalog;
+ apm_config.agc_limiter_enabled =
+ submodules_.gain_control ? submodules_.gain_control->is_limiter_enabled()
+ : false;
+ apm_config.noise_robust_agc_enabled = !!submodules_.agc_manager;
+
+ apm_config.hpf_enabled = config_.high_pass_filter.enabled;
+
+ apm_config.ns_enabled = config_.noise_suppression.enabled;
+ apm_config.ns_level = static_cast<int>(config_.noise_suppression.level);
+
+ apm_config.transient_suppression_enabled =
+ config_.transient_suppression.enabled;
+ apm_config.experiments_description = experiments_description;
+ apm_config.pre_amplifier_enabled = config_.pre_amplifier.enabled;
+ apm_config.pre_amplifier_fixed_gain_factor =
+ config_.pre_amplifier.fixed_gain_factor;
+
+ if (!forced && apm_config == apm_config_for_aec_dump_) {
+ return;
+ }
+ aec_dump_->WriteConfig(apm_config);
+ apm_config_for_aec_dump_ = apm_config;
+}
+
+void AudioProcessingImpl::RecordUnprocessedCaptureStream(
+ const float* const* src) {
+ RTC_DCHECK(aec_dump_);
+ WriteAecDumpConfigMessage(false);
+
+ const size_t channel_size = formats_.api_format.input_stream().num_frames();
+ const size_t num_channels = formats_.api_format.input_stream().num_channels();
+ aec_dump_->AddCaptureStreamInput(
+ AudioFrameView<const float>(src, num_channels, channel_size));
+ RecordAudioProcessingState();
+}
+
+void AudioProcessingImpl::RecordUnprocessedCaptureStream(
+ const int16_t* const data,
+ const StreamConfig& config) {
+ RTC_DCHECK(aec_dump_);
+ WriteAecDumpConfigMessage(false);
+
+ aec_dump_->AddCaptureStreamInput(data, config.num_channels(),
+ config.num_frames());
+ RecordAudioProcessingState();
+}
+
+void AudioProcessingImpl::RecordProcessedCaptureStream(
+ const float* const* processed_capture_stream) {
+ RTC_DCHECK(aec_dump_);
+
+ const size_t channel_size = formats_.api_format.output_stream().num_frames();
+ const size_t num_channels =
+ formats_.api_format.output_stream().num_channels();
+ aec_dump_->AddCaptureStreamOutput(AudioFrameView<const float>(
+ processed_capture_stream, num_channels, channel_size));
+ aec_dump_->WriteCaptureStreamMessage();
+}
+
+void AudioProcessingImpl::RecordProcessedCaptureStream(
+ const int16_t* const data,
+ const StreamConfig& config) {
+ RTC_DCHECK(aec_dump_);
+
+ aec_dump_->AddCaptureStreamOutput(data, config.num_channels(),
+ config.num_frames());
+ aec_dump_->WriteCaptureStreamMessage();
+}
+
+void AudioProcessingImpl::RecordAudioProcessingState() {
+ RTC_DCHECK(aec_dump_);
+ AecDump::AudioProcessingState audio_proc_state;
+ audio_proc_state.delay = capture_nonlocked_.stream_delay_ms;
+ audio_proc_state.drift = 0;
+ audio_proc_state.applied_input_volume = capture_.applied_input_volume;
+ audio_proc_state.keypress = capture_.key_pressed;
+ aec_dump_->AddAudioProcessingState(audio_proc_state);
+}
+
+AudioProcessingImpl::ApmCaptureState::ApmCaptureState()
+ : was_stream_delay_set(false),
+ capture_output_used(true),
+ capture_output_used_last_frame(true),
+ key_pressed(false),
+ capture_processing_format(kSampleRate16kHz),
+ split_rate(kSampleRate16kHz),
+ echo_path_gain_change(false),
+ prev_pre_adjustment_gain(-1.0f),
+ playout_volume(-1),
+ prev_playout_volume(-1),
+ applied_input_volume_changed(false) {}
+
+AudioProcessingImpl::ApmCaptureState::~ApmCaptureState() = default;
+
+AudioProcessingImpl::ApmRenderState::ApmRenderState() = default;
+
+AudioProcessingImpl::ApmRenderState::~ApmRenderState() = default;
+
+AudioProcessingImpl::ApmStatsReporter::ApmStatsReporter()
+ : stats_message_queue_(1) {}
+
+AudioProcessingImpl::ApmStatsReporter::~ApmStatsReporter() = default;
+
+AudioProcessingStats AudioProcessingImpl::ApmStatsReporter::GetStatistics() {
+ MutexLock lock_stats(&mutex_stats_);
+ bool new_stats_available = stats_message_queue_.Remove(&cached_stats_);
+ // If the message queue is full, return the cached stats.
+ static_cast<void>(new_stats_available);
+
+ return cached_stats_;
+}
+
+void AudioProcessingImpl::ApmStatsReporter::UpdateStatistics(
+ const AudioProcessingStats& new_stats) {
+ AudioProcessingStats stats_to_queue = new_stats;
+ bool stats_message_passed = stats_message_queue_.Insert(&stats_to_queue);
+ // If the message queue is full, discard the new stats.
+ static_cast<void>(stats_message_passed);
+}
+
+} // namespace webrtc