summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/physical_socket_server.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/libwebrtc/rtc_base/physical_socket_server.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/rtc_base/physical_socket_server.cc')
-rw-r--r--third_party/libwebrtc/rtc_base/physical_socket_server.cc1953
1 files changed, 1953 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/physical_socket_server.cc b/third_party/libwebrtc/rtc_base/physical_socket_server.cc
new file mode 100644
index 0000000000..95ba130e91
--- /dev/null
+++ b/third_party/libwebrtc/rtc_base/physical_socket_server.cc
@@ -0,0 +1,1953 @@
+/*
+ * Copyright 2004 The WebRTC Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "rtc_base/physical_socket_server.h"
+
+#include <cstdint>
+#include <utility>
+
+#if defined(_MSC_VER) && _MSC_VER < 1300
+#pragma warning(disable : 4786)
+#endif
+
+#ifdef MEMORY_SANITIZER
+#include <sanitizer/msan_interface.h>
+#endif
+
+#if defined(WEBRTC_POSIX)
+#include <fcntl.h>
+#if defined(WEBRTC_USE_EPOLL)
+// "poll" will be used to wait for the signal dispatcher.
+#include <poll.h>
+#elif defined(WEBRTC_USE_POLL)
+#include <poll.h>
+#endif
+#include <sys/ioctl.h>
+#include <sys/select.h>
+#include <unistd.h>
+#endif
+
+#if defined(WEBRTC_WIN)
+#include <windows.h>
+#include <winsock2.h>
+#include <ws2tcpip.h>
+
+#undef SetPort
+#endif
+
+#include <errno.h>
+
+#include "rtc_base/async_dns_resolver.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/event.h"
+#include "rtc_base/ip_address.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/network_monitor.h"
+#include "rtc_base/synchronization/mutex.h"
+#include "rtc_base/time_utils.h"
+#include "system_wrappers/include/field_trial.h"
+
+#if defined(WEBRTC_LINUX)
+#include <linux/sockios.h>
+#endif
+
+#if defined(WEBRTC_WIN)
+#define LAST_SYSTEM_ERROR (::GetLastError())
+#elif defined(__native_client__) && __native_client__
+#define LAST_SYSTEM_ERROR (0)
+#elif defined(WEBRTC_POSIX)
+#define LAST_SYSTEM_ERROR (errno)
+#endif // WEBRTC_WIN
+
+#if defined(WEBRTC_POSIX)
+#include <netinet/tcp.h> // for TCP_NODELAY
+
+#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
+typedef void* SockOptArg;
+
+#endif // WEBRTC_POSIX
+
+#if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(WEBRTC_BSD) && !defined(__native_client__)
+#if defined(WEBRTC_LINUX)
+#include <linux/sockios.h>
+#endif
+
+int64_t GetSocketRecvTimestamp(int socket) {
+ struct timeval tv_ioctl;
+ int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl);
+ if (ret != 0)
+ return -1;
+ int64_t timestamp =
+ rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) +
+ static_cast<int64_t>(tv_ioctl.tv_usec);
+ return timestamp;
+}
+
+#else
+
+int64_t GetSocketRecvTimestamp(int socket) {
+ return -1;
+}
+#endif
+
+#if defined(WEBRTC_WIN)
+typedef char* SockOptArg;
+#endif
+
+#if defined(WEBRTC_USE_EPOLL)
+// POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17.
+#if !defined(POLLRDHUP)
+#define POLLRDHUP 0x2000
+#endif
+#if !defined(EPOLLRDHUP)
+#define EPOLLRDHUP 0x2000
+#endif
+#endif
+
+namespace {
+class ScopedSetTrue {
+ public:
+ ScopedSetTrue(bool* value) : value_(value) {
+ RTC_DCHECK(!*value_);
+ *value_ = true;
+ }
+ ~ScopedSetTrue() { *value_ = false; }
+
+ private:
+ bool* value_;
+};
+
+// Returns true if the experiement "WebRTC-SCM-Timestamp" is explicitly
+// disabled.
+bool IsScmTimeStampExperimentDisabled() {
+ return webrtc::field_trial::IsDisabled("WebRTC-SCM-Timestamp");
+}
+} // namespace
+
+namespace rtc {
+
+PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s)
+ : ss_(ss),
+ s_(s),
+ error_(0),
+ state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
+ resolver_(nullptr),
+ read_scm_timestamp_experiment_(!IsScmTimeStampExperimentDisabled()) {
+ if (s_ != INVALID_SOCKET) {
+ SetEnabledEvents(DE_READ | DE_WRITE);
+
+ int type = SOCK_STREAM;
+ socklen_t len = sizeof(type);
+ const int res =
+ getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len);
+ RTC_DCHECK_EQ(0, res);
+ udp_ = (SOCK_DGRAM == type);
+ }
+}
+
+PhysicalSocket::~PhysicalSocket() {
+ Close();
+}
+
+bool PhysicalSocket::Create(int family, int type) {
+ Close();
+ s_ = ::socket(family, type, 0);
+ udp_ = (SOCK_DGRAM == type);
+ family_ = family;
+ UpdateLastError();
+ if (udp_) {
+ SetEnabledEvents(DE_READ | DE_WRITE);
+ }
+ return s_ != INVALID_SOCKET;
+}
+
+SocketAddress PhysicalSocket::GetLocalAddress() const {
+ sockaddr_storage addr_storage = {};
+ socklen_t addrlen = sizeof(addr_storage);
+ sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
+ int result = ::getsockname(s_, addr, &addrlen);
+ SocketAddress address;
+ if (result >= 0) {
+ SocketAddressFromSockAddrStorage(addr_storage, &address);
+ } else {
+ RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
+ << s_;
+ }
+ return address;
+}
+
+SocketAddress PhysicalSocket::GetRemoteAddress() const {
+ sockaddr_storage addr_storage = {};
+ socklen_t addrlen = sizeof(addr_storage);
+ sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
+ int result = ::getpeername(s_, addr, &addrlen);
+ SocketAddress address;
+ if (result >= 0) {
+ SocketAddressFromSockAddrStorage(addr_storage, &address);
+ } else {
+ RTC_LOG(LS_WARNING)
+ << "GetRemoteAddress: unable to get remote addr, socket=" << s_;
+ }
+ return address;
+}
+
+int PhysicalSocket::Bind(const SocketAddress& bind_addr) {
+ SocketAddress copied_bind_addr = bind_addr;
+ // If a network binder is available, use it to bind a socket to an interface
+ // instead of bind(), since this is more reliable on an OS with a weak host
+ // model.
+ if (ss_->network_binder() && !bind_addr.IsAnyIP()) {
+ NetworkBindingResult result =
+ ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr());
+ if (result == NetworkBindingResult::SUCCESS) {
+ // Since the network binder handled binding the socket to the desired
+ // network interface, we don't need to (and shouldn't) include an IP in
+ // the bind() call; bind() just needs to assign a port.
+ copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family()));
+ } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) {
+ RTC_LOG(LS_INFO) << "Can't bind socket to network because "
+ "network binding is not implemented for this OS.";
+ } else {
+ if (bind_addr.IsLoopbackIP()) {
+ // If we couldn't bind to a loopback IP (which should only happen in
+ // test scenarios), continue on. This may be expected behavior.
+ RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address"
+ << " failed; result: " << static_cast<int>(result);
+ } else {
+ RTC_LOG(LS_WARNING) << "Binding socket to network address"
+ << " failed; result: " << static_cast<int>(result);
+ // If a network binding was attempted and failed, we should stop here
+ // and not try to use the socket. Otherwise, we may end up sending
+ // packets with an invalid source address.
+ // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026
+ return -1;
+ }
+ }
+ }
+ sockaddr_storage addr_storage;
+ size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage);
+ sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
+ int err = ::bind(s_, addr, static_cast<int>(len));
+ UpdateLastError();
+#if !defined(NDEBUG)
+ if (0 == err) {
+ dbg_addr_ = "Bound @ ";
+ dbg_addr_.append(GetLocalAddress().ToString());
+ }
+#endif
+ return err;
+}
+
+int PhysicalSocket::Connect(const SocketAddress& addr) {
+ // TODO(pthatcher): Implicit creation is required to reconnect...
+ // ...but should we make it more explicit?
+ if (state_ != CS_CLOSED) {
+ SetError(EALREADY);
+ return SOCKET_ERROR;
+ }
+ if (addr.IsUnresolvedIP()) {
+ RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
+ resolver_ = std::make_unique<webrtc::AsyncDnsResolver>();
+ resolver_->Start(addr, [this] { OnResolveResult(resolver_->result()); });
+ state_ = CS_CONNECTING;
+ return 0;
+ }
+
+ return DoConnect(addr);
+}
+
+int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) {
+ if ((s_ == INVALID_SOCKET) && !Create(connect_addr.family(), SOCK_STREAM)) {
+ return SOCKET_ERROR;
+ }
+ sockaddr_storage addr_storage;
+ size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
+ sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
+ int err = ::connect(s_, addr, static_cast<int>(len));
+ UpdateLastError();
+ uint8_t events = DE_READ | DE_WRITE;
+ if (err == 0) {
+ state_ = CS_CONNECTED;
+ } else if (IsBlockingError(GetError())) {
+ state_ = CS_CONNECTING;
+ events |= DE_CONNECT;
+ } else {
+ return SOCKET_ERROR;
+ }
+
+ EnableEvents(events);
+ return 0;
+}
+
+int PhysicalSocket::GetError() const {
+ webrtc::MutexLock lock(&mutex_);
+ return error_;
+}
+
+void PhysicalSocket::SetError(int error) {
+ webrtc::MutexLock lock(&mutex_);
+ error_ = error;
+}
+
+Socket::ConnState PhysicalSocket::GetState() const {
+ return state_;
+}
+
+int PhysicalSocket::GetOption(Option opt, int* value) {
+ int slevel;
+ int sopt;
+ if (TranslateOption(opt, &slevel, &sopt) == -1)
+ return -1;
+ socklen_t optlen = sizeof(*value);
+ int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
+ if (ret == -1) {
+ return -1;
+ }
+ if (opt == OPT_DONTFRAGMENT) {
+#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
+ *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
+#endif
+ } else if (opt == OPT_DSCP) {
+#if defined(WEBRTC_POSIX)
+ // unshift DSCP value to get six most significant bits of IP DiffServ field
+ *value >>= 2;
+#endif
+ }
+ return ret;
+}
+
+int PhysicalSocket::SetOption(Option opt, int value) {
+ int slevel;
+ int sopt;
+ if (TranslateOption(opt, &slevel, &sopt) == -1)
+ return -1;
+ if (opt == OPT_DONTFRAGMENT) {
+#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
+ value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
+#endif
+ } else if (opt == OPT_DSCP) {
+#if defined(WEBRTC_POSIX)
+ // shift DSCP value to fit six most significant bits of IP DiffServ field
+ value <<= 2;
+#endif
+ }
+#if defined(WEBRTC_POSIX)
+ if (sopt == IPV6_TCLASS) {
+ // Set the IPv4 option in all cases to support dual-stack sockets.
+ // Don't bother checking the return code, as this is expected to fail if
+ // it's not actually dual-stack.
+ ::setsockopt(s_, IPPROTO_IP, IP_TOS, (SockOptArg)&value, sizeof(value));
+ }
+#endif
+ int result =
+ ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
+ if (result != 0) {
+ UpdateLastError();
+ }
+ return result;
+}
+
+int PhysicalSocket::Send(const void* pv, size_t cb) {
+ int sent = DoSend(
+ s_, reinterpret_cast<const char*>(pv), static_cast<int>(cb),
+#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
+ // Suppress SIGPIPE. Without this, attempting to send on a socket whose
+ // other end is closed will result in a SIGPIPE signal being raised to
+ // our process, which by default will terminate the process, which we
+ // don't want. By specifying this flag, we'll just get the error EPIPE
+ // instead and can handle the error gracefully.
+ MSG_NOSIGNAL
+#else
+ 0
+#endif
+ );
+ UpdateLastError();
+ MaybeRemapSendError();
+ // We have seen minidumps where this may be false.
+ RTC_DCHECK(sent <= static_cast<int>(cb));
+ if ((sent > 0 && sent < static_cast<int>(cb)) ||
+ (sent < 0 && IsBlockingError(GetError()))) {
+ EnableEvents(DE_WRITE);
+ }
+ return sent;
+}
+
+int PhysicalSocket::SendTo(const void* buffer,
+ size_t length,
+ const SocketAddress& addr) {
+ sockaddr_storage saddr;
+ size_t len = addr.ToSockAddrStorage(&saddr);
+ int sent =
+ DoSendTo(s_, static_cast<const char*>(buffer), static_cast<int>(length),
+#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
+ // Suppress SIGPIPE. See above for explanation.
+ MSG_NOSIGNAL,
+#else
+ 0,
+#endif
+ reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
+ UpdateLastError();
+ MaybeRemapSendError();
+ // We have seen minidumps where this may be false.
+ RTC_DCHECK(sent <= static_cast<int>(length));
+ if ((sent > 0 && sent < static_cast<int>(length)) ||
+ (sent < 0 && IsBlockingError(GetError()))) {
+ EnableEvents(DE_WRITE);
+ }
+ return sent;
+}
+
+int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) {
+ int received =
+ DoReadFromSocket(buffer, length, /*out_addr*/ nullptr, timestamp);
+ if ((received == 0) && (length != 0)) {
+ // Note: on graceful shutdown, recv can return 0. In this case, we
+ // pretend it is blocking, and then signal close, so that simplifying
+ // assumptions can be made about Recv.
+ RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event";
+ // Must turn this back on so that the select() loop will notice the close
+ // event.
+ EnableEvents(DE_READ);
+ SetError(EWOULDBLOCK);
+ return SOCKET_ERROR;
+ }
+
+ UpdateLastError();
+ int error = GetError();
+ bool success = (received >= 0) || IsBlockingError(error);
+ if (udp_ || success) {
+ EnableEvents(DE_READ);
+ }
+ if (!success) {
+ RTC_LOG_F(LS_VERBOSE) << "Error = " << error;
+ }
+ return received;
+}
+
+int PhysicalSocket::RecvFrom(void* buffer,
+ size_t length,
+ SocketAddress* out_addr,
+ int64_t* timestamp) {
+ int received = DoReadFromSocket(buffer, length, out_addr, timestamp);
+ UpdateLastError();
+ int error = GetError();
+ bool success = (received >= 0) || IsBlockingError(error);
+ if (udp_ || success) {
+ EnableEvents(DE_READ);
+ }
+ if (!success) {
+ RTC_LOG_F(LS_VERBOSE) << "Error = " << error;
+ }
+ return received;
+}
+
+int PhysicalSocket::DoReadFromSocket(void* buffer,
+ size_t length,
+ SocketAddress* out_addr,
+ int64_t* timestamp) {
+ sockaddr_storage addr_storage;
+ socklen_t addr_len = sizeof(addr_storage);
+ sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
+
+#if defined(WEBRTC_POSIX)
+ int received = 0;
+ if (read_scm_timestamp_experiment_) {
+ iovec iov = {.iov_base = buffer, .iov_len = length};
+ msghdr msg = {.msg_name = nullptr, .msg_namelen = 0, .msg_iov = &iov, .msg_iovlen = 1};
+ if (out_addr) {
+ out_addr->Clear();
+ msg.msg_name = addr;
+ msg.msg_namelen = addr_len;
+ }
+ char control[CMSG_SPACE(sizeof(struct timeval))] = {};
+ if (timestamp) {
+ *timestamp = -1;
+ msg.msg_control = &control;
+ msg.msg_controllen = sizeof(control);
+ }
+ received = ::recvmsg(s_, &msg, 0);
+ if (received <= 0) {
+ // An error occured or shut down.
+ return received;
+ }
+ if (timestamp) {
+ struct cmsghdr* cmsg;
+ for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
+ if (cmsg->cmsg_level != SOL_SOCKET)
+ continue;
+ if (cmsg->cmsg_type == SCM_TIMESTAMP) {
+ timeval* ts = reinterpret_cast<timeval*>(CMSG_DATA(cmsg));
+ *timestamp =
+ rtc::kNumMicrosecsPerSec * static_cast<int64_t>(ts->tv_sec) +
+ static_cast<int64_t>(ts->tv_usec);
+ break;
+ }
+ }
+ }
+ if (out_addr) {
+ SocketAddressFromSockAddrStorage(addr_storage, out_addr);
+ }
+ } else { // !read_scm_timestamp_experiment_
+ if (out_addr) {
+ received = ::recvfrom(s_, static_cast<char*>(buffer),
+ static_cast<int>(length), 0, addr, &addr_len);
+ SocketAddressFromSockAddrStorage(addr_storage, out_addr);
+ } else {
+ received =
+ ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0);
+ }
+ if (timestamp) {
+ *timestamp = GetSocketRecvTimestamp(s_);
+ }
+ }
+ return received;
+
+#else
+ int received = 0;
+ if (out_addr) {
+ received = ::recvfrom(s_, static_cast<char*>(buffer),
+ static_cast<int>(length), 0, addr, &addr_len);
+ SocketAddressFromSockAddrStorage(addr_storage, out_addr);
+ } else {
+ received =
+ ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0);
+ }
+ if (timestamp) {
+ *timestamp = -1;
+ }
+ return received;
+#endif
+}
+
+int PhysicalSocket::Listen(int backlog) {
+ int err = ::listen(s_, backlog);
+ UpdateLastError();
+ if (err == 0) {
+ state_ = CS_CONNECTING;
+ EnableEvents(DE_ACCEPT);
+#if !defined(NDEBUG)
+ dbg_addr_ = "Listening @ ";
+ dbg_addr_.append(GetLocalAddress().ToString());
+#endif
+ }
+ return err;
+}
+
+Socket* PhysicalSocket::Accept(SocketAddress* out_addr) {
+ // Always re-subscribe DE_ACCEPT to make sure new incoming connections will
+ // trigger an event even if DoAccept returns an error here.
+ EnableEvents(DE_ACCEPT);
+ sockaddr_storage addr_storage;
+ socklen_t addr_len = sizeof(addr_storage);
+ sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
+ SOCKET s = DoAccept(s_, addr, &addr_len);
+ UpdateLastError();
+ if (s == INVALID_SOCKET)
+ return nullptr;
+ if (out_addr != nullptr)
+ SocketAddressFromSockAddrStorage(addr_storage, out_addr);
+ return ss_->WrapSocket(s);
+}
+
+int PhysicalSocket::Close() {
+ if (s_ == INVALID_SOCKET)
+ return 0;
+ int err = ::closesocket(s_);
+ UpdateLastError();
+ s_ = INVALID_SOCKET;
+ state_ = CS_CLOSED;
+ SetEnabledEvents(0);
+ if (resolver_) {
+ resolver_.reset();
+ }
+ return err;
+}
+
+SOCKET PhysicalSocket::DoAccept(SOCKET socket,
+ sockaddr* addr,
+ socklen_t* addrlen) {
+ return ::accept(socket, addr, addrlen);
+}
+
+int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) {
+ return ::send(socket, buf, len, flags);
+}
+
+int PhysicalSocket::DoSendTo(SOCKET socket,
+ const char* buf,
+ int len,
+ int flags,
+ const struct sockaddr* dest_addr,
+ socklen_t addrlen) {
+ return ::sendto(socket, buf, len, flags, dest_addr, addrlen);
+}
+
+void PhysicalSocket::OnResolveResult(
+ const webrtc::AsyncDnsResolverResult& result) {
+ int error = result.GetError();
+ if (error == 0) {
+ SocketAddress address;
+ if (result.GetResolvedAddress(AF_INET, &address)) {
+ error = DoConnect(address);
+ } else {
+ Close();
+ }
+ } else {
+ Close();
+ }
+
+ if (error) {
+ SetError(error);
+ SignalCloseEvent(this, error);
+ }
+}
+
+void PhysicalSocket::UpdateLastError() {
+ SetError(LAST_SYSTEM_ERROR);
+}
+
+void PhysicalSocket::MaybeRemapSendError() {
+#if defined(WEBRTC_MAC)
+ // https://developer.apple.com/library/mac/documentation/Darwin/
+ // Reference/ManPages/man2/sendto.2.html
+ // ENOBUFS - The output queue for a network interface is full.
+ // This generally indicates that the interface has stopped sending,
+ // but may be caused by transient congestion.
+ if (GetError() == ENOBUFS) {
+ SetError(EWOULDBLOCK);
+ }
+#endif
+}
+
+void PhysicalSocket::SetEnabledEvents(uint8_t events) {
+ enabled_events_ = events;
+}
+
+void PhysicalSocket::EnableEvents(uint8_t events) {
+ enabled_events_ |= events;
+}
+
+void PhysicalSocket::DisableEvents(uint8_t events) {
+ enabled_events_ &= ~events;
+}
+
+int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) {
+ switch (opt) {
+ case OPT_DONTFRAGMENT:
+#if defined(WEBRTC_WIN)
+ *slevel = IPPROTO_IP;
+ *sopt = IP_DONTFRAGMENT;
+ break;
+#elif defined(WEBRTC_MAC) || defined(WEBRTC_BSD) || defined(__native_client__)
+ RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
+ return -1;
+#elif defined(WEBRTC_POSIX)
+ *slevel = IPPROTO_IP;
+ *sopt = IP_MTU_DISCOVER;
+ break;
+#endif
+ case OPT_RCVBUF:
+ *slevel = SOL_SOCKET;
+ *sopt = SO_RCVBUF;
+ break;
+ case OPT_SNDBUF:
+ *slevel = SOL_SOCKET;
+ *sopt = SO_SNDBUF;
+ break;
+ case OPT_NODELAY:
+ *slevel = IPPROTO_TCP;
+ *sopt = TCP_NODELAY;
+ break;
+ case OPT_DSCP:
+#if defined(WEBRTC_POSIX)
+ if (family_ == AF_INET6) {
+ *slevel = IPPROTO_IPV6;
+ *sopt = IPV6_TCLASS;
+ } else {
+ *slevel = IPPROTO_IP;
+ *sopt = IP_TOS;
+ }
+ break;
+#else
+ RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
+ return -1;
+#endif
+ case OPT_RTP_SENDTIME_EXTN_ID:
+ return -1; // No logging is necessary as this not a OS socket option.
+ default:
+ RTC_DCHECK_NOTREACHED();
+ return -1;
+ }
+ return 0;
+}
+
+SocketDispatcher::SocketDispatcher(PhysicalSocketServer* ss)
+#if defined(WEBRTC_WIN)
+ : PhysicalSocket(ss),
+ id_(0),
+ signal_close_(false)
+#else
+ : PhysicalSocket(ss)
+#endif
+{
+}
+
+SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
+#if defined(WEBRTC_WIN)
+ : PhysicalSocket(ss, s),
+ id_(0),
+ signal_close_(false)
+#else
+ : PhysicalSocket(ss, s)
+#endif
+{
+}
+
+SocketDispatcher::~SocketDispatcher() {
+ Close();
+}
+
+bool SocketDispatcher::Initialize() {
+ RTC_DCHECK(s_ != INVALID_SOCKET);
+// Must be a non-blocking
+#if defined(WEBRTC_WIN)
+ u_long argp = 1;
+ ioctlsocket(s_, FIONBIO, &argp);
+#elif defined(WEBRTC_POSIX)
+ fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
+ if (!IsScmTimeStampExperimentDisabled()) {
+ int value = 1;
+ // Attempt to get receive packet timestamp from the socket.
+ if (::setsockopt(s_, SOL_SOCKET, SO_TIMESTAMP, &value, sizeof(value)) !=
+ 0) {
+ RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR;
+ }
+ }
+#endif
+
+#if defined(WEBRTC_IOS)
+ // iOS may kill sockets when the app is moved to the background
+ // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When
+ // we attempt to write to such a socket, SIGPIPE will be raised, which by
+ // default will terminate the process, which we don't want. By specifying
+ // this socket option, SIGPIPE will be disabled for the socket.
+ int value = 1;
+ if (::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value)) != 0) {
+ RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR;
+ }
+#endif
+ ss_->Add(this);
+ return true;
+}
+
+bool SocketDispatcher::Create(int type) {
+ return Create(AF_INET, type);
+}
+
+bool SocketDispatcher::Create(int family, int type) {
+ // Change the socket to be non-blocking.
+ if (!PhysicalSocket::Create(family, type))
+ return false;
+
+ if (!Initialize())
+ return false;
+
+#if defined(WEBRTC_WIN)
+ do {
+ id_ = ++next_id_;
+ } while (id_ == 0);
+#endif
+ return true;
+}
+
+#if defined(WEBRTC_WIN)
+
+WSAEVENT SocketDispatcher::GetWSAEvent() {
+ return WSA_INVALID_EVENT;
+}
+
+SOCKET SocketDispatcher::GetSocket() {
+ return s_;
+}
+
+bool SocketDispatcher::CheckSignalClose() {
+ if (!signal_close_)
+ return false;
+
+ char ch;
+ if (recv(s_, &ch, 1, MSG_PEEK) > 0)
+ return false;
+
+ state_ = CS_CLOSED;
+ signal_close_ = false;
+ SignalCloseEvent(this, signal_err_);
+ return true;
+}
+
+int SocketDispatcher::next_id_ = 0;
+
+#elif defined(WEBRTC_POSIX)
+
+int SocketDispatcher::GetDescriptor() {
+ return s_;
+}
+
+bool SocketDispatcher::IsDescriptorClosed() {
+ if (udp_) {
+ // The MSG_PEEK trick doesn't work for UDP, since (at least in some
+ // circumstances) it requires reading an entire UDP packet, which would be
+ // bad for performance here. So, just check whether `s_` has been closed,
+ // which should be sufficient.
+ return s_ == INVALID_SOCKET;
+ }
+ // We don't have a reliable way of distinguishing end-of-stream
+ // from readability. So test on each readable call. Is this
+ // inefficient? Probably.
+ char ch;
+ ssize_t res;
+ // Retry if the system call was interrupted.
+ do {
+ res = ::recv(s_, &ch, 1, MSG_PEEK);
+ } while (res < 0 && errno == EINTR);
+ if (res > 0) {
+ // Data available, so not closed.
+ return false;
+ } else if (res == 0) {
+ // EOF, so closed.
+ return true;
+ } else { // error
+ switch (errno) {
+ // Returned if we've already closed s_.
+ case EBADF:
+ // This is dangerous: if we keep attempting to access a FD after close,
+ // it could be reopened by something else making us think it's still
+ // open. Note that this is only a DCHECK.
+ RTC_DCHECK_NOTREACHED();
+ return true;
+ // Returned during ungraceful peer shutdown.
+ case ECONNRESET:
+ return true;
+ case ECONNABORTED:
+ return true;
+ case EPIPE:
+ return true;
+ // The normal blocking error; don't log anything.
+ case EWOULDBLOCK:
+ return false;
+ default:
+ // Assume that all other errors are just blocking errors, meaning the
+ // connection is still good but we just can't read from it right now.
+ // This should only happen when connecting (and at most once), because
+ // in all other cases this function is only called if the file
+ // descriptor is already known to be in the readable state. However,
+ // it's not necessary a problem if we spuriously interpret a
+ // "connection lost"-type error as a blocking error, because typically
+ // the next recv() will get EOF, so we'll still eventually notice that
+ // the socket is closed.
+ RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
+ return false;
+ }
+ }
+}
+
+#endif // WEBRTC_POSIX
+
+uint32_t SocketDispatcher::GetRequestedEvents() {
+ return enabled_events();
+}
+
+#if defined(WEBRTC_WIN)
+
+void SocketDispatcher::OnEvent(uint32_t ff, int err) {
+ if ((ff & DE_CONNECT) != 0)
+ state_ = CS_CONNECTED;
+
+ // We set CS_CLOSED from CheckSignalClose.
+
+ int cache_id = id_;
+ // Make sure we deliver connect/accept first. Otherwise, consumers may see
+ // something like a READ followed by a CONNECT, which would be odd.
+ if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
+ if (ff != DE_CONNECT)
+ RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
+ DisableEvents(DE_CONNECT);
+#if !defined(NDEBUG)
+ dbg_addr_ = "Connected @ ";
+ dbg_addr_.append(GetRemoteAddress().ToString());
+#endif
+ SignalConnectEvent(this);
+ }
+ if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
+ DisableEvents(DE_ACCEPT);
+ SignalReadEvent(this);
+ }
+ if ((ff & DE_READ) != 0) {
+ DisableEvents(DE_READ);
+ SignalReadEvent(this);
+ }
+ if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
+ DisableEvents(DE_WRITE);
+ SignalWriteEvent(this);
+ }
+ if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
+ signal_close_ = true;
+ signal_err_ = err;
+ }
+}
+
+#elif defined(WEBRTC_POSIX)
+
+void SocketDispatcher::OnEvent(uint32_t ff, int err) {
+ if ((ff & DE_CONNECT) != 0)
+ state_ = CS_CONNECTED;
+
+ if ((ff & DE_CLOSE) != 0)
+ state_ = CS_CLOSED;
+
+#if defined(WEBRTC_USE_EPOLL)
+ // Remember currently enabled events so we can combine multiple changes
+ // into one update call later.
+ // The signal handlers might re-enable events disabled here, so we can't
+ // keep a list of events to disable at the end of the method. This list
+ // would not be updated with the events enabled by the signal handlers.
+ StartBatchedEventUpdates();
+#endif
+ // Make sure we deliver connect/accept first. Otherwise, consumers may see
+ // something like a READ followed by a CONNECT, which would be odd.
+ if ((ff & DE_CONNECT) != 0) {
+ DisableEvents(DE_CONNECT);
+ SignalConnectEvent(this);
+ }
+ if ((ff & DE_ACCEPT) != 0) {
+ DisableEvents(DE_ACCEPT);
+ SignalReadEvent(this);
+ }
+ if ((ff & DE_READ) != 0) {
+ DisableEvents(DE_READ);
+ SignalReadEvent(this);
+ }
+ if ((ff & DE_WRITE) != 0) {
+ DisableEvents(DE_WRITE);
+ SignalWriteEvent(this);
+ }
+ if ((ff & DE_CLOSE) != 0) {
+ // The socket is now dead to us, so stop checking it.
+ SetEnabledEvents(0);
+ SignalCloseEvent(this, err);
+ }
+#if defined(WEBRTC_USE_EPOLL)
+ FinishBatchedEventUpdates();
+#endif
+}
+
+#endif // WEBRTC_POSIX
+
+#if defined(WEBRTC_USE_EPOLL)
+
+inline static int GetEpollEvents(uint32_t ff) {
+ int events = 0;
+ if (ff & (DE_READ | DE_ACCEPT)) {
+ events |= EPOLLIN;
+ }
+ if (ff & (DE_WRITE | DE_CONNECT)) {
+ events |= EPOLLOUT;
+ }
+ return events;
+}
+
+void SocketDispatcher::StartBatchedEventUpdates() {
+ RTC_DCHECK_EQ(saved_enabled_events_, -1);
+ saved_enabled_events_ = enabled_events();
+}
+
+void SocketDispatcher::FinishBatchedEventUpdates() {
+ RTC_DCHECK_NE(saved_enabled_events_, -1);
+ uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_);
+ saved_enabled_events_ = -1;
+ MaybeUpdateDispatcher(old_events);
+}
+
+void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) {
+ if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) &&
+ saved_enabled_events_ == -1) {
+ ss_->Update(this);
+ }
+}
+
+void SocketDispatcher::SetEnabledEvents(uint8_t events) {
+ uint8_t old_events = enabled_events();
+ PhysicalSocket::SetEnabledEvents(events);
+ MaybeUpdateDispatcher(old_events);
+}
+
+void SocketDispatcher::EnableEvents(uint8_t events) {
+ uint8_t old_events = enabled_events();
+ PhysicalSocket::EnableEvents(events);
+ MaybeUpdateDispatcher(old_events);
+}
+
+void SocketDispatcher::DisableEvents(uint8_t events) {
+ uint8_t old_events = enabled_events();
+ PhysicalSocket::DisableEvents(events);
+ MaybeUpdateDispatcher(old_events);
+}
+
+#endif // WEBRTC_USE_EPOLL
+
+int SocketDispatcher::Close() {
+ if (s_ == INVALID_SOCKET)
+ return 0;
+
+#if defined(WEBRTC_WIN)
+ id_ = 0;
+ signal_close_ = false;
+#endif
+#if defined(WEBRTC_USE_EPOLL)
+ // If we're batching events, the socket can be closed and reopened
+ // during the batch. Set saved_enabled_events_ to 0 here so the new
+ // socket, if any, has the correct old events bitfield
+ if (saved_enabled_events_ != -1) {
+ saved_enabled_events_ = 0;
+ }
+#endif
+ ss_->Remove(this);
+ return PhysicalSocket::Close();
+}
+
+#if defined(WEBRTC_POSIX)
+// Sets the value of a boolean value to false when signaled.
+class Signaler : public Dispatcher {
+ public:
+ Signaler(PhysicalSocketServer* ss, bool& flag_to_clear)
+ : ss_(ss),
+ afd_([] {
+ std::array<int, 2> afd = {-1, -1};
+
+ if (pipe(afd.data()) < 0) {
+ RTC_LOG(LS_ERROR) << "pipe failed";
+ }
+ return afd;
+ }()),
+ fSignaled_(false),
+ flag_to_clear_(flag_to_clear) {
+ ss_->Add(this);
+ }
+
+ ~Signaler() override {
+ ss_->Remove(this);
+ close(afd_[0]);
+ close(afd_[1]);
+ }
+
+ virtual void Signal() {
+ webrtc::MutexLock lock(&mutex_);
+ if (!fSignaled_) {
+ const uint8_t b[1] = {0};
+ const ssize_t res = write(afd_[1], b, sizeof(b));
+ RTC_DCHECK_EQ(1, res);
+ fSignaled_ = true;
+ }
+ }
+
+ uint32_t GetRequestedEvents() override { return DE_READ; }
+
+ void OnEvent(uint32_t ff, int err) override {
+ // It is not possible to perfectly emulate an auto-resetting event with
+ // pipes. This simulates it by resetting before the event is handled.
+
+ webrtc::MutexLock lock(&mutex_);
+ if (fSignaled_) {
+ uint8_t b[4]; // Allow for reading more than 1 byte, but expect 1.
+ const ssize_t res = read(afd_[0], b, sizeof(b));
+ RTC_DCHECK_EQ(1, res);
+ fSignaled_ = false;
+ }
+ flag_to_clear_ = false;
+ }
+
+ int GetDescriptor() override { return afd_[0]; }
+
+ bool IsDescriptorClosed() override { return false; }
+
+ private:
+ PhysicalSocketServer* const ss_;
+ const std::array<int, 2> afd_;
+ bool fSignaled_ RTC_GUARDED_BY(mutex_);
+ webrtc::Mutex mutex_;
+ bool& flag_to_clear_;
+};
+
+#endif // WEBRTC_POSIX
+
+#if defined(WEBRTC_WIN)
+static uint32_t FlagsToEvents(uint32_t events) {
+ uint32_t ffFD = FD_CLOSE;
+ if (events & DE_READ)
+ ffFD |= FD_READ;
+ if (events & DE_WRITE)
+ ffFD |= FD_WRITE;
+ if (events & DE_CONNECT)
+ ffFD |= FD_CONNECT;
+ if (events & DE_ACCEPT)
+ ffFD |= FD_ACCEPT;
+ return ffFD;
+}
+
+// Sets the value of a boolean value to false when signaled.
+class Signaler : public Dispatcher {
+ public:
+ Signaler(PhysicalSocketServer* ss, bool& flag_to_clear)
+ : ss_(ss), flag_to_clear_(flag_to_clear) {
+ hev_ = WSACreateEvent();
+ if (hev_) {
+ ss_->Add(this);
+ }
+ }
+
+ ~Signaler() override {
+ if (hev_ != nullptr) {
+ ss_->Remove(this);
+ WSACloseEvent(hev_);
+ hev_ = nullptr;
+ }
+ }
+
+ virtual void Signal() {
+ if (hev_ != nullptr)
+ WSASetEvent(hev_);
+ }
+
+ uint32_t GetRequestedEvents() override { return 0; }
+
+ void OnEvent(uint32_t ff, int err) override {
+ WSAResetEvent(hev_);
+ flag_to_clear_ = false;
+ }
+
+ WSAEVENT GetWSAEvent() override { return hev_; }
+
+ SOCKET GetSocket() override { return INVALID_SOCKET; }
+
+ bool CheckSignalClose() override { return false; }
+
+ private:
+ PhysicalSocketServer* ss_;
+ WSAEVENT hev_;
+ bool& flag_to_clear_;
+};
+#endif // WEBRTC_WIN
+
+PhysicalSocketServer::PhysicalSocketServer()
+ :
+#if defined(WEBRTC_USE_EPOLL)
+ // Since Linux 2.6.8, the size argument is ignored, but must be greater
+ // than zero. Before that the size served as hint to the kernel for the
+ // amount of space to initially allocate in internal data structures.
+ epoll_fd_(epoll_create(FD_SETSIZE)),
+#endif
+#if defined(WEBRTC_WIN)
+ socket_ev_(WSACreateEvent()),
+#endif
+ fWait_(false) {
+#if defined(WEBRTC_USE_EPOLL)
+ if (epoll_fd_ == -1) {
+ // Not an error, will fall back to "select" below.
+ RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create";
+ // Note that -1 == INVALID_SOCKET, the alias used by later checks.
+ }
+#endif
+ // The `fWait_` flag to be cleared by the Signaler.
+ signal_wakeup_ = new Signaler(this, fWait_);
+}
+
+PhysicalSocketServer::~PhysicalSocketServer() {
+#if defined(WEBRTC_WIN)
+ WSACloseEvent(socket_ev_);
+#endif
+ delete signal_wakeup_;
+#if defined(WEBRTC_USE_EPOLL)
+ if (epoll_fd_ != INVALID_SOCKET) {
+ close(epoll_fd_);
+ }
+#endif
+ RTC_DCHECK(dispatcher_by_key_.empty());
+ RTC_DCHECK(key_by_dispatcher_.empty());
+}
+
+void PhysicalSocketServer::WakeUp() {
+ signal_wakeup_->Signal();
+}
+
+Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
+ SocketDispatcher* dispatcher = new SocketDispatcher(this);
+ if (dispatcher->Create(family, type)) {
+ return dispatcher;
+ } else {
+ delete dispatcher;
+ return nullptr;
+ }
+}
+
+Socket* PhysicalSocketServer::WrapSocket(SOCKET s) {
+ SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
+ if (dispatcher->Initialize()) {
+ return dispatcher;
+ } else {
+ delete dispatcher;
+ return nullptr;
+ }
+}
+
+void PhysicalSocketServer::Add(Dispatcher* pdispatcher) {
+ CritScope cs(&crit_);
+ if (key_by_dispatcher_.count(pdispatcher)) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer asked to add a duplicate dispatcher.";
+ return;
+ }
+ uint64_t key = next_dispatcher_key_++;
+ dispatcher_by_key_.emplace(key, pdispatcher);
+ key_by_dispatcher_.emplace(pdispatcher, key);
+#if defined(WEBRTC_USE_EPOLL)
+ if (epoll_fd_ != INVALID_SOCKET) {
+ AddEpoll(pdispatcher, key);
+ }
+#endif // WEBRTC_USE_EPOLL
+}
+
+void PhysicalSocketServer::Remove(Dispatcher* pdispatcher) {
+ CritScope cs(&crit_);
+ if (!key_by_dispatcher_.count(pdispatcher)) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer asked to remove a unknown "
+ "dispatcher, potentially from a duplicate call to Add.";
+ return;
+ }
+ uint64_t key = key_by_dispatcher_.at(pdispatcher);
+ key_by_dispatcher_.erase(pdispatcher);
+ dispatcher_by_key_.erase(key);
+#if defined(WEBRTC_USE_EPOLL)
+ if (epoll_fd_ != INVALID_SOCKET) {
+ RemoveEpoll(pdispatcher);
+ }
+#endif // WEBRTC_USE_EPOLL
+}
+
+void PhysicalSocketServer::Update(Dispatcher* pdispatcher) {
+#if defined(WEBRTC_USE_EPOLL)
+ if (epoll_fd_ == INVALID_SOCKET) {
+ return;
+ }
+
+ // Don't update dispatchers that haven't yet been added.
+ CritScope cs(&crit_);
+ if (!key_by_dispatcher_.count(pdispatcher)) {
+ return;
+ }
+
+ UpdateEpoll(pdispatcher, key_by_dispatcher_.at(pdispatcher));
+#endif
+}
+
+int PhysicalSocketServer::ToCmsWait(webrtc::TimeDelta max_wait_duration) {
+ return max_wait_duration == Event::kForever
+ ? kForeverMs
+ : max_wait_duration.RoundUpTo(webrtc::TimeDelta::Millis(1)).ms();
+}
+
+#if defined(WEBRTC_POSIX)
+
+bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration,
+ bool process_io) {
+ // We don't support reentrant waiting.
+ RTC_DCHECK(!waiting_);
+ ScopedSetTrue s(&waiting_);
+ const int cmsWait = ToCmsWait(max_wait_duration);
+
+#if defined(WEBRTC_USE_POLL)
+ return WaitPoll(cmsWait, process_io);
+#else
+#if defined(WEBRTC_USE_EPOLL)
+ // We don't keep a dedicated "epoll" descriptor containing only the non-IO
+ // (i.e. signaling) dispatcher, so "poll" will be used instead of the default
+ // "select" to support sockets larger than FD_SETSIZE.
+ if (!process_io) {
+ return WaitPollOneDispatcher(cmsWait, signal_wakeup_);
+ } else if (epoll_fd_ != INVALID_SOCKET) {
+ return WaitEpoll(cmsWait);
+ }
+#endif
+ return WaitSelect(cmsWait, process_io);
+#endif
+}
+
+// `error_event` is true if we are responding to an event where we know an
+// error has occurred, which is possible with the poll/epoll implementations
+// but not the select implementation.
+//
+// `check_error` is true if there is the possibility of an error.
+static void ProcessEvents(Dispatcher* dispatcher,
+ bool readable,
+ bool writable,
+ bool error_event,
+ bool check_error) {
+ RTC_DCHECK(!(error_event && !check_error));
+ int errcode = 0;
+ if (check_error) {
+ socklen_t len = sizeof(errcode);
+ int res = ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR,
+ &errcode, &len);
+ if (res < 0) {
+ // If we are sure an error has occurred, or if getsockopt failed for a
+ // socket descriptor, make sure we set the error code to a nonzero value.
+ if (error_event || errno != ENOTSOCK) {
+ errcode = EBADF;
+ }
+ }
+ }
+
+ // Most often the socket is writable or readable or both, so make a single
+ // virtual call to get requested events
+ const uint32_t requested_events = dispatcher->GetRequestedEvents();
+ uint32_t ff = 0;
+
+ // Check readable descriptors. If we're waiting on an accept, signal
+ // that. Otherwise we're waiting for data, check to see if we're
+ // readable or really closed.
+ // TODO(pthatcher): Only peek at TCP descriptors.
+ if (readable) {
+ if (errcode || dispatcher->IsDescriptorClosed()) {
+ ff |= DE_CLOSE;
+ } else if (requested_events & DE_ACCEPT) {
+ ff |= DE_ACCEPT;
+ } else {
+ ff |= DE_READ;
+ }
+ }
+
+ // Check writable descriptors. If we're waiting on a connect, detect
+ // success versus failure by the reaped error code.
+ if (writable) {
+ if (requested_events & DE_CONNECT) {
+ if (!errcode) {
+ ff |= DE_CONNECT;
+ }
+ } else {
+ ff |= DE_WRITE;
+ }
+ }
+
+ // Make sure we report any errors regardless of whether readable or writable.
+ if (errcode) {
+ ff |= DE_CLOSE;
+ }
+
+ // Tell the descriptor about the event.
+ if (ff != 0) {
+ dispatcher->OnEvent(ff, errcode);
+ }
+}
+
+#if defined(WEBRTC_USE_POLL) || defined(WEBRTC_USE_EPOLL)
+static void ProcessPollEvents(Dispatcher* dispatcher, const pollfd& pfd) {
+ bool readable = (pfd.revents & (POLLIN | POLLPRI));
+ bool writable = (pfd.revents & POLLOUT);
+ bool error = (pfd.revents & (POLLRDHUP | POLLERR | POLLHUP));
+
+ ProcessEvents(dispatcher, readable, writable, error, error);
+}
+
+static pollfd DispatcherToPollfd(Dispatcher* dispatcher) {
+ pollfd fd{
+ .fd = dispatcher->GetDescriptor(),
+ .events = 0,
+ .revents = 0,
+ };
+
+ uint32_t ff = dispatcher->GetRequestedEvents();
+ if (ff & (DE_READ | DE_ACCEPT)) {
+ fd.events |= POLLIN;
+ }
+ if (ff & (DE_WRITE | DE_CONNECT)) {
+ fd.events |= POLLOUT;
+ }
+
+ return fd;
+}
+#endif // WEBRTC_USE_POLL || WEBRTC_USE_EPOLL
+
+bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) {
+ // Calculate timing information
+
+ struct timeval* ptvWait = nullptr;
+ struct timeval tvWait;
+ int64_t stop_us;
+ if (cmsWait != kForeverMs) {
+ // Calculate wait timeval
+ tvWait.tv_sec = cmsWait / 1000;
+ tvWait.tv_usec = (cmsWait % 1000) * 1000;
+ ptvWait = &tvWait;
+
+ // Calculate when to return
+ stop_us = rtc::TimeMicros() + cmsWait * 1000;
+ }
+
+ fd_set fdsRead;
+ fd_set fdsWrite;
+// Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the
+// inline assembly in FD_ZERO.
+// http://crbug.com/344505
+#ifdef MEMORY_SANITIZER
+ __msan_unpoison(&fdsRead, sizeof(fdsRead));
+ __msan_unpoison(&fdsWrite, sizeof(fdsWrite));
+#endif
+
+ fWait_ = true;
+
+ while (fWait_) {
+ // Zero all fd_sets. Although select() zeros the descriptors not signaled,
+ // we may need to do this for dispatchers that were deleted while
+ // iterating.
+ FD_ZERO(&fdsRead);
+ FD_ZERO(&fdsWrite);
+ int fdmax = -1;
+ {
+ CritScope cr(&crit_);
+ current_dispatcher_keys_.clear();
+ for (auto const& kv : dispatcher_by_key_) {
+ uint64_t key = kv.first;
+ Dispatcher* pdispatcher = kv.second;
+ if (!process_io && (pdispatcher != signal_wakeup_))
+ continue;
+ current_dispatcher_keys_.push_back(key);
+ int fd = pdispatcher->GetDescriptor();
+ // "select"ing a file descriptor that is equal to or larger than
+ // FD_SETSIZE will result in undefined behavior.
+ RTC_CHECK_LT(fd, FD_SETSIZE);
+ if (fd > fdmax)
+ fdmax = fd;
+
+ uint32_t ff = pdispatcher->GetRequestedEvents();
+ if (ff & (DE_READ | DE_ACCEPT))
+ FD_SET(fd, &fdsRead);
+ if (ff & (DE_WRITE | DE_CONNECT))
+ FD_SET(fd, &fdsWrite);
+ }
+ }
+
+ // Wait then call handlers as appropriate
+ // < 0 means error
+ // 0 means timeout
+ // > 0 means count of descriptors ready
+ int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait);
+
+ // If error, return error.
+ if (n < 0) {
+ if (errno != EINTR) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "select";
+ return false;
+ }
+ // Else ignore the error and keep going. If this EINTR was for one of the
+ // signals managed by this PhysicalSocketServer, the
+ // PosixSignalDeliveryDispatcher will be in the signaled state in the next
+ // iteration.
+ } else if (n == 0) {
+ // If timeout, return success
+ return true;
+ } else {
+ // We have signaled descriptors
+ CritScope cr(&crit_);
+ // Iterate only on the dispatchers whose file descriptors were passed into
+ // select; this avoids the ABA problem (a socket being destroyed and a new
+ // one created with the same file descriptor).
+ for (uint64_t key : current_dispatcher_keys_) {
+ if (!dispatcher_by_key_.count(key))
+ continue;
+ Dispatcher* pdispatcher = dispatcher_by_key_.at(key);
+
+ int fd = pdispatcher->GetDescriptor();
+
+ bool readable = FD_ISSET(fd, &fdsRead);
+ if (readable) {
+ FD_CLR(fd, &fdsRead);
+ }
+
+ bool writable = FD_ISSET(fd, &fdsWrite);
+ if (writable) {
+ FD_CLR(fd, &fdsWrite);
+ }
+
+ // The error code can be signaled through reads or writes.
+ ProcessEvents(pdispatcher, readable, writable, /*error_event=*/false,
+ readable || writable);
+ }
+ }
+
+ // Recalc the time remaining to wait. Doing it here means it doesn't get
+ // calced twice the first time through the loop
+ if (ptvWait) {
+ ptvWait->tv_sec = 0;
+ ptvWait->tv_usec = 0;
+ int64_t time_left_us = stop_us - rtc::TimeMicros();
+ if (time_left_us > 0) {
+ ptvWait->tv_sec = time_left_us / rtc::kNumMicrosecsPerSec;
+ ptvWait->tv_usec = time_left_us % rtc::kNumMicrosecsPerSec;
+ }
+ }
+ }
+
+ return true;
+}
+
+#if defined(WEBRTC_USE_EPOLL)
+
+void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher, uint64_t key) {
+ RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
+ int fd = pdispatcher->GetDescriptor();
+ RTC_DCHECK(fd != INVALID_SOCKET);
+ if (fd == INVALID_SOCKET) {
+ return;
+ }
+
+ struct epoll_event event = {0};
+ event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
+ if (event.events == 0u) {
+ // Don't add at all if we don't have any requested events. Could indicate a
+ // closed socket.
+ return;
+ }
+ event.data.u64 = key;
+ int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event);
+ RTC_DCHECK_EQ(err, 0);
+ if (err == -1) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD";
+ }
+}
+
+void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) {
+ RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
+ int fd = pdispatcher->GetDescriptor();
+ RTC_DCHECK(fd != INVALID_SOCKET);
+ if (fd == INVALID_SOCKET) {
+ return;
+ }
+
+ struct epoll_event event = {0};
+ int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event);
+ RTC_DCHECK(err == 0 || errno == ENOENT);
+ // Ignore ENOENT, which could occur if this descriptor wasn't added due to
+ // having no requested events.
+ if (err == -1 && errno != ENOENT) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL";
+ }
+}
+
+void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher, uint64_t key) {
+ RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
+ int fd = pdispatcher->GetDescriptor();
+ RTC_DCHECK(fd != INVALID_SOCKET);
+ if (fd == INVALID_SOCKET) {
+ return;
+ }
+
+ struct epoll_event event = {0};
+ event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
+ event.data.u64 = key;
+ // Remove if we don't have any requested events. Could indicate a closed
+ // socket.
+ if (event.events == 0u) {
+ epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event);
+ } else {
+ int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event);
+ RTC_DCHECK(err == 0 || errno == ENOENT);
+ if (err == -1) {
+ // Could have been removed earlier due to no requested events.
+ if (errno == ENOENT) {
+ err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event);
+ if (err == -1) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD";
+ }
+ } else {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD";
+ }
+ }
+ }
+}
+
+bool PhysicalSocketServer::WaitEpoll(int cmsWait) {
+ RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
+ int64_t msWait = -1;
+ int64_t msStop = -1;
+ if (cmsWait != kForeverMs) {
+ msWait = cmsWait;
+ msStop = TimeAfter(cmsWait);
+ }
+
+ fWait_ = true;
+ while (fWait_) {
+ // Wait then call handlers as appropriate
+ // < 0 means error
+ // 0 means timeout
+ // > 0 means count of descriptors ready
+ int n = epoll_wait(epoll_fd_, epoll_events_.data(), epoll_events_.size(),
+ static_cast<int>(msWait));
+ if (n < 0) {
+ if (errno != EINTR) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "epoll";
+ return false;
+ }
+ // Else ignore the error and keep going. If this EINTR was for one of the
+ // signals managed by this PhysicalSocketServer, the
+ // PosixSignalDeliveryDispatcher will be in the signaled state in the next
+ // iteration.
+ } else if (n == 0) {
+ // If timeout, return success
+ return true;
+ } else {
+ // We have signaled descriptors
+ CritScope cr(&crit_);
+ for (int i = 0; i < n; ++i) {
+ const epoll_event& event = epoll_events_[i];
+ uint64_t key = event.data.u64;
+ if (!dispatcher_by_key_.count(key)) {
+ // The dispatcher for this socket no longer exists.
+ continue;
+ }
+ Dispatcher* pdispatcher = dispatcher_by_key_.at(key);
+
+ bool readable = (event.events & (EPOLLIN | EPOLLPRI));
+ bool writable = (event.events & EPOLLOUT);
+ bool error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP));
+
+ ProcessEvents(pdispatcher, readable, writable, error, error);
+ }
+ }
+
+ if (cmsWait != kForeverMs) {
+ msWait = TimeDiff(msStop, TimeMillis());
+ if (msWait <= 0) {
+ // Return success on timeout.
+ return true;
+ }
+ }
+ }
+
+ return true;
+}
+
+bool PhysicalSocketServer::WaitPollOneDispatcher(int cmsWait,
+ Dispatcher* dispatcher) {
+ RTC_DCHECK(dispatcher);
+ int64_t msWait = -1;
+ int64_t msStop = -1;
+ if (cmsWait != kForeverMs) {
+ msWait = cmsWait;
+ msStop = TimeAfter(cmsWait);
+ }
+
+ fWait_ = true;
+ const int fd = dispatcher->GetDescriptor();
+
+ while (fWait_) {
+ auto fds = DispatcherToPollfd(dispatcher);
+
+ // Wait then call handlers as appropriate
+ // < 0 means error
+ // 0 means timeout
+ // > 0 means count of descriptors ready
+ int n = poll(&fds, 1, static_cast<int>(msWait));
+ if (n < 0) {
+ if (errno != EINTR) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "poll";
+ return false;
+ }
+ // Else ignore the error and keep going. If this EINTR was for one of the
+ // signals managed by this PhysicalSocketServer, the
+ // PosixSignalDeliveryDispatcher will be in the signaled state in the next
+ // iteration.
+ } else if (n == 0) {
+ // If timeout, return success
+ return true;
+ } else {
+ // We have signaled descriptors (should only be the passed dispatcher).
+ RTC_DCHECK_EQ(n, 1);
+ RTC_DCHECK_EQ(fds.fd, fd);
+ ProcessPollEvents(dispatcher, fds);
+ }
+
+ if (cmsWait != kForeverMs) {
+ msWait = TimeDiff(msStop, TimeMillis());
+ if (msWait < 0) {
+ // Return success on timeout.
+ return true;
+ }
+ }
+ }
+
+ return true;
+}
+
+#elif defined(WEBRTC_USE_POLL)
+
+bool PhysicalSocketServer::WaitPoll(int cmsWait, bool process_io) {
+ int64_t msWait = -1;
+ int64_t msStop = -1;
+ if (cmsWait != kForeverMs) {
+ msWait = cmsWait;
+ msStop = TimeAfter(cmsWait);
+ }
+
+ std::vector<pollfd> pollfds;
+ fWait_ = true;
+
+ while (fWait_) {
+ {
+ CritScope cr(&crit_);
+ current_dispatcher_keys_.clear();
+ pollfds.clear();
+ pollfds.reserve(dispatcher_by_key_.size());
+
+ for (auto const& kv : dispatcher_by_key_) {
+ uint64_t key = kv.first;
+ Dispatcher* pdispatcher = kv.second;
+ if (!process_io && (pdispatcher != signal_wakeup_))
+ continue;
+ current_dispatcher_keys_.push_back(key);
+ pollfds.push_back(DispatcherToPollfd(pdispatcher));
+ }
+ }
+
+ // Wait then call handlers as appropriate
+ // < 0 means error
+ // 0 means timeout
+ // > 0 means count of descriptors ready
+ int n = poll(pollfds.data(), pollfds.size(), static_cast<int>(msWait));
+ if (n < 0) {
+ if (errno != EINTR) {
+ RTC_LOG_E(LS_ERROR, EN, errno) << "poll";
+ return false;
+ }
+ // Else ignore the error and keep going. If this EINTR was for one of the
+ // signals managed by this PhysicalSocketServer, the
+ // PosixSignalDeliveryDispatcher will be in the signaled state in the next
+ // iteration.
+ } else if (n == 0) {
+ // If timeout, return success
+ return true;
+ } else {
+ // We have signaled descriptors
+ CritScope cr(&crit_);
+ // Iterate only on the dispatchers whose file descriptors were passed into
+ // poll; this avoids the ABA problem (a socket being destroyed and a new
+ // one created with the same file descriptor).
+ for (size_t i = 0; i < current_dispatcher_keys_.size(); ++i) {
+ uint64_t key = current_dispatcher_keys_[i];
+ if (!dispatcher_by_key_.count(key))
+ continue;
+ ProcessPollEvents(dispatcher_by_key_.at(key), pollfds[i]);
+ }
+ }
+
+ if (cmsWait != kForeverMs) {
+ msWait = TimeDiff(msStop, TimeMillis());
+ if (msWait < 0) {
+ // Return success on timeout.
+ return true;
+ }
+ }
+ }
+
+ return true;
+}
+
+#endif // WEBRTC_USE_EPOLL, WEBRTC_USE_POLL
+
+#endif // WEBRTC_POSIX
+
+#if defined(WEBRTC_WIN)
+bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration,
+ bool process_io) {
+ // We don't support reentrant waiting.
+ RTC_DCHECK(!waiting_);
+ ScopedSetTrue s(&waiting_);
+
+ int cmsWait = ToCmsWait(max_wait_duration);
+ int64_t cmsTotal = cmsWait;
+ int64_t cmsElapsed = 0;
+ int64_t msStart = Time();
+
+ fWait_ = true;
+ while (fWait_) {
+ std::vector<WSAEVENT> events;
+ std::vector<uint64_t> event_owners;
+
+ events.push_back(socket_ev_);
+
+ {
+ CritScope cr(&crit_);
+ // Get a snapshot of all current dispatchers; this is used to avoid the
+ // ABA problem (see later comment) and avoids the dispatcher_by_key_
+ // iterator being invalidated by calling CheckSignalClose, which may
+ // remove the dispatcher from the list.
+ current_dispatcher_keys_.clear();
+ for (auto const& kv : dispatcher_by_key_) {
+ current_dispatcher_keys_.push_back(kv.first);
+ }
+ for (uint64_t key : current_dispatcher_keys_) {
+ if (!dispatcher_by_key_.count(key)) {
+ continue;
+ }
+ Dispatcher* disp = dispatcher_by_key_.at(key);
+ if (!disp)
+ continue;
+ if (!process_io && (disp != signal_wakeup_))
+ continue;
+ SOCKET s = disp->GetSocket();
+ if (disp->CheckSignalClose()) {
+ // We just signalled close, don't poll this socket.
+ } else if (s != INVALID_SOCKET) {
+ WSAEventSelect(s, events[0],
+ FlagsToEvents(disp->GetRequestedEvents()));
+ } else {
+ events.push_back(disp->GetWSAEvent());
+ event_owners.push_back(key);
+ }
+ }
+ }
+
+ // Which is shorter, the delay wait or the asked wait?
+
+ int64_t cmsNext;
+ if (cmsWait == kForeverMs) {
+ cmsNext = cmsWait;
+ } else {
+ cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
+ }
+
+ // Wait for one of the events to signal
+ DWORD dw =
+ WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0],
+ false, static_cast<DWORD>(cmsNext), false);
+
+ if (dw == WSA_WAIT_FAILED) {
+ // Failed?
+ // TODO(pthatcher): need a better strategy than this!
+ WSAGetLastError();
+ RTC_DCHECK_NOTREACHED();
+ return false;
+ } else if (dw == WSA_WAIT_TIMEOUT) {
+ // Timeout?
+ return true;
+ } else {
+ // Figure out which one it is and call it
+ CritScope cr(&crit_);
+ int index = dw - WSA_WAIT_EVENT_0;
+ if (index > 0) {
+ --index; // The first event is the socket event
+ uint64_t key = event_owners[index];
+ if (!dispatcher_by_key_.count(key)) {
+ // The dispatcher could have been removed while waiting for events.
+ continue;
+ }
+ Dispatcher* disp = dispatcher_by_key_.at(key);
+ disp->OnEvent(0, 0);
+ } else if (process_io) {
+ // Iterate only on the dispatchers whose sockets were passed into
+ // WSAEventSelect; this avoids the ABA problem (a socket being
+ // destroyed and a new one created with the same SOCKET handle).
+ for (uint64_t key : current_dispatcher_keys_) {
+ if (!dispatcher_by_key_.count(key)) {
+ continue;
+ }
+ Dispatcher* disp = dispatcher_by_key_.at(key);
+ SOCKET s = disp->GetSocket();
+ if (s == INVALID_SOCKET)
+ continue;
+
+ WSANETWORKEVENTS wsaEvents;
+ int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
+ if (err == 0) {
+ {
+ if ((wsaEvents.lNetworkEvents & FD_READ) &&
+ wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer got FD_READ_BIT error "
+ << wsaEvents.iErrorCode[FD_READ_BIT];
+ }
+ if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
+ wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer got FD_WRITE_BIT error "
+ << wsaEvents.iErrorCode[FD_WRITE_BIT];
+ }
+ if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
+ wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer got FD_CONNECT_BIT error "
+ << wsaEvents.iErrorCode[FD_CONNECT_BIT];
+ }
+ if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
+ wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer got FD_ACCEPT_BIT error "
+ << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
+ }
+ if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
+ wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
+ RTC_LOG(LS_WARNING)
+ << "PhysicalSocketServer got FD_CLOSE_BIT error "
+ << wsaEvents.iErrorCode[FD_CLOSE_BIT];
+ }
+ }
+ uint32_t ff = 0;
+ int errcode = 0;
+ if (wsaEvents.lNetworkEvents & FD_READ)
+ ff |= DE_READ;
+ if (wsaEvents.lNetworkEvents & FD_WRITE)
+ ff |= DE_WRITE;
+ if (wsaEvents.lNetworkEvents & FD_CONNECT) {
+ if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
+ ff |= DE_CONNECT;
+ } else {
+ ff |= DE_CLOSE;
+ errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
+ }
+ }
+ if (wsaEvents.lNetworkEvents & FD_ACCEPT)
+ ff |= DE_ACCEPT;
+ if (wsaEvents.lNetworkEvents & FD_CLOSE) {
+ ff |= DE_CLOSE;
+ errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
+ }
+ if (ff != 0) {
+ disp->OnEvent(ff, errcode);
+ }
+ }
+ }
+ }
+
+ // Reset the network event until new activity occurs
+ WSAResetEvent(socket_ev_);
+ }
+
+ // Break?
+ if (!fWait_)
+ break;
+ cmsElapsed = TimeSince(msStart);
+ if ((cmsWait != kForeverMs) && (cmsElapsed >= cmsWait)) {
+ break;
+ }
+ }
+
+ // Done
+ return true;
+}
+#endif // WEBRTC_WIN
+
+} // namespace rtc