summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc')
-rw-r--r--third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc1125
1 files changed, 1125 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc b/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc
new file mode 100644
index 0000000000..67585b1fcd
--- /dev/null
+++ b/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc
@@ -0,0 +1,1125 @@
+/*
+ * Copyright 2006 The WebRTC Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#if defined(WEBRTC_POSIX)
+#include <netinet/in.h>
+#endif
+
+#include <algorithm>
+#include <memory>
+#include <utility>
+
+#include "absl/memory/memory.h"
+#include "api/units/time_delta.h"
+#include "rtc_base/arraysize.h"
+#include "rtc_base/async_packet_socket.h"
+#include "rtc_base/async_udp_socket.h"
+#include "rtc_base/fake_clock.h"
+#include "rtc_base/gunit.h"
+#include "rtc_base/ip_address.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/socket.h"
+#include "rtc_base/socket_address.h"
+#include "rtc_base/task_utils/repeating_task.h"
+#include "rtc_base/test_client.h"
+#include "rtc_base/test_utils.h"
+#include "rtc_base/third_party/sigslot/sigslot.h"
+#include "rtc_base/thread.h"
+#include "rtc_base/time_utils.h"
+#include "rtc_base/virtual_socket_server.h"
+#include "test/gtest.h"
+
+namespace rtc {
+namespace {
+
+using ::webrtc::RepeatingTaskHandle;
+using ::webrtc::TimeDelta;
+using ::webrtc::testing::SSE_CLOSE;
+using ::webrtc::testing::SSE_ERROR;
+using ::webrtc::testing::SSE_OPEN;
+using ::webrtc::testing::SSE_READ;
+using ::webrtc::testing::SSE_WRITE;
+using ::webrtc::testing::StreamSink;
+
+// Sends at a constant rate but with random packet sizes.
+struct Sender {
+ Sender(Thread* th, Socket* s, uint32_t rt)
+ : thread(th),
+ socket(std::make_unique<AsyncUDPSocket>(s)),
+ rate(rt),
+ count(0) {
+ last_send = rtc::TimeMillis();
+
+ periodic = RepeatingTaskHandle::DelayedStart(thread, NextDelay(), [this] {
+ int64_t cur_time = rtc::TimeMillis();
+ int64_t delay = cur_time - last_send;
+ uint32_t size =
+ std::clamp<uint32_t>(rate * delay / 1000, sizeof(uint32_t), 4096);
+ count += size;
+ memcpy(dummy, &cur_time, sizeof(cur_time));
+ socket->Send(dummy, size, options);
+
+ last_send = cur_time;
+ return NextDelay();
+ });
+ }
+
+ TimeDelta NextDelay() {
+ int size = (rand() % 4096) + 1;
+ return TimeDelta::Seconds(1) * size / rate;
+ }
+
+ Thread* thread;
+ std::unique_ptr<AsyncUDPSocket> socket;
+ rtc::PacketOptions options;
+ RepeatingTaskHandle periodic;
+ uint32_t rate; // bytes per second
+ uint32_t count;
+ int64_t last_send;
+ char dummy[4096];
+};
+
+struct Receiver : public sigslot::has_slots<> {
+ Receiver(Thread* th, Socket* s, uint32_t bw)
+ : thread(th),
+ socket(std::make_unique<AsyncUDPSocket>(s)),
+ bandwidth(bw),
+ count(0),
+ sec_count(0),
+ sum(0),
+ sum_sq(0),
+ samples(0) {
+ socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket);
+ periodic = RepeatingTaskHandle::DelayedStart(
+ thread, TimeDelta::Seconds(1), [this] {
+ // It is always possible for us to receive more than expected because
+ // packets can be further delayed in delivery.
+ if (bandwidth > 0) {
+ EXPECT_LE(sec_count, 5 * bandwidth / 4);
+ }
+ sec_count = 0;
+ return TimeDelta::Seconds(1);
+ });
+ }
+
+ ~Receiver() override { periodic.Stop(); }
+
+ void OnReadPacket(AsyncPacketSocket* s,
+ const char* data,
+ size_t size,
+ const SocketAddress& remote_addr,
+ const int64_t& /* packet_time_us */) {
+ ASSERT_EQ(socket.get(), s);
+ ASSERT_GE(size, 4U);
+
+ count += size;
+ sec_count += size;
+
+ uint32_t send_time = *reinterpret_cast<const uint32_t*>(data);
+ uint32_t recv_time = rtc::TimeMillis();
+ uint32_t delay = recv_time - send_time;
+ sum += delay;
+ sum_sq += delay * delay;
+ samples += 1;
+ }
+
+ Thread* thread;
+ std::unique_ptr<AsyncUDPSocket> socket;
+ uint32_t bandwidth;
+ RepeatingTaskHandle periodic;
+ size_t count;
+ size_t sec_count;
+ double sum;
+ double sum_sq;
+ uint32_t samples;
+};
+
+// Note: This test uses a fake clock in addition to a virtual network.
+class VirtualSocketServerTest : public ::testing::Test {
+ public:
+ VirtualSocketServerTest()
+ : ss_(&fake_clock_),
+ thread_(&ss_),
+ kIPv4AnyAddress(IPAddress(INADDR_ANY), 0),
+ kIPv6AnyAddress(IPAddress(in6addr_any), 0) {}
+
+ void CheckPortIncrementalization(const SocketAddress& post,
+ const SocketAddress& pre) {
+ EXPECT_EQ(post.port(), pre.port() + 1);
+ IPAddress post_ip = post.ipaddr();
+ IPAddress pre_ip = pre.ipaddr();
+ EXPECT_EQ(pre_ip.family(), post_ip.family());
+ if (post_ip.family() == AF_INET) {
+ in_addr pre_ipv4 = pre_ip.ipv4_address();
+ in_addr post_ipv4 = post_ip.ipv4_address();
+ EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr);
+ } else if (post_ip.family() == AF_INET6) {
+ in6_addr post_ip6 = post_ip.ipv6_address();
+ in6_addr pre_ip6 = pre_ip.ipv6_address();
+ uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr);
+ uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr);
+ EXPECT_EQ(post_as_ints[3], pre_as_ints[3]);
+ }
+ }
+
+ // Test a client can bind to the any address, and all sent packets will have
+ // the default source address. Also, it can receive packets sent to the
+ // default address.
+ void TestDefaultSourceAddress(const IPAddress& default_address) {
+ ss_.SetDefaultSourceAddress(default_address);
+
+ // Create client1 bound to the any address.
+ Socket* socket = ss_.CreateSocket(default_address.family(), SOCK_DGRAM);
+ socket->Bind(EmptySocketAddressWithFamily(default_address.family()));
+ SocketAddress client1_any_addr = socket->GetLocalAddress();
+ EXPECT_TRUE(client1_any_addr.IsAnyIP());
+ auto client1 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket), &fake_clock_);
+
+ // Create client2 bound to the address route.
+ Socket* socket2 = ss_.CreateSocket(default_address.family(), SOCK_DGRAM);
+ socket2->Bind(SocketAddress(default_address, 0));
+ SocketAddress client2_addr = socket2->GetLocalAddress();
+ EXPECT_FALSE(client2_addr.IsAnyIP());
+ auto client2 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_);
+
+ // Client1 sends to client2, client2 should see the default address as
+ // client1's address.
+ SocketAddress client1_addr;
+ EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
+ EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
+ EXPECT_EQ(client1_addr,
+ SocketAddress(default_address, client1_any_addr.port()));
+
+ // Client2 can send back to client1's default address.
+ EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr));
+ EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
+ }
+
+ void BasicTest(const SocketAddress& initial_addr) {
+ Socket* socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM);
+ socket->Bind(initial_addr);
+ SocketAddress server_addr = socket->GetLocalAddress();
+ // Make sure VSS didn't switch families on us.
+ EXPECT_EQ(server_addr.family(), initial_addr.family());
+
+ auto client1 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket), &fake_clock_);
+ Socket* socket2 = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM);
+ auto client2 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_);
+
+ SocketAddress client2_addr;
+ EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
+ EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
+
+ SocketAddress client1_addr;
+ EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
+ EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
+ EXPECT_EQ(client1_addr, server_addr);
+
+ SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family());
+ for (int i = 0; i < 10; i++) {
+ client2 = std::make_unique<TestClient>(
+ absl::WrapUnique(AsyncUDPSocket::Create(&ss_, empty)), &fake_clock_);
+
+ SocketAddress next_client2_addr;
+ EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
+ EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr));
+ CheckPortIncrementalization(next_client2_addr, client2_addr);
+ // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1);
+
+ SocketAddress server_addr2;
+ EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr));
+ EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2));
+ EXPECT_EQ(server_addr2, server_addr);
+
+ client2_addr = next_client2_addr;
+ }
+ }
+
+ // initial_addr should be made from either INADDR_ANY or in6addr_any.
+ void ConnectTest(const SocketAddress& initial_addr) {
+ StreamSink sink;
+ SocketAddress accept_addr;
+ const SocketAddress kEmptyAddr =
+ EmptySocketAddressWithFamily(initial_addr.family());
+
+ // Create client
+ std::unique_ptr<Socket> client =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(client.get());
+ EXPECT_EQ(client->GetState(), Socket::CS_CLOSED);
+ EXPECT_TRUE(client->GetLocalAddress().IsNil());
+
+ // Create server
+ std::unique_ptr<Socket> server =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(server.get());
+ EXPECT_NE(0, server->Listen(5)); // Bind required
+ EXPECT_EQ(0, server->Bind(initial_addr));
+ EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+ EXPECT_EQ(0, server->Listen(5));
+ EXPECT_EQ(server->GetState(), Socket::CS_CONNECTING);
+
+ // No pending server connections
+ EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
+ EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
+ EXPECT_EQ(AF_UNSPEC, accept_addr.family());
+
+ // Attempt connect to listening socket
+ EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+ EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind
+ EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family()); // Implicit Bind
+ EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress());
+
+ // Client is connecting
+ EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING);
+ EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
+ EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Client still connecting
+ EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING);
+ EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
+ EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
+
+ // Server has pending connection
+ EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
+ std::unique_ptr<Socket> accepted =
+ absl::WrapUnique(server->Accept(&accept_addr));
+ EXPECT_TRUE(nullptr != accepted);
+ EXPECT_NE(accept_addr, kEmptyAddr);
+ EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr);
+
+ EXPECT_EQ(accepted->GetState(), Socket::CS_CONNECTED);
+ EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress());
+ EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress());
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Client has connected
+ EXPECT_EQ(client->GetState(), Socket::CS_CONNECTED);
+ EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN));
+ EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
+ EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
+ EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress());
+ }
+
+ void ConnectToNonListenerTest(const SocketAddress& initial_addr) {
+ StreamSink sink;
+ SocketAddress accept_addr;
+ const SocketAddress nil_addr;
+ const SocketAddress empty_addr =
+ EmptySocketAddressWithFamily(initial_addr.family());
+
+ // Create client
+ std::unique_ptr<Socket> client =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(client.get());
+
+ // Create server
+ std::unique_ptr<Socket> server =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(server.get());
+ EXPECT_EQ(0, server->Bind(initial_addr));
+ EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+ // Attempt connect to non-listening socket
+ EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // No pending server connections
+ EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
+ EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
+ EXPECT_EQ(accept_addr, nil_addr);
+
+ // Connection failed
+ EXPECT_EQ(client->GetState(), Socket::CS_CLOSED);
+ EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
+ EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
+ EXPECT_EQ(client->GetRemoteAddress(), nil_addr);
+ }
+
+ void CloseDuringConnectTest(const SocketAddress& initial_addr) {
+ StreamSink sink;
+ SocketAddress accept_addr;
+ const SocketAddress empty_addr =
+ EmptySocketAddressWithFamily(initial_addr.family());
+
+ // Create client and server
+ std::unique_ptr<Socket> client(
+ ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(client.get());
+ std::unique_ptr<Socket> server(
+ ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(server.get());
+
+ // Initiate connect
+ EXPECT_EQ(0, server->Bind(initial_addr));
+ EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+
+ EXPECT_EQ(0, server->Listen(5));
+ EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+ // Server close before socket enters accept queue
+ EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
+ server->Close();
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Result: connection failed
+ EXPECT_EQ(client->GetState(), Socket::CS_CLOSED);
+ EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
+
+ server.reset(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(server.get());
+
+ // Initiate connect
+ EXPECT_EQ(0, server->Bind(initial_addr));
+ EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+
+ EXPECT_EQ(0, server->Listen(5));
+ EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Server close while socket is in accept queue
+ EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
+ server->Close();
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Result: connection failed
+ EXPECT_EQ(client->GetState(), Socket::CS_CLOSED);
+ EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
+
+ // New server
+ server.reset(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(server.get());
+
+ // Initiate connect
+ EXPECT_EQ(0, server->Bind(initial_addr));
+ EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+
+ EXPECT_EQ(0, server->Listen(5));
+ EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Server accepts connection
+ EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
+ std::unique_ptr<Socket> accepted(server->Accept(&accept_addr));
+ ASSERT_TRUE(nullptr != accepted.get());
+ sink.Monitor(accepted.get());
+
+ // Client closes before connection complets
+ EXPECT_EQ(accepted->GetState(), Socket::CS_CONNECTED);
+
+ // Connected message has not been processed yet.
+ EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING);
+ client->Close();
+
+ ss_.ProcessMessagesUntilIdle();
+
+ // Result: accepted socket closes
+ EXPECT_EQ(accepted->GetState(), Socket::CS_CLOSED);
+ EXPECT_TRUE(sink.Check(accepted.get(), SSE_CLOSE));
+ EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
+ }
+
+ void CloseTest(const SocketAddress& initial_addr) {
+ StreamSink sink;
+ const SocketAddress kEmptyAddr;
+
+ // Create clients
+ std::unique_ptr<Socket> a =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(a.get());
+ a->Bind(initial_addr);
+ EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
+
+ std::unique_ptr<Socket> b =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(b.get());
+ b->Bind(initial_addr);
+ EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
+
+ EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
+ EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ EXPECT_TRUE(sink.Check(a.get(), SSE_OPEN));
+ EXPECT_EQ(a->GetState(), Socket::CS_CONNECTED);
+ EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress());
+
+ EXPECT_TRUE(sink.Check(b.get(), SSE_OPEN));
+ EXPECT_EQ(b->GetState(), Socket::CS_CONNECTED);
+ EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress());
+
+ EXPECT_EQ(1, a->Send("a", 1));
+ b->Close();
+ EXPECT_EQ(1, a->Send("b", 1));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ char buffer[10];
+ EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
+ EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr));
+
+ EXPECT_TRUE(sink.Check(a.get(), SSE_CLOSE));
+ EXPECT_EQ(a->GetState(), Socket::CS_CLOSED);
+ EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr);
+
+ // No signal for Closer
+ EXPECT_FALSE(sink.Check(b.get(), SSE_CLOSE));
+ EXPECT_EQ(b->GetState(), Socket::CS_CLOSED);
+ EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr);
+ }
+
+ void TcpSendTest(const SocketAddress& initial_addr) {
+ StreamSink sink;
+ const SocketAddress kEmptyAddr;
+
+ // Connect two sockets
+ std::unique_ptr<Socket> a =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(a.get());
+ a->Bind(initial_addr);
+ EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
+
+ std::unique_ptr<Socket> b =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ sink.Monitor(b.get());
+ b->Bind(initial_addr);
+ EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
+
+ EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
+ EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
+
+ ss_.ProcessMessagesUntilIdle();
+
+ const size_t kBufferSize = 2000;
+ ss_.set_send_buffer_capacity(kBufferSize);
+ ss_.set_recv_buffer_capacity(kBufferSize);
+
+ const size_t kDataSize = 5000;
+ char send_buffer[kDataSize], recv_buffer[kDataSize];
+ for (size_t i = 0; i < kDataSize; ++i)
+ send_buffer[i] = static_cast<char>(i % 256);
+ memset(recv_buffer, 0, sizeof(recv_buffer));
+ size_t send_pos = 0, recv_pos = 0;
+
+ // Can't send more than send buffer in one write
+ int result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+ EXPECT_EQ(static_cast<int>(kBufferSize), result);
+ send_pos += result;
+
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE));
+ EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
+
+ // Receive buffer is already filled, fill send buffer again
+ result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+ EXPECT_EQ(static_cast<int>(kBufferSize), result);
+ send_pos += result;
+
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE));
+ EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
+
+ // No more room in send or receive buffer
+ result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+ EXPECT_EQ(-1, result);
+ EXPECT_TRUE(a->IsBlocking());
+
+ // Read a subset of the data
+ result = b->Recv(recv_buffer + recv_pos, 500, nullptr);
+ EXPECT_EQ(500, result);
+ recv_pos += result;
+
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_TRUE(sink.Check(a.get(), SSE_WRITE));
+ EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
+
+ // Room for more on the sending side
+ result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+ EXPECT_EQ(500, result);
+ send_pos += result;
+
+ // Empty the recv buffer
+ while (true) {
+ result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
+ if (result < 0) {
+ EXPECT_EQ(-1, result);
+ EXPECT_TRUE(b->IsBlocking());
+ break;
+ }
+ recv_pos += result;
+ }
+
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
+
+ // Continue to empty the recv buffer
+ while (true) {
+ result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
+ if (result < 0) {
+ EXPECT_EQ(-1, result);
+ EXPECT_TRUE(b->IsBlocking());
+ break;
+ }
+ recv_pos += result;
+ }
+
+ // Send last of the data
+ result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+ EXPECT_EQ(500, result);
+ send_pos += result;
+
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
+
+ // Receive the last of the data
+ while (true) {
+ result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
+ if (result < 0) {
+ EXPECT_EQ(-1, result);
+ EXPECT_TRUE(b->IsBlocking());
+ break;
+ }
+ recv_pos += result;
+ }
+
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
+
+ // The received data matches the sent data
+ EXPECT_EQ(kDataSize, send_pos);
+ EXPECT_EQ(kDataSize, recv_pos);
+ EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize));
+ }
+
+ void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) {
+ const SocketAddress kEmptyAddr;
+
+ // Connect two sockets
+ std::unique_ptr<Socket> a =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ std::unique_ptr<Socket> b =
+ absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM));
+ a->Bind(initial_addr);
+ EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
+
+ b->Bind(initial_addr);
+ EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
+
+ EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
+ EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
+ ss_.ProcessMessagesUntilIdle();
+
+ // First, deliver all packets in 0 ms.
+ char buffer[2] = {0, 0};
+ const char cNumPackets = 10;
+ for (char i = 0; i < cNumPackets; ++i) {
+ buffer[0] = '0' + i;
+ EXPECT_EQ(1, a->Send(buffer, 1));
+ }
+
+ ss_.ProcessMessagesUntilIdle();
+
+ for (char i = 0; i < cNumPackets; ++i) {
+ EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
+ EXPECT_EQ(static_cast<char>('0' + i), buffer[0]);
+ }
+
+ // Next, deliver packets at random intervals
+ const uint32_t mean = 50;
+ const uint32_t stddev = 50;
+
+ ss_.set_delay_mean(mean);
+ ss_.set_delay_stddev(stddev);
+ ss_.UpdateDelayDistribution();
+
+ for (char i = 0; i < cNumPackets; ++i) {
+ buffer[0] = 'A' + i;
+ EXPECT_EQ(1, a->Send(buffer, 1));
+ }
+
+ ss_.ProcessMessagesUntilIdle();
+
+ for (char i = 0; i < cNumPackets; ++i) {
+ EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
+ EXPECT_EQ(static_cast<char>('A' + i), buffer[0]);
+ }
+ }
+
+ // It is important that initial_addr's port has to be 0 such that the
+ // incremental port behavior could ensure the 2 Binds result in different
+ // address.
+ void BandwidthTest(const SocketAddress& initial_addr) {
+ Socket* send_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM);
+ Socket* recv_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM);
+ ASSERT_EQ(0, send_socket->Bind(initial_addr));
+ ASSERT_EQ(0, recv_socket->Bind(initial_addr));
+ EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
+ EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
+ ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
+
+ uint32_t bandwidth = 64 * 1024;
+ ss_.set_bandwidth(bandwidth);
+
+ Thread* pthMain = Thread::Current();
+ Sender sender(pthMain, send_socket, 80 * 1024);
+ Receiver receiver(pthMain, recv_socket, bandwidth);
+
+ // Allow the sender to run for 5 (simulated) seconds, then be stopped for 5
+ // seconds.
+ SIMULATED_WAIT(false, 5000, fake_clock_);
+ sender.periodic.Stop();
+ SIMULATED_WAIT(false, 5000, fake_clock_);
+
+ // Ensure the observed bandwidth fell within a reasonable margin of error.
+ EXPECT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4);
+ EXPECT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s
+
+ ss_.set_bandwidth(0);
+ }
+
+ // It is important that initial_addr's port has to be 0 such that the
+ // incremental port behavior could ensure the 2 Binds result in different
+ // address.
+ void DelayTest(const SocketAddress& initial_addr) {
+ time_t seed = ::time(nullptr);
+ RTC_LOG(LS_VERBOSE) << "seed = " << seed;
+ srand(static_cast<unsigned int>(seed));
+
+ const uint32_t mean = 2000;
+ const uint32_t stddev = 500;
+
+ ss_.set_delay_mean(mean);
+ ss_.set_delay_stddev(stddev);
+ ss_.UpdateDelayDistribution();
+
+ Socket* send_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM);
+ Socket* recv_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM);
+ ASSERT_EQ(0, send_socket->Bind(initial_addr));
+ ASSERT_EQ(0, recv_socket->Bind(initial_addr));
+ EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
+ EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
+ ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
+
+ Thread* pthMain = Thread::Current();
+ // Avg packet size is 2K, so at 200KB/s for 10s, we should see about
+ // 1000 packets, which is necessary to get a good distribution.
+ Sender sender(pthMain, send_socket, 100 * 2 * 1024);
+ Receiver receiver(pthMain, recv_socket, 0);
+
+ // Simulate 10 seconds of packets being sent, then check the observed delay
+ // distribution.
+ SIMULATED_WAIT(false, 10000, fake_clock_);
+ sender.periodic.Stop();
+ receiver.periodic.Stop();
+ ss_.ProcessMessagesUntilIdle();
+
+ const double sample_mean = receiver.sum / receiver.samples;
+ double num =
+ receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum;
+ double den = receiver.samples * (receiver.samples - 1);
+ const double sample_stddev = sqrt(num / den);
+ RTC_LOG(LS_VERBOSE) << "mean=" << sample_mean
+ << " stddev=" << sample_stddev;
+
+ EXPECT_LE(500u, receiver.samples);
+ // We initially used a 0.1 fudge factor, but on the build machine, we
+ // have seen the value differ by as much as 0.13.
+ EXPECT_NEAR(mean, sample_mean, 0.15 * mean);
+ EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev);
+
+ ss_.set_delay_mean(0);
+ ss_.set_delay_stddev(0);
+ ss_.UpdateDelayDistribution();
+ }
+
+ // Test cross-family communication between a client bound to client_addr and a
+ // server bound to server_addr. shouldSucceed indicates if communication is
+ // expected to work or not.
+ void CrossFamilyConnectionTest(const SocketAddress& client_addr,
+ const SocketAddress& server_addr,
+ bool shouldSucceed) {
+ StreamSink sink;
+ SocketAddress accept_address;
+ const SocketAddress kEmptyAddr;
+
+ // Client gets a IPv4 address
+ std::unique_ptr<Socket> client =
+ absl::WrapUnique(ss_.CreateSocket(client_addr.family(), SOCK_STREAM));
+ sink.Monitor(client.get());
+ EXPECT_EQ(client->GetState(), Socket::CS_CLOSED);
+ EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr);
+ client->Bind(client_addr);
+
+ // Server gets a non-mapped non-any IPv6 address.
+ // IPv4 sockets should not be able to connect to this.
+ std::unique_ptr<Socket> server =
+ absl::WrapUnique(ss_.CreateSocket(server_addr.family(), SOCK_STREAM));
+ sink.Monitor(server.get());
+ server->Bind(server_addr);
+ server->Listen(5);
+
+ if (shouldSucceed) {
+ EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
+ std::unique_ptr<Socket> accepted =
+ absl::WrapUnique(server->Accept(&accept_address));
+ EXPECT_TRUE(nullptr != accepted);
+ EXPECT_NE(kEmptyAddr, accept_address);
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN));
+ EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
+ } else {
+ // Check that the connection failed.
+ EXPECT_EQ(-1, client->Connect(server->GetLocalAddress()));
+ ss_.ProcessMessagesUntilIdle();
+
+ EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
+ EXPECT_TRUE(nullptr == server->Accept(&accept_address));
+ EXPECT_EQ(accept_address, kEmptyAddr);
+ EXPECT_EQ(client->GetState(), Socket::CS_CLOSED);
+ EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
+ EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr);
+ }
+ }
+
+ // Test cross-family datagram sending between a client bound to client_addr
+ // and a server bound to server_addr. shouldSucceed indicates if sending is
+ // expected to succeed or not.
+ void CrossFamilyDatagramTest(const SocketAddress& client_addr,
+ const SocketAddress& server_addr,
+ bool shouldSucceed) {
+ Socket* socket = ss_.CreateSocket(AF_INET, SOCK_DGRAM);
+ socket->Bind(server_addr);
+ SocketAddress bound_server_addr = socket->GetLocalAddress();
+ auto client1 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket), &fake_clock_);
+
+ Socket* socket2 = ss_.CreateSocket(AF_INET, SOCK_DGRAM);
+ socket2->Bind(client_addr);
+ auto client2 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_);
+ SocketAddress client2_addr;
+
+ if (shouldSucceed) {
+ EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr));
+ EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
+ SocketAddress client1_addr;
+ EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
+ EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
+ EXPECT_EQ(client1_addr, bound_server_addr);
+ } else {
+ EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr));
+ EXPECT_TRUE(client1->CheckNoPacket());
+ }
+ }
+
+ protected:
+ rtc::ScopedFakeClock fake_clock_;
+ VirtualSocketServer ss_;
+ AutoSocketServerThread thread_;
+ const SocketAddress kIPv4AnyAddress;
+ const SocketAddress kIPv6AnyAddress;
+};
+
+TEST_F(VirtualSocketServerTest, basic_v4) {
+ SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000);
+ BasicTest(ipv4_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, basic_v6) {
+ SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000);
+ BasicTest(ipv6_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) {
+ IPAddress ipv4_default_addr(0x01020304);
+ TestDefaultSourceAddress(ipv4_default_addr);
+}
+
+TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) {
+ IPAddress ipv6_default_addr;
+ EXPECT_TRUE(
+ IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr));
+ TestDefaultSourceAddress(ipv6_default_addr);
+}
+
+TEST_F(VirtualSocketServerTest, connect_v4) {
+ ConnectTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, connect_v6) {
+ ConnectTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) {
+ ConnectToNonListenerTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) {
+ ConnectToNonListenerTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_during_connect_v4) {
+ CloseDuringConnectTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_during_connect_v6) {
+ CloseDuringConnectTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_v4) {
+ CloseTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_v6) {
+ CloseTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, tcp_send_v4) {
+ TcpSendTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, tcp_send_v6) {
+ TcpSendTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) {
+ TcpSendsPacketsInOrderTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) {
+ TcpSendsPacketsInOrderTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, bandwidth_v4) {
+ BandwidthTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, bandwidth_v6) {
+ BandwidthTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, delay_v4) {
+ DelayTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, delay_v6) {
+ DelayTest(kIPv6AnyAddress);
+}
+
+// Works, receiving socket sees 127.0.0.2.
+TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) {
+ CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0),
+ SocketAddress("0.0.0.0", 5000), true);
+}
+
+// Fails.
+TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) {
+ CrossFamilyConnectionTest(SocketAddress("::2", 0),
+ SocketAddress("0.0.0.0", 5000), false);
+}
+
+// Fails.
+TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) {
+ CrossFamilyConnectionTest(SocketAddress("::2", 0),
+ SocketAddress("::ffff:127.0.0.1", 5000), false);
+}
+
+// Works. receiving socket sees ::ffff:127.0.0.2.
+TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) {
+ CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
+ SocketAddress("::", 5000), true);
+}
+
+// Fails.
+TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) {
+ CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
+ SocketAddress("::1", 5000), false);
+}
+
+// Works. Receiving socket sees ::ffff:127.0.0.1.
+TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) {
+ CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0),
+ SocketAddress("::ffff:127.0.0.2", 5000), true);
+}
+
+// Works, receiving socket sees a result from GetNextIP.
+TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) {
+ CrossFamilyConnectionTest(SocketAddress("::", 0),
+ SocketAddress("0.0.0.0", 5000), true);
+}
+
+// Works, receiving socket sees whatever GetNextIP gave the client.
+TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) {
+ CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0),
+ SocketAddress("::", 5000), true);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) {
+ CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0),
+ SocketAddress("::", 5000), true);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) {
+ CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0),
+ SocketAddress("0.0.0.0", 5000), true);
+}
+
+TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) {
+ CrossFamilyDatagramTest(SocketAddress("::2", 0),
+ SocketAddress("0.0.0.0", 5000), false);
+}
+
+TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) {
+ CrossFamilyDatagramTest(SocketAddress("::2", 0),
+ SocketAddress("::ffff:127.0.0.1", 5000), false);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) {
+ CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
+ SocketAddress("::", 5000), true);
+}
+
+TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) {
+ CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
+ SocketAddress("::1", 5000), false);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) {
+ CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0),
+ SocketAddress("::ffff:127.0.0.2", 5000), true);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) {
+ CrossFamilyDatagramTest(SocketAddress("::", 0),
+ SocketAddress("0.0.0.0", 5000), true);
+}
+
+TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) {
+ Socket* socket1 = ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_DGRAM);
+ std::unique_ptr<Socket> socket2 =
+ absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_DGRAM));
+ socket1->Bind(kIPv4AnyAddress);
+ socket2->Bind(kIPv4AnyAddress);
+ auto client1 = std::make_unique<TestClient>(
+ std::make_unique<AsyncUDPSocket>(socket1), &fake_clock_);
+
+ ss_.SetSendingBlocked(true);
+ EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
+ EXPECT_TRUE(socket1->IsBlocking());
+ EXPECT_EQ(0, client1->ready_to_send_count());
+
+ ss_.SetSendingBlocked(false);
+ EXPECT_EQ(1, client1->ready_to_send_count());
+ EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
+}
+
+TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) {
+ constexpr size_t kBufferSize = 1024;
+ ss_.set_send_buffer_capacity(kBufferSize);
+ ss_.set_recv_buffer_capacity(kBufferSize);
+
+ StreamSink sink;
+ std::unique_ptr<Socket> socket1 =
+ absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_STREAM));
+ std::unique_ptr<Socket> socket2 =
+ absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_STREAM));
+ sink.Monitor(socket1.get());
+ sink.Monitor(socket2.get());
+ socket1->Bind(kIPv4AnyAddress);
+ socket2->Bind(kIPv4AnyAddress);
+
+ // Connect sockets.
+ EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress()));
+ EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress()));
+ ss_.ProcessMessagesUntilIdle();
+
+ char data[kBufferSize] = {};
+
+ // First Send call will fill the send buffer but not send anything.
+ ss_.SetSendingBlocked(true);
+ EXPECT_EQ(static_cast<int>(kBufferSize), socket1->Send(data, kBufferSize));
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE));
+ EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ));
+ EXPECT_FALSE(socket1->IsBlocking());
+
+ // Since the send buffer is full, next Send will result in EWOULDBLOCK.
+ EXPECT_EQ(-1, socket1->Send(data, kBufferSize));
+ EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE));
+ EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ));
+ EXPECT_TRUE(socket1->IsBlocking());
+
+ // When sending is unblocked, the buffered data should be sent and
+ // SignalWriteEvent should fire.
+ ss_.SetSendingBlocked(false);
+ ss_.ProcessMessagesUntilIdle();
+ EXPECT_TRUE(sink.Check(socket1.get(), SSE_WRITE));
+ EXPECT_TRUE(sink.Check(socket2.get(), SSE_READ));
+}
+
+TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) {
+ const uint32_t kTestMean[] = {10, 100, 333, 1000};
+ const double kTestDev[] = {0.25, 0.1, 0.01};
+ // TODO(deadbeef): The current code only works for 1000 data points or more.
+ const uint32_t kTestSamples[] = {/*10, 100,*/ 1000};
+ for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) {
+ for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) {
+ for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) {
+ ASSERT_LT(0u, kTestSamples[sidx]);
+ const uint32_t kStdDev =
+ static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]);
+ std::unique_ptr<VirtualSocketServer::Function> f =
+ VirtualSocketServer::CreateDistribution(kTestMean[midx], kStdDev,
+ kTestSamples[sidx]);
+ ASSERT_TRUE(nullptr != f.get());
+ ASSERT_EQ(kTestSamples[sidx], f->size());
+ double sum = 0;
+ for (uint32_t i = 0; i < f->size(); ++i) {
+ sum += (*f)[i].second;
+ }
+ const double mean = sum / f->size();
+ double sum_sq_dev = 0;
+ for (uint32_t i = 0; i < f->size(); ++i) {
+ double dev = (*f)[i].second - mean;
+ sum_sq_dev += dev * dev;
+ }
+ const double stddev = sqrt(sum_sq_dev / f->size());
+ EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx])
+ << "M=" << kTestMean[midx] << " SD=" << kStdDev
+ << " N=" << kTestSamples[sidx];
+ EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev)
+ << "M=" << kTestMean[midx] << " SD=" << kStdDev
+ << " N=" << kTestSamples[sidx];
+ }
+ }
+ }
+}
+
+} // namespace
+} // namespace rtc