diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /third_party/rust/either/src/lib.rs | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/either/src/lib.rs')
-rw-r--r-- | third_party/rust/either/src/lib.rs | 1471 |
1 files changed, 1471 insertions, 0 deletions
diff --git a/third_party/rust/either/src/lib.rs b/third_party/rust/either/src/lib.rs new file mode 100644 index 0000000000..9a271c3513 --- /dev/null +++ b/third_party/rust/either/src/lib.rs @@ -0,0 +1,1471 @@ +//! The enum [`Either`] with variants `Left` and `Right` is a general purpose +//! sum type with two cases. +//! +//! [`Either`]: enum.Either.html +//! +//! **Crate features:** +//! +//! * `"use_std"` +//! Enabled by default. Disable to make the library `#![no_std]`. +//! +//! * `"serde"` +//! Disabled by default. Enable to `#[derive(Serialize, Deserialize)]` for `Either` +//! + +#![doc(html_root_url = "https://docs.rs/either/1/")] +#![no_std] + +#[cfg(any(test, feature = "use_std"))] +extern crate std; + +#[cfg(feature = "serde")] +pub mod serde_untagged; + +#[cfg(feature = "serde")] +pub mod serde_untagged_optional; + +use core::convert::{AsMut, AsRef}; +use core::fmt; +use core::future::Future; +use core::iter; +use core::ops::Deref; +use core::ops::DerefMut; +use core::pin::Pin; + +#[cfg(any(test, feature = "use_std"))] +use std::error::Error; +#[cfg(any(test, feature = "use_std"))] +use std::io::{self, BufRead, Read, Seek, SeekFrom, Write}; + +pub use crate::Either::{Left, Right}; + +/// The enum `Either` with variants `Left` and `Right` is a general purpose +/// sum type with two cases. +/// +/// The `Either` type is symmetric and treats its variants the same way, without +/// preference. +/// (For representing success or error, use the regular `Result` enum instead.) +#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] +#[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)] +pub enum Either<L, R> { + /// A value of type `L`. + Left(L), + /// A value of type `R`. + Right(R), +} + +/// Evaluate the provided expression for both [`Either::Left`] and [`Either::Right`]. +/// +/// This macro is useful in cases where both sides of [`Either`] can be interacted with +/// in the same way even though the don't share the same type. +/// +/// Syntax: `either::for_both!(` *expression* `,` *pattern* `=>` *expression* `)` +/// +/// # Example +/// +/// ``` +/// use either::Either; +/// +/// fn length(owned_or_borrowed: Either<String, &'static str>) -> usize { +/// either::for_both!(owned_or_borrowed, s => s.len()) +/// } +/// +/// fn main() { +/// let borrowed = Either::Right("Hello world!"); +/// let owned = Either::Left("Hello world!".to_owned()); +/// +/// assert_eq!(length(borrowed), 12); +/// assert_eq!(length(owned), 12); +/// } +/// ``` +#[macro_export] +macro_rules! for_both { + ($value:expr, $pattern:pat => $result:expr) => { + match $value { + $crate::Either::Left($pattern) => $result, + $crate::Either::Right($pattern) => $result, + } + }; +} + +/// Macro for unwrapping the left side of an `Either`, which fails early +/// with the opposite side. Can only be used in functions that return +/// `Either` because of the early return of `Right` that it provides. +/// +/// See also `try_right!` for its dual, which applies the same just to the +/// right side. +/// +/// # Example +/// +/// ``` +/// use either::{Either, Left, Right}; +/// +/// fn twice(wrapper: Either<u32, &str>) -> Either<u32, &str> { +/// let value = either::try_left!(wrapper); +/// Left(value * 2) +/// } +/// +/// fn main() { +/// assert_eq!(twice(Left(2)), Left(4)); +/// assert_eq!(twice(Right("ups")), Right("ups")); +/// } +/// ``` +#[macro_export] +macro_rules! try_left { + ($expr:expr) => { + match $expr { + $crate::Left(val) => val, + $crate::Right(err) => return $crate::Right(::core::convert::From::from(err)), + } + }; +} + +/// Dual to `try_left!`, see its documentation for more information. +#[macro_export] +macro_rules! try_right { + ($expr:expr) => { + match $expr { + $crate::Left(err) => return $crate::Left(::core::convert::From::from(err)), + $crate::Right(val) => val, + } + }; +} + +impl<L: Clone, R: Clone> Clone for Either<L, R> { + fn clone(&self) -> Self { + match self { + Left(inner) => Left(inner.clone()), + Right(inner) => Right(inner.clone()), + } + } + + fn clone_from(&mut self, source: &Self) { + match (self, source) { + (Left(dest), Left(source)) => dest.clone_from(source), + (Right(dest), Right(source)) => dest.clone_from(source), + (dest, source) => *dest = source.clone(), + } + } +} + +impl<L, R> Either<L, R> { + /// Return true if the value is the `Left` variant. + /// + /// ``` + /// use either::*; + /// + /// let values = [Left(1), Right("the right value")]; + /// assert_eq!(values[0].is_left(), true); + /// assert_eq!(values[1].is_left(), false); + /// ``` + pub fn is_left(&self) -> bool { + match *self { + Left(_) => true, + Right(_) => false, + } + } + + /// Return true if the value is the `Right` variant. + /// + /// ``` + /// use either::*; + /// + /// let values = [Left(1), Right("the right value")]; + /// assert_eq!(values[0].is_right(), false); + /// assert_eq!(values[1].is_right(), true); + /// ``` + pub fn is_right(&self) -> bool { + !self.is_left() + } + + /// Convert the left side of `Either<L, R>` to an `Option<L>`. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, ()> = Left("some value"); + /// assert_eq!(left.left(), Some("some value")); + /// + /// let right: Either<(), _> = Right(321); + /// assert_eq!(right.left(), None); + /// ``` + pub fn left(self) -> Option<L> { + match self { + Left(l) => Some(l), + Right(_) => None, + } + } + + /// Convert the right side of `Either<L, R>` to an `Option<R>`. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, ()> = Left("some value"); + /// assert_eq!(left.right(), None); + /// + /// let right: Either<(), _> = Right(321); + /// assert_eq!(right.right(), Some(321)); + /// ``` + pub fn right(self) -> Option<R> { + match self { + Left(_) => None, + Right(r) => Some(r), + } + } + + /// Convert `&Either<L, R>` to `Either<&L, &R>`. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, ()> = Left("some value"); + /// assert_eq!(left.as_ref(), Left(&"some value")); + /// + /// let right: Either<(), _> = Right("some value"); + /// assert_eq!(right.as_ref(), Right(&"some value")); + /// ``` + pub fn as_ref(&self) -> Either<&L, &R> { + match *self { + Left(ref inner) => Left(inner), + Right(ref inner) => Right(inner), + } + } + + /// Convert `&mut Either<L, R>` to `Either<&mut L, &mut R>`. + /// + /// ``` + /// use either::*; + /// + /// fn mutate_left(value: &mut Either<u32, u32>) { + /// if let Some(l) = value.as_mut().left() { + /// *l = 999; + /// } + /// } + /// + /// let mut left = Left(123); + /// let mut right = Right(123); + /// mutate_left(&mut left); + /// mutate_left(&mut right); + /// assert_eq!(left, Left(999)); + /// assert_eq!(right, Right(123)); + /// ``` + pub fn as_mut(&mut self) -> Either<&mut L, &mut R> { + match *self { + Left(ref mut inner) => Left(inner), + Right(ref mut inner) => Right(inner), + } + } + + /// Convert `Pin<&Either<L, R>>` to `Either<Pin<&L>, Pin<&R>>`, + /// pinned projections of the inner variants. + pub fn as_pin_ref(self: Pin<&Self>) -> Either<Pin<&L>, Pin<&R>> { + // SAFETY: We can use `new_unchecked` because the `inner` parts are + // guaranteed to be pinned, as they come from `self` which is pinned. + unsafe { + match *Pin::get_ref(self) { + Left(ref inner) => Left(Pin::new_unchecked(inner)), + Right(ref inner) => Right(Pin::new_unchecked(inner)), + } + } + } + + /// Convert `Pin<&mut Either<L, R>>` to `Either<Pin<&mut L>, Pin<&mut R>>`, + /// pinned projections of the inner variants. + pub fn as_pin_mut(self: Pin<&mut Self>) -> Either<Pin<&mut L>, Pin<&mut R>> { + // SAFETY: `get_unchecked_mut` is fine because we don't move anything. + // We can use `new_unchecked` because the `inner` parts are guaranteed + // to be pinned, as they come from `self` which is pinned, and we never + // offer an unpinned `&mut L` or `&mut R` through `Pin<&mut Self>`. We + // also don't have an implementation of `Drop`, nor manual `Unpin`. + unsafe { + match *Pin::get_unchecked_mut(self) { + Left(ref mut inner) => Left(Pin::new_unchecked(inner)), + Right(ref mut inner) => Right(Pin::new_unchecked(inner)), + } + } + } + + /// Convert `Either<L, R>` to `Either<R, L>`. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, ()> = Left(123); + /// assert_eq!(left.flip(), Right(123)); + /// + /// let right: Either<(), _> = Right("some value"); + /// assert_eq!(right.flip(), Left("some value")); + /// ``` + pub fn flip(self) -> Either<R, L> { + match self { + Left(l) => Right(l), + Right(r) => Left(r), + } + } + + /// Apply the function `f` on the value in the `Left` variant if it is present rewrapping the + /// result in `Left`. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, u32> = Left(123); + /// assert_eq!(left.map_left(|x| x * 2), Left(246)); + /// + /// let right: Either<u32, _> = Right(123); + /// assert_eq!(right.map_left(|x| x * 2), Right(123)); + /// ``` + pub fn map_left<F, M>(self, f: F) -> Either<M, R> + where + F: FnOnce(L) -> M, + { + match self { + Left(l) => Left(f(l)), + Right(r) => Right(r), + } + } + + /// Apply the function `f` on the value in the `Right` variant if it is present rewrapping the + /// result in `Right`. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, u32> = Left(123); + /// assert_eq!(left.map_right(|x| x * 2), Left(123)); + /// + /// let right: Either<u32, _> = Right(123); + /// assert_eq!(right.map_right(|x| x * 2), Right(246)); + /// ``` + pub fn map_right<F, S>(self, f: F) -> Either<L, S> + where + F: FnOnce(R) -> S, + { + match self { + Left(l) => Left(l), + Right(r) => Right(f(r)), + } + } + + /// Apply one of two functions depending on contents, unifying their result. If the value is + /// `Left(L)` then the first function `f` is applied; if it is `Right(R)` then the second + /// function `g` is applied. + /// + /// ``` + /// use either::*; + /// + /// fn square(n: u32) -> i32 { (n * n) as i32 } + /// fn negate(n: i32) -> i32 { -n } + /// + /// let left: Either<u32, i32> = Left(4); + /// assert_eq!(left.either(square, negate), 16); + /// + /// let right: Either<u32, i32> = Right(-4); + /// assert_eq!(right.either(square, negate), 4); + /// ``` + pub fn either<F, G, T>(self, f: F, g: G) -> T + where + F: FnOnce(L) -> T, + G: FnOnce(R) -> T, + { + match self { + Left(l) => f(l), + Right(r) => g(r), + } + } + + /// Like `either`, but provide some context to whichever of the + /// functions ends up being called. + /// + /// ``` + /// // In this example, the context is a mutable reference + /// use either::*; + /// + /// let mut result = Vec::new(); + /// + /// let values = vec![Left(2), Right(2.7)]; + /// + /// for value in values { + /// value.either_with(&mut result, + /// |ctx, integer| ctx.push(integer), + /// |ctx, real| ctx.push(f64::round(real) as i32)); + /// } + /// + /// assert_eq!(result, vec![2, 3]); + /// ``` + pub fn either_with<Ctx, F, G, T>(self, ctx: Ctx, f: F, g: G) -> T + where + F: FnOnce(Ctx, L) -> T, + G: FnOnce(Ctx, R) -> T, + { + match self { + Left(l) => f(ctx, l), + Right(r) => g(ctx, r), + } + } + + /// Apply the function `f` on the value in the `Left` variant if it is present. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, u32> = Left(123); + /// assert_eq!(left.left_and_then::<_,()>(|x| Right(x * 2)), Right(246)); + /// + /// let right: Either<u32, _> = Right(123); + /// assert_eq!(right.left_and_then(|x| Right::<(), _>(x * 2)), Right(123)); + /// ``` + pub fn left_and_then<F, S>(self, f: F) -> Either<S, R> + where + F: FnOnce(L) -> Either<S, R>, + { + match self { + Left(l) => f(l), + Right(r) => Right(r), + } + } + + /// Apply the function `f` on the value in the `Right` variant if it is present. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, u32> = Left(123); + /// assert_eq!(left.right_and_then(|x| Right(x * 2)), Left(123)); + /// + /// let right: Either<u32, _> = Right(123); + /// assert_eq!(right.right_and_then(|x| Right(x * 2)), Right(246)); + /// ``` + pub fn right_and_then<F, S>(self, f: F) -> Either<L, S> + where + F: FnOnce(R) -> Either<L, S>, + { + match self { + Left(l) => Left(l), + Right(r) => f(r), + } + } + + /// Convert the inner value to an iterator. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, Vec<u32>> = Left(vec![1, 2, 3, 4, 5]); + /// let mut right: Either<Vec<u32>, _> = Right(vec![]); + /// right.extend(left.into_iter()); + /// assert_eq!(right, Right(vec![1, 2, 3, 4, 5])); + /// ``` + #[allow(clippy::should_implement_trait)] + pub fn into_iter(self) -> Either<L::IntoIter, R::IntoIter> + where + L: IntoIterator, + R: IntoIterator<Item = L::Item>, + { + match self { + Left(l) => Left(l.into_iter()), + Right(r) => Right(r.into_iter()), + } + } + + /// Return left value or given value + /// + /// Arguments passed to `left_or` are eagerly evaluated; if you are passing + /// the result of a function call, it is recommended to use [`left_or_else`], + /// which is lazily evaluated. + /// + /// [`left_or_else`]: #method.left_or_else + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<&str, &str> = Left("left"); + /// assert_eq!(left.left_or("foo"), "left"); + /// + /// let right: Either<&str, &str> = Right("right"); + /// assert_eq!(right.left_or("left"), "left"); + /// ``` + pub fn left_or(self, other: L) -> L { + match self { + Either::Left(l) => l, + Either::Right(_) => other, + } + } + + /// Return left or a default + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<String, u32> = Left("left".to_string()); + /// assert_eq!(left.left_or_default(), "left"); + /// + /// let right: Either<String, u32> = Right(42); + /// assert_eq!(right.left_or_default(), String::default()); + /// ``` + pub fn left_or_default(self) -> L + where + L: Default, + { + match self { + Either::Left(l) => l, + Either::Right(_) => L::default(), + } + } + + /// Returns left value or computes it from a closure + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<String, u32> = Left("3".to_string()); + /// assert_eq!(left.left_or_else(|_| unreachable!()), "3"); + /// + /// let right: Either<String, u32> = Right(3); + /// assert_eq!(right.left_or_else(|x| x.to_string()), "3"); + /// ``` + pub fn left_or_else<F>(self, f: F) -> L + where + F: FnOnce(R) -> L, + { + match self { + Either::Left(l) => l, + Either::Right(r) => f(r), + } + } + + /// Return right value or given value + /// + /// Arguments passed to `right_or` are eagerly evaluated; if you are passing + /// the result of a function call, it is recommended to use [`right_or_else`], + /// which is lazily evaluated. + /// + /// [`right_or_else`]: #method.right_or_else + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let right: Either<&str, &str> = Right("right"); + /// assert_eq!(right.right_or("foo"), "right"); + /// + /// let left: Either<&str, &str> = Left("left"); + /// assert_eq!(left.right_or("right"), "right"); + /// ``` + pub fn right_or(self, other: R) -> R { + match self { + Either::Left(_) => other, + Either::Right(r) => r, + } + } + + /// Return right or a default + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<String, u32> = Left("left".to_string()); + /// assert_eq!(left.right_or_default(), u32::default()); + /// + /// let right: Either<String, u32> = Right(42); + /// assert_eq!(right.right_or_default(), 42); + /// ``` + pub fn right_or_default(self) -> R + where + R: Default, + { + match self { + Either::Left(_) => R::default(), + Either::Right(r) => r, + } + } + + /// Returns right value or computes it from a closure + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<String, u32> = Left("3".to_string()); + /// assert_eq!(left.right_or_else(|x| x.parse().unwrap()), 3); + /// + /// let right: Either<String, u32> = Right(3); + /// assert_eq!(right.right_or_else(|_| unreachable!()), 3); + /// ``` + pub fn right_or_else<F>(self, f: F) -> R + where + F: FnOnce(L) -> R, + { + match self { + Either::Left(l) => f(l), + Either::Right(r) => r, + } + } + + /// Returns the left value + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<_, ()> = Left(3); + /// assert_eq!(left.unwrap_left(), 3); + /// ``` + /// + /// # Panics + /// + /// When `Either` is a `Right` value + /// + /// ```should_panic + /// # use either::*; + /// let right: Either<(), _> = Right(3); + /// right.unwrap_left(); + /// ``` + pub fn unwrap_left(self) -> L + where + R: core::fmt::Debug, + { + match self { + Either::Left(l) => l, + Either::Right(r) => { + panic!("called `Either::unwrap_left()` on a `Right` value: {:?}", r) + } + } + } + + /// Returns the right value + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let right: Either<(), _> = Right(3); + /// assert_eq!(right.unwrap_right(), 3); + /// ``` + /// + /// # Panics + /// + /// When `Either` is a `Left` value + /// + /// ```should_panic + /// # use either::*; + /// let left: Either<_, ()> = Left(3); + /// left.unwrap_right(); + /// ``` + pub fn unwrap_right(self) -> R + where + L: core::fmt::Debug, + { + match self { + Either::Right(r) => r, + Either::Left(l) => panic!("called `Either::unwrap_right()` on a `Left` value: {:?}", l), + } + } + + /// Returns the left value + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let left: Either<_, ()> = Left(3); + /// assert_eq!(left.expect_left("value was Right"), 3); + /// ``` + /// + /// # Panics + /// + /// When `Either` is a `Right` value + /// + /// ```should_panic + /// # use either::*; + /// let right: Either<(), _> = Right(3); + /// right.expect_left("value was Right"); + /// ``` + pub fn expect_left(self, msg: &str) -> L + where + R: core::fmt::Debug, + { + match self { + Either::Left(l) => l, + Either::Right(r) => panic!("{}: {:?}", msg, r), + } + } + + /// Returns the right value + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// let right: Either<(), _> = Right(3); + /// assert_eq!(right.expect_right("value was Left"), 3); + /// ``` + /// + /// # Panics + /// + /// When `Either` is a `Left` value + /// + /// ```should_panic + /// # use either::*; + /// let left: Either<_, ()> = Left(3); + /// left.expect_right("value was Right"); + /// ``` + pub fn expect_right(self, msg: &str) -> R + where + L: core::fmt::Debug, + { + match self { + Either::Right(r) => r, + Either::Left(l) => panic!("{}: {:?}", msg, l), + } + } + + /// Convert the contained value into `T` + /// + /// # Examples + /// + /// ``` + /// # use either::*; + /// // Both u16 and u32 can be converted to u64. + /// let left: Either<u16, u32> = Left(3u16); + /// assert_eq!(left.either_into::<u64>(), 3u64); + /// let right: Either<u16, u32> = Right(7u32); + /// assert_eq!(right.either_into::<u64>(), 7u64); + /// ``` + pub fn either_into<T>(self) -> T + where + L: Into<T>, + R: Into<T>, + { + match self { + Either::Left(l) => l.into(), + Either::Right(r) => r.into(), + } + } +} + +impl<L, R> Either<Option<L>, Option<R>> { + /// Factors out `None` from an `Either` of [`Option`]. + /// + /// ``` + /// use either::*; + /// let left: Either<_, Option<String>> = Left(Some(vec![0])); + /// assert_eq!(left.factor_none(), Some(Left(vec![0]))); + /// + /// let right: Either<Option<Vec<u8>>, _> = Right(Some(String::new())); + /// assert_eq!(right.factor_none(), Some(Right(String::new()))); + /// ``` + // TODO(MSRV): doc(alias) was stabilized in Rust 1.48 + // #[doc(alias = "transpose")] + pub fn factor_none(self) -> Option<Either<L, R>> { + match self { + Left(l) => l.map(Either::Left), + Right(r) => r.map(Either::Right), + } + } +} + +impl<L, R, E> Either<Result<L, E>, Result<R, E>> { + /// Factors out a homogenous type from an `Either` of [`Result`]. + /// + /// Here, the homogeneous type is the `Err` type of the [`Result`]. + /// + /// ``` + /// use either::*; + /// let left: Either<_, Result<String, u32>> = Left(Ok(vec![0])); + /// assert_eq!(left.factor_err(), Ok(Left(vec![0]))); + /// + /// let right: Either<Result<Vec<u8>, u32>, _> = Right(Ok(String::new())); + /// assert_eq!(right.factor_err(), Ok(Right(String::new()))); + /// ``` + // TODO(MSRV): doc(alias) was stabilized in Rust 1.48 + // #[doc(alias = "transpose")] + pub fn factor_err(self) -> Result<Either<L, R>, E> { + match self { + Left(l) => l.map(Either::Left), + Right(r) => r.map(Either::Right), + } + } +} + +impl<T, L, R> Either<Result<T, L>, Result<T, R>> { + /// Factors out a homogenous type from an `Either` of [`Result`]. + /// + /// Here, the homogeneous type is the `Ok` type of the [`Result`]. + /// + /// ``` + /// use either::*; + /// let left: Either<_, Result<u32, String>> = Left(Err(vec![0])); + /// assert_eq!(left.factor_ok(), Err(Left(vec![0]))); + /// + /// let right: Either<Result<u32, Vec<u8>>, _> = Right(Err(String::new())); + /// assert_eq!(right.factor_ok(), Err(Right(String::new()))); + /// ``` + // TODO(MSRV): doc(alias) was stabilized in Rust 1.48 + // #[doc(alias = "transpose")] + pub fn factor_ok(self) -> Result<T, Either<L, R>> { + match self { + Left(l) => l.map_err(Either::Left), + Right(r) => r.map_err(Either::Right), + } + } +} + +impl<T, L, R> Either<(T, L), (T, R)> { + /// Factor out a homogeneous type from an either of pairs. + /// + /// Here, the homogeneous type is the first element of the pairs. + /// + /// ``` + /// use either::*; + /// let left: Either<_, (u32, String)> = Left((123, vec![0])); + /// assert_eq!(left.factor_first().0, 123); + /// + /// let right: Either<(u32, Vec<u8>), _> = Right((123, String::new())); + /// assert_eq!(right.factor_first().0, 123); + /// ``` + pub fn factor_first(self) -> (T, Either<L, R>) { + match self { + Left((t, l)) => (t, Left(l)), + Right((t, r)) => (t, Right(r)), + } + } +} + +impl<T, L, R> Either<(L, T), (R, T)> { + /// Factor out a homogeneous type from an either of pairs. + /// + /// Here, the homogeneous type is the second element of the pairs. + /// + /// ``` + /// use either::*; + /// let left: Either<_, (String, u32)> = Left((vec![0], 123)); + /// assert_eq!(left.factor_second().1, 123); + /// + /// let right: Either<(Vec<u8>, u32), _> = Right((String::new(), 123)); + /// assert_eq!(right.factor_second().1, 123); + /// ``` + pub fn factor_second(self) -> (Either<L, R>, T) { + match self { + Left((l, t)) => (Left(l), t), + Right((r, t)) => (Right(r), t), + } + } +} + +impl<T> Either<T, T> { + /// Extract the value of an either over two equivalent types. + /// + /// ``` + /// use either::*; + /// + /// let left: Either<_, u32> = Left(123); + /// assert_eq!(left.into_inner(), 123); + /// + /// let right: Either<u32, _> = Right(123); + /// assert_eq!(right.into_inner(), 123); + /// ``` + pub fn into_inner(self) -> T { + for_both!(self, inner => inner) + } + + /// Map `f` over the contained value and return the result in the + /// corresponding variant. + /// + /// ``` + /// use either::*; + /// + /// let value: Either<_, i32> = Right(42); + /// + /// let other = value.map(|x| x * 2); + /// assert_eq!(other, Right(84)); + /// ``` + pub fn map<F, M>(self, f: F) -> Either<M, M> + where + F: FnOnce(T) -> M, + { + match self { + Left(l) => Left(f(l)), + Right(r) => Right(f(r)), + } + } +} + +/// Convert from `Result` to `Either` with `Ok => Right` and `Err => Left`. +impl<L, R> From<Result<R, L>> for Either<L, R> { + fn from(r: Result<R, L>) -> Self { + match r { + Err(e) => Left(e), + Ok(o) => Right(o), + } + } +} + +/// Convert from `Either` to `Result` with `Right => Ok` and `Left => Err`. +#[allow(clippy::from_over_into)] // From requires RFC 2451, Rust 1.41 +impl<L, R> Into<Result<R, L>> for Either<L, R> { + fn into(self) -> Result<R, L> { + match self { + Left(l) => Err(l), + Right(r) => Ok(r), + } + } +} + +impl<L, R, A> Extend<A> for Either<L, R> +where + L: Extend<A>, + R: Extend<A>, +{ + fn extend<T>(&mut self, iter: T) + where + T: IntoIterator<Item = A>, + { + for_both!(*self, ref mut inner => inner.extend(iter)) + } +} + +/// `Either<L, R>` is an iterator if both `L` and `R` are iterators. +impl<L, R> Iterator for Either<L, R> +where + L: Iterator, + R: Iterator<Item = L::Item>, +{ + type Item = L::Item; + + fn next(&mut self) -> Option<Self::Item> { + for_both!(*self, ref mut inner => inner.next()) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + for_both!(*self, ref inner => inner.size_hint()) + } + + fn fold<Acc, G>(self, init: Acc, f: G) -> Acc + where + G: FnMut(Acc, Self::Item) -> Acc, + { + for_both!(self, inner => inner.fold(init, f)) + } + + fn for_each<F>(self, f: F) + where + F: FnMut(Self::Item), + { + for_both!(self, inner => inner.for_each(f)) + } + + fn count(self) -> usize { + for_both!(self, inner => inner.count()) + } + + fn last(self) -> Option<Self::Item> { + for_both!(self, inner => inner.last()) + } + + fn nth(&mut self, n: usize) -> Option<Self::Item> { + for_both!(*self, ref mut inner => inner.nth(n)) + } + + fn collect<B>(self) -> B + where + B: iter::FromIterator<Self::Item>, + { + for_both!(self, inner => inner.collect()) + } + + fn partition<B, F>(self, f: F) -> (B, B) + where + B: Default + Extend<Self::Item>, + F: FnMut(&Self::Item) -> bool, + { + for_both!(self, inner => inner.partition(f)) + } + + fn all<F>(&mut self, f: F) -> bool + where + F: FnMut(Self::Item) -> bool, + { + for_both!(*self, ref mut inner => inner.all(f)) + } + + fn any<F>(&mut self, f: F) -> bool + where + F: FnMut(Self::Item) -> bool, + { + for_both!(*self, ref mut inner => inner.any(f)) + } + + fn find<P>(&mut self, predicate: P) -> Option<Self::Item> + where + P: FnMut(&Self::Item) -> bool, + { + for_both!(*self, ref mut inner => inner.find(predicate)) + } + + fn find_map<B, F>(&mut self, f: F) -> Option<B> + where + F: FnMut(Self::Item) -> Option<B>, + { + for_both!(*self, ref mut inner => inner.find_map(f)) + } + + fn position<P>(&mut self, predicate: P) -> Option<usize> + where + P: FnMut(Self::Item) -> bool, + { + for_both!(*self, ref mut inner => inner.position(predicate)) + } +} + +impl<L, R> DoubleEndedIterator for Either<L, R> +where + L: DoubleEndedIterator, + R: DoubleEndedIterator<Item = L::Item>, +{ + fn next_back(&mut self) -> Option<Self::Item> { + for_both!(*self, ref mut inner => inner.next_back()) + } + + // TODO(MSRV): This was stabilized in Rust 1.37 + // fn nth_back(&mut self, n: usize) -> Option<Self::Item> { + // for_both!(*self, ref mut inner => inner.nth_back(n)) + // } + + fn rfold<Acc, G>(self, init: Acc, f: G) -> Acc + where + G: FnMut(Acc, Self::Item) -> Acc, + { + for_both!(self, inner => inner.rfold(init, f)) + } + + fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item> + where + P: FnMut(&Self::Item) -> bool, + { + for_both!(*self, ref mut inner => inner.rfind(predicate)) + } +} + +impl<L, R> ExactSizeIterator for Either<L, R> +where + L: ExactSizeIterator, + R: ExactSizeIterator<Item = L::Item>, +{ + fn len(&self) -> usize { + for_both!(*self, ref inner => inner.len()) + } +} + +impl<L, R> iter::FusedIterator for Either<L, R> +where + L: iter::FusedIterator, + R: iter::FusedIterator<Item = L::Item>, +{ +} + +/// `Either<L, R>` is a future if both `L` and `R` are futures. +impl<L, R> Future for Either<L, R> +where + L: Future, + R: Future<Output = L::Output>, +{ + type Output = L::Output; + + fn poll( + self: Pin<&mut Self>, + cx: &mut core::task::Context<'_>, + ) -> core::task::Poll<Self::Output> { + for_both!(self.as_pin_mut(), inner => inner.poll(cx)) + } +} + +#[cfg(any(test, feature = "use_std"))] +/// `Either<L, R>` implements `Read` if both `L` and `R` do. +/// +/// Requires crate feature `"use_std"` +impl<L, R> Read for Either<L, R> +where + L: Read, + R: Read, +{ + fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { + for_both!(*self, ref mut inner => inner.read(buf)) + } + + fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> { + for_both!(*self, ref mut inner => inner.read_exact(buf)) + } + + fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> io::Result<usize> { + for_both!(*self, ref mut inner => inner.read_to_end(buf)) + } + + fn read_to_string(&mut self, buf: &mut std::string::String) -> io::Result<usize> { + for_both!(*self, ref mut inner => inner.read_to_string(buf)) + } +} + +#[cfg(any(test, feature = "use_std"))] +/// `Either<L, R>` implements `Seek` if both `L` and `R` do. +/// +/// Requires crate feature `"use_std"` +impl<L, R> Seek for Either<L, R> +where + L: Seek, + R: Seek, +{ + fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { + for_both!(*self, ref mut inner => inner.seek(pos)) + } +} + +#[cfg(any(test, feature = "use_std"))] +/// Requires crate feature `"use_std"` +impl<L, R> BufRead for Either<L, R> +where + L: BufRead, + R: BufRead, +{ + fn fill_buf(&mut self) -> io::Result<&[u8]> { + for_both!(*self, ref mut inner => inner.fill_buf()) + } + + fn consume(&mut self, amt: usize) { + for_both!(*self, ref mut inner => inner.consume(amt)) + } + + fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> io::Result<usize> { + for_both!(*self, ref mut inner => inner.read_until(byte, buf)) + } + + fn read_line(&mut self, buf: &mut std::string::String) -> io::Result<usize> { + for_both!(*self, ref mut inner => inner.read_line(buf)) + } +} + +#[cfg(any(test, feature = "use_std"))] +/// `Either<L, R>` implements `Write` if both `L` and `R` do. +/// +/// Requires crate feature `"use_std"` +impl<L, R> Write for Either<L, R> +where + L: Write, + R: Write, +{ + fn write(&mut self, buf: &[u8]) -> io::Result<usize> { + for_both!(*self, ref mut inner => inner.write(buf)) + } + + fn write_all(&mut self, buf: &[u8]) -> io::Result<()> { + for_both!(*self, ref mut inner => inner.write_all(buf)) + } + + fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> { + for_both!(*self, ref mut inner => inner.write_fmt(fmt)) + } + + fn flush(&mut self) -> io::Result<()> { + for_both!(*self, ref mut inner => inner.flush()) + } +} + +impl<L, R, Target> AsRef<Target> for Either<L, R> +where + L: AsRef<Target>, + R: AsRef<Target>, +{ + fn as_ref(&self) -> &Target { + for_both!(*self, ref inner => inner.as_ref()) + } +} + +macro_rules! impl_specific_ref_and_mut { + ($t:ty, $($attr:meta),* ) => { + $(#[$attr])* + impl<L, R> AsRef<$t> for Either<L, R> + where L: AsRef<$t>, R: AsRef<$t> + { + fn as_ref(&self) -> &$t { + for_both!(*self, ref inner => inner.as_ref()) + } + } + + $(#[$attr])* + impl<L, R> AsMut<$t> for Either<L, R> + where L: AsMut<$t>, R: AsMut<$t> + { + fn as_mut(&mut self) -> &mut $t { + for_both!(*self, ref mut inner => inner.as_mut()) + } + } + }; +} + +impl_specific_ref_and_mut!(str,); +impl_specific_ref_and_mut!( + ::std::path::Path, + cfg(feature = "use_std"), + doc = "Requires crate feature `use_std`." +); +impl_specific_ref_and_mut!( + ::std::ffi::OsStr, + cfg(feature = "use_std"), + doc = "Requires crate feature `use_std`." +); +impl_specific_ref_and_mut!( + ::std::ffi::CStr, + cfg(feature = "use_std"), + doc = "Requires crate feature `use_std`." +); + +impl<L, R, Target> AsRef<[Target]> for Either<L, R> +where + L: AsRef<[Target]>, + R: AsRef<[Target]>, +{ + fn as_ref(&self) -> &[Target] { + for_both!(*self, ref inner => inner.as_ref()) + } +} + +impl<L, R, Target> AsMut<Target> for Either<L, R> +where + L: AsMut<Target>, + R: AsMut<Target>, +{ + fn as_mut(&mut self) -> &mut Target { + for_both!(*self, ref mut inner => inner.as_mut()) + } +} + +impl<L, R, Target> AsMut<[Target]> for Either<L, R> +where + L: AsMut<[Target]>, + R: AsMut<[Target]>, +{ + fn as_mut(&mut self) -> &mut [Target] { + for_both!(*self, ref mut inner => inner.as_mut()) + } +} + +impl<L, R> Deref for Either<L, R> +where + L: Deref, + R: Deref<Target = L::Target>, +{ + type Target = L::Target; + + fn deref(&self) -> &Self::Target { + for_both!(*self, ref inner => &**inner) + } +} + +impl<L, R> DerefMut for Either<L, R> +where + L: DerefMut, + R: DerefMut<Target = L::Target>, +{ + fn deref_mut(&mut self) -> &mut Self::Target { + for_both!(*self, ref mut inner => &mut *inner) + } +} + +#[cfg(any(test, feature = "use_std"))] +/// `Either` implements `Error` if *both* `L` and `R` implement it. +impl<L, R> Error for Either<L, R> +where + L: Error, + R: Error, +{ + fn source(&self) -> Option<&(dyn Error + 'static)> { + for_both!(*self, ref inner => inner.source()) + } + + #[allow(deprecated)] + fn description(&self) -> &str { + for_both!(*self, ref inner => inner.description()) + } + + #[allow(deprecated)] + fn cause(&self) -> Option<&dyn Error> { + for_both!(*self, ref inner => inner.cause()) + } +} + +impl<L, R> fmt::Display for Either<L, R> +where + L: fmt::Display, + R: fmt::Display, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + for_both!(*self, ref inner => inner.fmt(f)) + } +} + +#[test] +fn basic() { + let mut e = Left(2); + let r = Right(2); + assert_eq!(e, Left(2)); + e = r; + assert_eq!(e, Right(2)); + assert_eq!(e.left(), None); + assert_eq!(e.right(), Some(2)); + assert_eq!(e.as_ref().right(), Some(&2)); + assert_eq!(e.as_mut().right(), Some(&mut 2)); +} + +#[test] +fn macros() { + use std::string::String; + + fn a() -> Either<u32, u32> { + let x: u32 = try_left!(Right(1337u32)); + Left(x * 2) + } + assert_eq!(a(), Right(1337)); + + fn b() -> Either<String, &'static str> { + Right(try_right!(Left("foo bar"))) + } + assert_eq!(b(), Left(String::from("foo bar"))); +} + +#[test] +fn deref() { + use std::string::String; + + fn is_str(_: &str) {} + let value: Either<String, &str> = Left(String::from("test")); + is_str(&*value); +} + +#[test] +fn iter() { + let x = 3; + let mut iter = match x { + 3 => Left(0..10), + _ => Right(17..), + }; + + assert_eq!(iter.next(), Some(0)); + assert_eq!(iter.count(), 9); +} + +#[test] +fn seek() { + use std::io; + + let use_empty = false; + let mut mockdata = [0x00; 256]; + for i in 0..256 { + mockdata[i] = i as u8; + } + + let mut reader = if use_empty { + // Empty didn't impl Seek until Rust 1.51 + Left(io::Cursor::new([])) + } else { + Right(io::Cursor::new(&mockdata[..])) + }; + + let mut buf = [0u8; 16]; + assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); + assert_eq!(buf, mockdata[..buf.len()]); + + // the first read should advance the cursor and return the next 16 bytes thus the `ne` + assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); + assert_ne!(buf, mockdata[..buf.len()]); + + // if the seek operation fails it should read 16..31 instead of 0..15 + reader.seek(io::SeekFrom::Start(0)).unwrap(); + assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); + assert_eq!(buf, mockdata[..buf.len()]); +} + +#[test] +fn read_write() { + use std::io; + + let use_stdio = false; + let mockdata = [0xff; 256]; + + let mut reader = if use_stdio { + Left(io::stdin()) + } else { + Right(&mockdata[..]) + }; + + let mut buf = [0u8; 16]; + assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); + assert_eq!(&buf, &mockdata[..buf.len()]); + + let mut mockbuf = [0u8; 256]; + let mut writer = if use_stdio { + Left(io::stdout()) + } else { + Right(&mut mockbuf[..]) + }; + + let buf = [1u8; 16]; + assert_eq!(writer.write(&buf).unwrap(), buf.len()); +} + +#[test] +#[allow(deprecated)] +fn error() { + let invalid_utf8 = b"\xff"; + let res = if let Err(error) = ::std::str::from_utf8(invalid_utf8) { + Err(Left(error)) + } else if let Err(error) = "x".parse::<i32>() { + Err(Right(error)) + } else { + Ok(()) + }; + assert!(res.is_err()); + res.unwrap_err().description(); // make sure this can be called +} + +/// A helper macro to check if AsRef and AsMut are implemented for a given type. +macro_rules! check_t { + ($t:ty) => {{ + fn check_ref<T: AsRef<$t>>() {} + fn propagate_ref<T1: AsRef<$t>, T2: AsRef<$t>>() { + check_ref::<Either<T1, T2>>() + } + fn check_mut<T: AsMut<$t>>() {} + fn propagate_mut<T1: AsMut<$t>, T2: AsMut<$t>>() { + check_mut::<Either<T1, T2>>() + } + }}; +} + +// This "unused" method is here to ensure that compilation doesn't fail on given types. +fn _unsized_ref_propagation() { + check_t!(str); + + fn check_array_ref<T: AsRef<[Item]>, Item>() {} + fn check_array_mut<T: AsMut<[Item]>, Item>() {} + + fn propagate_array_ref<T1: AsRef<[Item]>, T2: AsRef<[Item]>, Item>() { + check_array_ref::<Either<T1, T2>, _>() + } + + fn propagate_array_mut<T1: AsMut<[Item]>, T2: AsMut<[Item]>, Item>() { + check_array_mut::<Either<T1, T2>, _>() + } +} + +// This "unused" method is here to ensure that compilation doesn't fail on given types. +#[cfg(feature = "use_std")] +fn _unsized_std_propagation() { + check_t!(::std::path::Path); + check_t!(::std::ffi::OsStr); + check_t!(::std::ffi::CStr); +} |