summaryrefslogtreecommitdiffstats
path: root/third_party/rust/futures-channel/src/oneshot.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/rust/futures-channel/src/oneshot.rs
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/futures-channel/src/oneshot.rs')
-rw-r--r--third_party/rust/futures-channel/src/oneshot.rs488
1 files changed, 488 insertions, 0 deletions
diff --git a/third_party/rust/futures-channel/src/oneshot.rs b/third_party/rust/futures-channel/src/oneshot.rs
new file mode 100644
index 0000000000..70449f43d6
--- /dev/null
+++ b/third_party/rust/futures-channel/src/oneshot.rs
@@ -0,0 +1,488 @@
+//! A channel for sending a single message between asynchronous tasks.
+//!
+//! This is a single-producer, single-consumer channel.
+
+use alloc::sync::Arc;
+use core::fmt;
+use core::pin::Pin;
+use core::sync::atomic::AtomicBool;
+use core::sync::atomic::Ordering::SeqCst;
+use futures_core::future::{FusedFuture, Future};
+use futures_core::task::{Context, Poll, Waker};
+
+use crate::lock::Lock;
+
+/// A future for a value that will be provided by another asynchronous task.
+///
+/// This is created by the [`channel`](channel) function.
+#[must_use = "futures do nothing unless you `.await` or poll them"]
+pub struct Receiver<T> {
+ inner: Arc<Inner<T>>,
+}
+
+/// A means of transmitting a single value to another task.
+///
+/// This is created by the [`channel`](channel) function.
+pub struct Sender<T> {
+ inner: Arc<Inner<T>>,
+}
+
+// The channels do not ever project Pin to the inner T
+impl<T> Unpin for Receiver<T> {}
+impl<T> Unpin for Sender<T> {}
+
+/// Internal state of the `Receiver`/`Sender` pair above. This is all used as
+/// the internal synchronization between the two for send/recv operations.
+struct Inner<T> {
+ /// Indicates whether this oneshot is complete yet. This is filled in both
+ /// by `Sender::drop` and by `Receiver::drop`, and both sides interpret it
+ /// appropriately.
+ ///
+ /// For `Receiver`, if this is `true`, then it's guaranteed that `data` is
+ /// unlocked and ready to be inspected.
+ ///
+ /// For `Sender` if this is `true` then the oneshot has gone away and it
+ /// can return ready from `poll_canceled`.
+ complete: AtomicBool,
+
+ /// The actual data being transferred as part of this `Receiver`. This is
+ /// filled in by `Sender::complete` and read by `Receiver::poll`.
+ ///
+ /// Note that this is protected by `Lock`, but it is in theory safe to
+ /// replace with an `UnsafeCell` as it's actually protected by `complete`
+ /// above. I wouldn't recommend doing this, however, unless someone is
+ /// supremely confident in the various atomic orderings here and there.
+ data: Lock<Option<T>>,
+
+ /// Field to store the task which is blocked in `Receiver::poll`.
+ ///
+ /// This is filled in when a oneshot is polled but not ready yet. Note that
+ /// the `Lock` here, unlike in `data` above, is important to resolve races.
+ /// Both the `Receiver` and the `Sender` halves understand that if they
+ /// can't acquire the lock then some important interference is happening.
+ rx_task: Lock<Option<Waker>>,
+
+ /// Like `rx_task` above, except for the task blocked in
+ /// `Sender::poll_canceled`. Additionally, `Lock` cannot be `UnsafeCell`.
+ tx_task: Lock<Option<Waker>>,
+}
+
+/// Creates a new one-shot channel for sending a single value across asynchronous tasks.
+///
+/// The channel works for a spsc (single-producer, single-consumer) scheme.
+///
+/// This function is similar to Rust's channel constructor found in the standard
+/// library. Two halves are returned, the first of which is a `Sender` handle,
+/// used to signal the end of a computation and provide its value. The second
+/// half is a `Receiver` which implements the `Future` trait, resolving to the
+/// value that was given to the `Sender` handle.
+///
+/// Each half can be separately owned and sent across tasks.
+///
+/// # Examples
+///
+/// ```
+/// use futures::channel::oneshot;
+/// use std::{thread, time::Duration};
+///
+/// let (sender, receiver) = oneshot::channel::<i32>();
+///
+/// thread::spawn(|| {
+/// println!("THREAD: sleeping zzz...");
+/// thread::sleep(Duration::from_millis(1000));
+/// println!("THREAD: i'm awake! sending.");
+/// sender.send(3).unwrap();
+/// });
+///
+/// println!("MAIN: doing some useful stuff");
+///
+/// futures::executor::block_on(async {
+/// println!("MAIN: waiting for msg...");
+/// println!("MAIN: got: {:?}", receiver.await)
+/// });
+/// ```
+pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
+ let inner = Arc::new(Inner::new());
+ let receiver = Receiver { inner: inner.clone() };
+ let sender = Sender { inner };
+ (sender, receiver)
+}
+
+impl<T> Inner<T> {
+ fn new() -> Self {
+ Self {
+ complete: AtomicBool::new(false),
+ data: Lock::new(None),
+ rx_task: Lock::new(None),
+ tx_task: Lock::new(None),
+ }
+ }
+
+ fn send(&self, t: T) -> Result<(), T> {
+ if self.complete.load(SeqCst) {
+ return Err(t);
+ }
+
+ // Note that this lock acquisition may fail if the receiver
+ // is closed and sets the `complete` flag to `true`, whereupon
+ // the receiver may call `poll()`.
+ if let Some(mut slot) = self.data.try_lock() {
+ assert!(slot.is_none());
+ *slot = Some(t);
+ drop(slot);
+
+ // If the receiver called `close()` between the check at the
+ // start of the function, and the lock being released, then
+ // the receiver may not be around to receive it, so try to
+ // pull it back out.
+ if self.complete.load(SeqCst) {
+ // If lock acquisition fails, then receiver is actually
+ // receiving it, so we're good.
+ if let Some(mut slot) = self.data.try_lock() {
+ if let Some(t) = slot.take() {
+ return Err(t);
+ }
+ }
+ }
+ Ok(())
+ } else {
+ // Must have been closed
+ Err(t)
+ }
+ }
+
+ fn poll_canceled(&self, cx: &mut Context<'_>) -> Poll<()> {
+ // Fast path up first, just read the flag and see if our other half is
+ // gone. This flag is set both in our destructor and the oneshot
+ // destructor, but our destructor hasn't run yet so if it's set then the
+ // oneshot is gone.
+ if self.complete.load(SeqCst) {
+ return Poll::Ready(());
+ }
+
+ // If our other half is not gone then we need to park our current task
+ // and move it into the `tx_task` slot to get notified when it's
+ // actually gone.
+ //
+ // If `try_lock` fails, then the `Receiver` is in the process of using
+ // it, so we can deduce that it's now in the process of going away and
+ // hence we're canceled. If it succeeds then we just store our handle.
+ //
+ // Crucially we then check `complete` *again* before we return.
+ // While we were storing our handle inside `tx_task` the
+ // `Receiver` may have been dropped. The first thing it does is set the
+ // flag, and if it fails to acquire the lock it assumes that we'll see
+ // the flag later on. So... we then try to see the flag later on!
+ let handle = cx.waker().clone();
+ match self.tx_task.try_lock() {
+ Some(mut p) => *p = Some(handle),
+ None => return Poll::Ready(()),
+ }
+ if self.complete.load(SeqCst) {
+ Poll::Ready(())
+ } else {
+ Poll::Pending
+ }
+ }
+
+ fn is_canceled(&self) -> bool {
+ self.complete.load(SeqCst)
+ }
+
+ fn drop_tx(&self) {
+ // Flag that we're a completed `Sender` and try to wake up a receiver.
+ // Whether or not we actually stored any data will get picked up and
+ // translated to either an item or cancellation.
+ //
+ // Note that if we fail to acquire the `rx_task` lock then that means
+ // we're in one of two situations:
+ //
+ // 1. The receiver is trying to block in `poll`
+ // 2. The receiver is being dropped
+ //
+ // In the first case it'll check the `complete` flag after it's done
+ // blocking to see if it succeeded. In the latter case we don't need to
+ // wake up anyone anyway. So in both cases it's ok to ignore the `None`
+ // case of `try_lock` and bail out.
+ //
+ // The first case crucially depends on `Lock` using `SeqCst` ordering
+ // under the hood. If it instead used `Release` / `Acquire` ordering,
+ // then it would not necessarily synchronize with `inner.complete`
+ // and deadlock might be possible, as was observed in
+ // https://github.com/rust-lang/futures-rs/pull/219.
+ self.complete.store(true, SeqCst);
+
+ if let Some(mut slot) = self.rx_task.try_lock() {
+ if let Some(task) = slot.take() {
+ drop(slot);
+ task.wake();
+ }
+ }
+
+ // If we registered a task for cancel notification drop it to reduce
+ // spurious wakeups
+ if let Some(mut slot) = self.tx_task.try_lock() {
+ drop(slot.take());
+ }
+ }
+
+ fn close_rx(&self) {
+ // Flag our completion and then attempt to wake up the sender if it's
+ // blocked. See comments in `drop` below for more info
+ self.complete.store(true, SeqCst);
+ if let Some(mut handle) = self.tx_task.try_lock() {
+ if let Some(task) = handle.take() {
+ drop(handle);
+ task.wake()
+ }
+ }
+ }
+
+ fn try_recv(&self) -> Result<Option<T>, Canceled> {
+ // If we're complete, either `::close_rx` or `::drop_tx` was called.
+ // We can assume a successful send if data is present.
+ if self.complete.load(SeqCst) {
+ if let Some(mut slot) = self.data.try_lock() {
+ if let Some(data) = slot.take() {
+ return Ok(Some(data));
+ }
+ }
+ Err(Canceled)
+ } else {
+ Ok(None)
+ }
+ }
+
+ fn recv(&self, cx: &mut Context<'_>) -> Poll<Result<T, Canceled>> {
+ // Check to see if some data has arrived. If it hasn't then we need to
+ // block our task.
+ //
+ // Note that the acquisition of the `rx_task` lock might fail below, but
+ // the only situation where this can happen is during `Sender::drop`
+ // when we are indeed completed already. If that's happening then we
+ // know we're completed so keep going.
+ let done = if self.complete.load(SeqCst) {
+ true
+ } else {
+ let task = cx.waker().clone();
+ match self.rx_task.try_lock() {
+ Some(mut slot) => {
+ *slot = Some(task);
+ false
+ }
+ None => true,
+ }
+ };
+
+ // If we're `done` via one of the paths above, then look at the data and
+ // figure out what the answer is. If, however, we stored `rx_task`
+ // successfully above we need to check again if we're completed in case
+ // a message was sent while `rx_task` was locked and couldn't notify us
+ // otherwise.
+ //
+ // If we're not done, and we're not complete, though, then we've
+ // successfully blocked our task and we return `Pending`.
+ if done || self.complete.load(SeqCst) {
+ // If taking the lock fails, the sender will realise that the we're
+ // `done` when it checks the `complete` flag on the way out, and
+ // will treat the send as a failure.
+ if let Some(mut slot) = self.data.try_lock() {
+ if let Some(data) = slot.take() {
+ return Poll::Ready(Ok(data));
+ }
+ }
+ Poll::Ready(Err(Canceled))
+ } else {
+ Poll::Pending
+ }
+ }
+
+ fn drop_rx(&self) {
+ // Indicate to the `Sender` that we're done, so any future calls to
+ // `poll_canceled` are weeded out.
+ self.complete.store(true, SeqCst);
+
+ // If we've blocked a task then there's no need for it to stick around,
+ // so we need to drop it. If this lock acquisition fails, though, then
+ // it's just because our `Sender` is trying to take the task, so we
+ // let them take care of that.
+ if let Some(mut slot) = self.rx_task.try_lock() {
+ let task = slot.take();
+ drop(slot);
+ drop(task);
+ }
+
+ // Finally, if our `Sender` wants to get notified of us going away, it
+ // would have stored something in `tx_task`. Here we try to peel that
+ // out and unpark it.
+ //
+ // Note that the `try_lock` here may fail, but only if the `Sender` is
+ // in the process of filling in the task. If that happens then we
+ // already flagged `complete` and they'll pick that up above.
+ if let Some(mut handle) = self.tx_task.try_lock() {
+ if let Some(task) = handle.take() {
+ drop(handle);
+ task.wake()
+ }
+ }
+ }
+}
+
+impl<T> Sender<T> {
+ /// Completes this oneshot with a successful result.
+ ///
+ /// This function will consume `self` and indicate to the other end, the
+ /// [`Receiver`](Receiver), that the value provided is the result of the
+ /// computation this represents.
+ ///
+ /// If the value is successfully enqueued for the remote end to receive,
+ /// then `Ok(())` is returned. If the receiving end was dropped before
+ /// this function was called, however, then `Err(t)` is returned.
+ pub fn send(self, t: T) -> Result<(), T> {
+ self.inner.send(t)
+ }
+
+ /// Polls this `Sender` half to detect whether its associated
+ /// [`Receiver`](Receiver) has been dropped.
+ ///
+ /// # Return values
+ ///
+ /// If `Ready(())` is returned then the associated `Receiver` has been
+ /// dropped, which means any work required for sending should be canceled.
+ ///
+ /// If `Pending` is returned then the associated `Receiver` is still
+ /// alive and may be able to receive a message if sent. The current task,
+ /// however, is scheduled to receive a notification if the corresponding
+ /// `Receiver` goes away.
+ pub fn poll_canceled(&mut self, cx: &mut Context<'_>) -> Poll<()> {
+ self.inner.poll_canceled(cx)
+ }
+
+ /// Creates a future that resolves when this `Sender`'s corresponding
+ /// [`Receiver`](Receiver) half has hung up.
+ ///
+ /// This is a utility wrapping [`poll_canceled`](Sender::poll_canceled)
+ /// to expose a [`Future`](core::future::Future).
+ pub fn cancellation(&mut self) -> Cancellation<'_, T> {
+ Cancellation { inner: self }
+ }
+
+ /// Tests to see whether this `Sender`'s corresponding `Receiver`
+ /// has been dropped.
+ ///
+ /// Unlike [`poll_canceled`](Sender::poll_canceled), this function does not
+ /// enqueue a task for wakeup upon cancellation, but merely reports the
+ /// current state, which may be subject to concurrent modification.
+ pub fn is_canceled(&self) -> bool {
+ self.inner.is_canceled()
+ }
+
+ /// Tests to see whether this `Sender` is connected to the given `Receiver`. That is, whether
+ /// they were created by the same call to `channel`.
+ pub fn is_connected_to(&self, receiver: &Receiver<T>) -> bool {
+ Arc::ptr_eq(&self.inner, &receiver.inner)
+ }
+}
+
+impl<T> Drop for Sender<T> {
+ fn drop(&mut self) {
+ self.inner.drop_tx()
+ }
+}
+
+impl<T> fmt::Debug for Sender<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Sender").field("complete", &self.inner.complete).finish()
+ }
+}
+
+/// A future that resolves when the receiving end of a channel has hung up.
+///
+/// This is an `.await`-friendly interface around [`poll_canceled`](Sender::poll_canceled).
+#[must_use = "futures do nothing unless you `.await` or poll them"]
+#[derive(Debug)]
+pub struct Cancellation<'a, T> {
+ inner: &'a mut Sender<T>,
+}
+
+impl<T> Future for Cancellation<'_, T> {
+ type Output = ();
+
+ fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
+ self.inner.poll_canceled(cx)
+ }
+}
+
+/// Error returned from a [`Receiver`](Receiver) when the corresponding
+/// [`Sender`](Sender) is dropped.
+#[derive(Clone, Copy, PartialEq, Eq, Debug)]
+pub struct Canceled;
+
+impl fmt::Display for Canceled {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "oneshot canceled")
+ }
+}
+
+#[cfg(feature = "std")]
+impl std::error::Error for Canceled {}
+
+impl<T> Receiver<T> {
+ /// Gracefully close this receiver, preventing any subsequent attempts to
+ /// send to it.
+ ///
+ /// Any `send` operation which happens after this method returns is
+ /// guaranteed to fail. After calling this method, you can use
+ /// [`Receiver::poll`](core::future::Future::poll) to determine whether a
+ /// message had previously been sent.
+ pub fn close(&mut self) {
+ self.inner.close_rx()
+ }
+
+ /// Attempts to receive a message outside of the context of a task.
+ ///
+ /// Does not schedule a task wakeup or have any other side effects.
+ ///
+ /// A return value of `None` must be considered immediately stale (out of
+ /// date) unless [`close`](Receiver::close) has been called first.
+ ///
+ /// Returns an error if the sender was dropped.
+ pub fn try_recv(&mut self) -> Result<Option<T>, Canceled> {
+ self.inner.try_recv()
+ }
+}
+
+impl<T> Future for Receiver<T> {
+ type Output = Result<T, Canceled>;
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<T, Canceled>> {
+ self.inner.recv(cx)
+ }
+}
+
+impl<T> FusedFuture for Receiver<T> {
+ fn is_terminated(&self) -> bool {
+ if self.inner.complete.load(SeqCst) {
+ if let Some(slot) = self.inner.data.try_lock() {
+ if slot.is_some() {
+ return false;
+ }
+ }
+ true
+ } else {
+ false
+ }
+ }
+}
+
+impl<T> Drop for Receiver<T> {
+ fn drop(&mut self) {
+ self.inner.drop_rx()
+ }
+}
+
+impl<T> fmt::Debug for Receiver<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Receiver").field("complete", &self.inner.complete).finish()
+ }
+}