summaryrefslogtreecommitdiffstats
path: root/third_party/rust/libm/src/math/jnf.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/rust/libm/src/math/jnf.rs
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/libm/src/math/jnf.rs')
-rw-r--r--third_party/rust/libm/src/math/jnf.rs259
1 files changed, 259 insertions, 0 deletions
diff --git a/third_party/rust/libm/src/math/jnf.rs b/third_party/rust/libm/src/math/jnf.rs
new file mode 100644
index 0000000000..360f62e201
--- /dev/null
+++ b/third_party/rust/libm/src/math/jnf.rs
@@ -0,0 +1,259 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{fabsf, j0f, j1f, logf, y0f, y1f};
+
+pub fn jnf(n: i32, mut x: f32) -> f32 {
+ let mut ix: u32;
+ let mut nm1: i32;
+ let mut sign: bool;
+ let mut i: i32;
+ let mut a: f32;
+ let mut b: f32;
+ let mut temp: f32;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ if ix > 0x7f800000 {
+ /* nan */
+ return x;
+ }
+
+ /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+ if n == 0 {
+ return j0f(x);
+ }
+ if n < 0 {
+ nm1 = -(n + 1);
+ x = -x;
+ sign = !sign;
+ } else {
+ nm1 = n - 1;
+ }
+ if nm1 == 0 {
+ return j1f(x);
+ }
+
+ sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+ x = fabsf(x);
+ if ix == 0 || ix == 0x7f800000 {
+ /* if x is 0 or inf */
+ b = 0.0;
+ } else if (nm1 as f32) < x {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ a = j0f(x);
+ b = j1f(x);
+ i = 0;
+ while i < nm1 {
+ i += 1;
+ temp = b;
+ b = b * (2.0 * (i as f32) / x) - a;
+ a = temp;
+ }
+ } else {
+ if ix < 0x35800000 {
+ /* x < 2**-20 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if nm1 > 8 {
+ /* underflow */
+ nm1 = 8;
+ }
+ temp = 0.5 * x;
+ b = temp;
+ a = 1.0;
+ i = 2;
+ while i <= nm1 + 1 {
+ a *= i as f32; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ i += 1;
+ }
+ b = b / a;
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ let mut t: f32;
+ let mut q0: f32;
+ let mut q1: f32;
+ let mut w: f32;
+ let h: f32;
+ let mut z: f32;
+ let mut tmp: f32;
+ let nf: f32;
+ let mut k: i32;
+
+ nf = (nm1 as f32) + 1.0;
+ w = 2.0 * (nf as f32) / x;
+ h = 2.0 / x;
+ z = w + h;
+ q0 = w;
+ q1 = w * z - 1.0;
+ k = 1;
+ while q1 < 1.0e4 {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ t = 0.0;
+ i = k;
+ while i >= 0 {
+ t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
+ i -= 1;
+ }
+ a = t;
+ b = 1.0;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = nf * logf(fabsf(w));
+ if tmp < 88.721679688 {
+ i = nm1;
+ while i > 0 {
+ temp = b;
+ b = 2.0 * (i as f32) * b / x - a;
+ a = temp;
+ i -= 1;
+ }
+ } else {
+ i = nm1;
+ while i > 0 {
+ temp = b;
+ b = 2.0 * (i as f32) * b / x - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+ let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
+ if b > x1p60 {
+ a /= b;
+ t /= b;
+ b = 1.0;
+ }
+ i -= 1;
+ }
+ }
+ z = j0f(x);
+ w = j1f(x);
+ if fabsf(z) >= fabsf(w) {
+ b = t * z / b;
+ } else {
+ b = t * w / a;
+ }
+ }
+ }
+
+ if sign {
+ -b
+ } else {
+ b
+ }
+}
+
+pub fn ynf(n: i32, x: f32) -> f32 {
+ let mut ix: u32;
+ let mut ib: u32;
+ let nm1: i32;
+ let mut sign: bool;
+ let mut i: i32;
+ let mut a: f32;
+ let mut b: f32;
+ let mut temp: f32;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ if ix > 0x7f800000 {
+ /* nan */
+ return x;
+ }
+ if sign && ix != 0 {
+ /* x < 0 */
+ return 0.0 / 0.0;
+ }
+ if ix == 0x7f800000 {
+ return 0.0;
+ }
+
+ if n == 0 {
+ return y0f(x);
+ }
+ if n < 0 {
+ nm1 = -(n + 1);
+ sign = (n & 1) != 0;
+ } else {
+ nm1 = n - 1;
+ sign = false;
+ }
+ if nm1 == 0 {
+ if sign {
+ return -y1f(x);
+ } else {
+ return y1f(x);
+ }
+ }
+
+ a = y0f(x);
+ b = y1f(x);
+ /* quit if b is -inf */
+ ib = b.to_bits();
+ i = 0;
+ while i < nm1 && ib != 0xff800000 {
+ i += 1;
+ temp = b;
+ b = (2.0 * (i as f32) / x) * b - a;
+ ib = b.to_bits();
+ a = temp;
+ }
+
+ if sign {
+ -b
+ } else {
+ b
+ }
+}