summaryrefslogtreecommitdiffstats
path: root/third_party/rust/libm/src/math/log.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/rust/libm/src/math/log.rs
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/libm/src/math/log.rs')
-rw-r--r--third_party/rust/libm/src/math/log.rs117
1 files changed, 117 insertions, 0 deletions
diff --git a/third_party/rust/libm/src/math/log.rs b/third_party/rust/libm/src/math/log.rs
new file mode 100644
index 0000000000..27a26da60a
--- /dev/null
+++ b/third_party/rust/libm/src/math/log.rs
@@ -0,0 +1,117 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Remez algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log(mut x: f64) -> f64 {
+ let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+ let mut ui = x.to_bits();
+ let mut hx: u32 = (ui >> 32) as u32;
+ let mut k: i32 = 0;
+
+ if (hx < 0x00100000) || ((hx >> 31) != 0) {
+ /* x < 2**-126 */
+ if ui << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if hx >> 31 != 0 {
+ return (x - x) / 0.0; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= x1p54;
+ ui = x.to_bits();
+ hx = (ui >> 32) as u32;
+ } else if hx >= 0x7ff00000 {
+ return x;
+ } else if hx == 0x3ff00000 && ui << 32 == 0 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += ((hx >> 20) as i32) - 0x3ff;
+ hx = (hx & 0x000fffff) + 0x3fe6a09e;
+ ui = ((hx as u64) << 32) | (ui & 0xffffffff);
+ x = f64::from_bits(ui);
+
+ let f: f64 = x - 1.0;
+ let hfsq: f64 = 0.5 * f * f;
+ let s: f64 = f / (2.0 + f);
+ let z: f64 = s * s;
+ let w: f64 = z * z;
+ let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
+ let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ let r: f64 = t2 + t1;
+ let dk: f64 = k as f64;
+ s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
+}