summaryrefslogtreecommitdiffstats
path: root/third_party/rust/libm/src/math/sqrt.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/rust/libm/src/math/sqrt.rs
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/libm/src/math/sqrt.rs')
-rw-r--r--third_party/rust/libm/src/math/sqrt.rs264
1 files changed, 264 insertions, 0 deletions
diff --git a/third_party/rust/libm/src/math/sqrt.rs b/third_party/rust/libm/src/math/sqrt.rs
new file mode 100644
index 0000000000..f06b209a49
--- /dev/null
+++ b/third_party/rust/libm/src/math/sqrt.rs
@@ -0,0 +1,264 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebraic manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ */
+
+use core::f64;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrt(x: f64) -> f64 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f64.sqrt` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return if x < 0.0 {
+ f64::NAN
+ } else {
+ unsafe { ::core::intrinsics::sqrtf64(x) }
+ }
+ }
+ }
+ #[cfg(target_feature = "sse2")]
+ {
+ // Note: This path is unlikely since LLVM will usually have already
+ // optimized sqrt calls into hardware instructions if sse2 is available,
+ // but if someone does end up here they'll apprected the speed increase.
+ #[cfg(target_arch = "x86")]
+ use core::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use core::arch::x86_64::*;
+ unsafe {
+ let m = _mm_set_sd(x);
+ let m_sqrt = _mm_sqrt_pd(m);
+ _mm_cvtsd_f64(m_sqrt)
+ }
+ }
+ #[cfg(not(target_feature = "sse2"))]
+ {
+ use core::num::Wrapping;
+
+ const TINY: f64 = 1.0e-300;
+
+ let mut z: f64;
+ let sign: Wrapping<u32> = Wrapping(0x80000000);
+ let mut ix0: i32;
+ let mut s0: i32;
+ let mut q: i32;
+ let mut m: i32;
+ let mut t: i32;
+ let mut i: i32;
+ let mut r: Wrapping<u32>;
+ let mut t1: Wrapping<u32>;
+ let mut s1: Wrapping<u32>;
+ let mut ix1: Wrapping<u32>;
+ let mut q1: Wrapping<u32>;
+
+ ix0 = (x.to_bits() >> 32) as i32;
+ ix1 = Wrapping(x.to_bits() as u32);
+
+ /* take care of Inf and NaN */
+ if (ix0 & 0x7ff00000) == 0x7ff00000 {
+ return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if ix0 <= 0 {
+ if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
+ return x; /* sqrt(+-0) = +-0 */
+ }
+ if ix0 < 0 {
+ return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+ }
+ }
+ /* normalize x */
+ m = ix0 >> 20;
+ if m == 0 {
+ /* subnormal x */
+ while ix0 == 0 {
+ m -= 21;
+ ix0 |= (ix1 >> 11).0 as i32;
+ ix1 <<= 21;
+ }
+ i = 0;
+ while (ix0 & 0x00100000) == 0 {
+ i += 1;
+ ix0 <<= 1;
+ }
+ m -= i - 1;
+ ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
+ ix1 = ix1 << i as usize;
+ }
+ m -= 1023; /* unbias exponent */
+ ix0 = (ix0 & 0x000fffff) | 0x00100000;
+ if (m & 1) == 1 {
+ /* odd m, double x to make it even */
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ q = 0; /* [q,q1] = sqrt(x) */
+ q1 = Wrapping(0);
+ s0 = 0;
+ s1 = Wrapping(0);
+ r = Wrapping(0x00200000); /* r = moving bit from right to left */
+
+ while r != Wrapping(0) {
+ t = s0 + r.0 as i32;
+ if t <= ix0 {
+ s0 = t + r.0 as i32;
+ ix0 -= t;
+ q += r.0 as i32;
+ }
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ r = sign;
+ while r != Wrapping(0) {
+ t1 = s1 + r;
+ t = s0;
+ if t < ix0 || (t == ix0 && t1 <= ix1) {
+ s1 = t1 + r;
+ if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
+ s0 += 1;
+ }
+ ix0 -= t;
+ if ix1 < t1 {
+ ix0 -= 1;
+ }
+ ix1 -= t1;
+ q1 += r;
+ }
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if (ix0 as u32 | ix1.0) != 0 {
+ z = 1.0 - TINY; /* raise inexact flag */
+ if z >= 1.0 {
+ z = 1.0 + TINY;
+ if q1.0 == 0xffffffff {
+ q1 = Wrapping(0);
+ q += 1;
+ } else if z > 1.0 {
+ if q1.0 == 0xfffffffe {
+ q += 1;
+ }
+ q1 += Wrapping(2);
+ } else {
+ q1 += q1 & Wrapping(1);
+ }
+ }
+ }
+ ix0 = (q >> 1) + 0x3fe00000;
+ ix1 = q1 >> 1;
+ if (q & 1) == 1 {
+ ix1 |= sign;
+ }
+ ix0 += m << 20;
+ f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f64::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(sqrt(100.0), 10.0);
+ assert_eq!(sqrt(4.0), 2.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: FE_INVALID exception is raised if argument is negative.
+ assert!(sqrt(-1.0).is_nan());
+ assert!(sqrt(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY].iter().copied() {
+ assert_eq!(sqrt(f), f);
+ }
+ }
+}