diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /third_party/rust/minimal-lexical/src/libm.rs | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/minimal-lexical/src/libm.rs')
-rw-r--r-- | third_party/rust/minimal-lexical/src/libm.rs | 1238 |
1 files changed, 1238 insertions, 0 deletions
diff --git a/third_party/rust/minimal-lexical/src/libm.rs b/third_party/rust/minimal-lexical/src/libm.rs new file mode 100644 index 0000000000..c9f93d36ac --- /dev/null +++ b/third_party/rust/minimal-lexical/src/libm.rs @@ -0,0 +1,1238 @@ +//! A small number of math routines for floats and doubles. +//! +//! These are adapted from libm, a port of musl libc's libm to Rust. +//! libm can be found online [here](https://github.com/rust-lang/libm), +//! and is similarly licensed under an Apache2.0/MIT license + +#![cfg(all(not(feature = "std"), feature = "compact"))] +#![doc(hidden)] + +/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/// # Safety +/// +/// Safe if `index < array.len()`. +macro_rules! i { + ($array:ident, $index:expr) => { + // SAFETY: safe if `index < array.len()`. + unsafe { *$array.get_unchecked($index) } + }; +} + +pub fn powf(x: f32, y: f32) -> f32 { + const BP: [f32; 2] = [1.0, 1.5]; + const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */ + const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */ + const TWO24: f32 = 16777216.0; /* 0x4b800000 */ + const HUGE: f32 = 1.0e30; + const TINY: f32 = 1.0e-30; + const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */ + const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */ + const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */ + const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */ + const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */ + const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */ + const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */ + const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */ + const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */ + const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */ + const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */ + const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */ + const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */ + const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */ + const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */ + const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */ + const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */ + const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */ + const IVLN2: f32 = 1.4426950216e+00; + const IVLN2_H: f32 = 1.4426879883e+00; + const IVLN2_L: f32 = 7.0526075433e-06; + + let mut z: f32; + let mut ax: f32; + let z_h: f32; + let z_l: f32; + let mut p_h: f32; + let mut p_l: f32; + let y1: f32; + let mut t1: f32; + let t2: f32; + let mut r: f32; + let s: f32; + let mut sn: f32; + let mut t: f32; + let mut u: f32; + let mut v: f32; + let mut w: f32; + let i: i32; + let mut j: i32; + let mut k: i32; + let mut yisint: i32; + let mut n: i32; + let hx: i32; + let hy: i32; + let mut ix: i32; + let iy: i32; + let mut is: i32; + + hx = x.to_bits() as i32; + hy = y.to_bits() as i32; + + ix = hx & 0x7fffffff; + iy = hy & 0x7fffffff; + + /* x**0 = 1, even if x is NaN */ + if iy == 0 { + return 1.0; + } + + /* 1**y = 1, even if y is NaN */ + if hx == 0x3f800000 { + return 1.0; + } + + /* NaN if either arg is NaN */ + if ix > 0x7f800000 || iy > 0x7f800000 { + return x + y; + } + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if hx < 0 { + if iy >= 0x4b800000 { + yisint = 2; /* even integer y */ + } else if iy >= 0x3f800000 { + k = (iy >> 23) - 0x7f; /* exponent */ + j = iy >> (23 - k); + if (j << (23 - k)) == iy { + yisint = 2 - (j & 1); + } + } + } + + /* special value of y */ + if iy == 0x7f800000 { + /* y is +-inf */ + if ix == 0x3f800000 { + /* (-1)**+-inf is 1 */ + return 1.0; + } else if ix > 0x3f800000 { + /* (|x|>1)**+-inf = inf,0 */ + return if hy >= 0 { + y + } else { + 0.0 + }; + } else { + /* (|x|<1)**+-inf = 0,inf */ + return if hy >= 0 { + 0.0 + } else { + -y + }; + } + } + if iy == 0x3f800000 { + /* y is +-1 */ + return if hy >= 0 { + x + } else { + 1.0 / x + }; + } + + if hy == 0x40000000 { + /* y is 2 */ + return x * x; + } + + if hy == 0x3f000000 + /* y is 0.5 */ + && hx >= 0 + { + /* x >= +0 */ + return sqrtf(x); + } + + ax = fabsf(x); + /* special value of x */ + if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 { + /* x is +-0,+-inf,+-1 */ + z = ax; + if hy < 0 { + /* z = (1/|x|) */ + z = 1.0 / z; + } + + if hx < 0 { + if ((ix - 0x3f800000) | yisint) == 0 { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } else if yisint == 1 { + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + } + return z; + } + + sn = 1.0; /* sign of result */ + if hx < 0 { + if yisint == 0 { + /* (x<0)**(non-int) is NaN */ + return (x - x) / (x - x); + } + + if yisint == 1 { + /* (x<0)**(odd int) */ + sn = -1.0; + } + } + + /* |y| is HUGE */ + if iy > 0x4d000000 { + /* if |y| > 2**27 */ + /* over/underflow if x is not close to one */ + if ix < 0x3f7ffff8 { + return if hy < 0 { + sn * HUGE * HUGE + } else { + sn * TINY * TINY + }; + } + + if ix > 0x3f800007 { + return if hy > 0 { + sn * HUGE * HUGE + } else { + sn * TINY * TINY + }; + } + + /* now |1-x| is TINY <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = ax - 1.; /* t has 20 trailing zeros */ + w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25)); + u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */ + v = t * IVLN2_L - w * IVLN2; + t1 = u + v; + is = t1.to_bits() as i32; + t1 = f32::from_bits(is as u32 & 0xfffff000); + t2 = v - (t1 - u); + } else { + let mut s2: f32; + let mut s_h: f32; + let s_l: f32; + let mut t_h: f32; + let mut t_l: f32; + + n = 0; + /* take care subnormal number */ + if ix < 0x00800000 { + ax *= TWO24; + n -= 24; + ix = ax.to_bits() as i32; + } + n += ((ix) >> 23) - 0x7f; + j = ix & 0x007fffff; + /* determine interval */ + ix = j | 0x3f800000; /* normalize ix */ + if j <= 0x1cc471 { + /* |x|<sqrt(3/2) */ + k = 0; + } else if j < 0x5db3d7 { + /* |x|<sqrt(3) */ + k = 1; + } else { + k = 0; + n += 1; + ix -= 0x00800000; + } + ax = f32::from_bits(ix as u32); + + /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ + v = 1.0 / (ax + i!(BP, k as usize)); + s = u * v; + s_h = s; + is = s_h.to_bits() as i32; + s_h = f32::from_bits(is as u32 & 0xfffff000); + /* t_h=ax+bp[k] High */ + is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32; + t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21)); + t_l = ax - (t_h - i!(BP, k as usize)); + s_l = v * ((u - s_h * t_h) - s_h * t_l); + /* compute log(ax) */ + s2 = s * s; + r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); + r += s_l * (s_h + s); + s2 = s_h * s_h; + t_h = 3.0 + s2 + r; + is = t_h.to_bits() as i32; + t_h = f32::from_bits(is as u32 & 0xfffff000); + t_l = r - ((t_h - 3.0) - s2); + /* u+v = s*(1+...) */ + u = s_h * t_h; + v = s_l * t_h + t_l * s; + /* 2/(3log2)*(s+...) */ + p_h = u + v; + is = p_h.to_bits() as i32; + p_h = f32::from_bits(is as u32 & 0xfffff000); + p_l = v - (p_h - u); + z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); + /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = n as f32; + t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t; + is = t1.to_bits() as i32; + t1 = f32::from_bits(is as u32 & 0xfffff000); + t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); + }; + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + is = y.to_bits() as i32; + y1 = f32::from_bits(is as u32 & 0xfffff000); + p_l = (y - y1) * t1 + y * t2; + p_h = y1 * t1; + z = p_l + p_h; + j = z.to_bits() as i32; + if j > 0x43000000 { + /* if z > 128 */ + return sn * HUGE * HUGE; /* overflow */ + } else if j == 0x43000000 { + /* if z == 128 */ + if p_l + OVT > z - p_h { + return sn * HUGE * HUGE; /* overflow */ + } + } else if (j & 0x7fffffff) > 0x43160000 { + /* z < -150 */ + // FIXME: check should be (uint32_t)j > 0xc3160000 + return sn * TINY * TINY; /* underflow */ + } else if j as u32 == 0xc3160000 + /* z == -150 */ + && p_l <= z - p_h + { + return sn * TINY * TINY; /* underflow */ + } + + /* + * compute 2**(p_h+p_l) + */ + i = j & 0x7fffffff; + k = (i >> 23) - 0x7f; + n = 0; + if i > 0x3f000000 { + /* if |z| > 0.5, set n = [z+0.5] */ + n = j + (0x00800000 >> (k + 1)); + k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */ + t = f32::from_bits(n as u32 & !(0x007fffff >> k)); + n = ((n & 0x007fffff) | 0x00800000) >> (23 - k); + if j < 0 { + n = -n; + } + p_h -= t; + } + t = p_l + p_h; + is = t.to_bits() as i32; + t = f32::from_bits(is as u32 & 0xffff8000); + u = t * LG2_H; + v = (p_l - (t - p_h)) * LG2 + t * LG2_L; + z = u + v; + w = v - (z - u); + t = z * z; + t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); + r = (z * t1) / (t1 - 2.0) - (w + z * w); + z = 1.0 - (r - z); + j = z.to_bits() as i32; + j += n << 23; + if (j >> 23) <= 0 { + /* subnormal output */ + z = scalbnf(z, n); + } else { + z = f32::from_bits(j as u32); + } + sn * z +} + +/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +pub fn sqrtf(x: f32) -> f32 { + #[cfg(target_feature = "sse")] + { + // Note: This path is unlikely since LLVM will usually have already + // optimized sqrt calls into hardware instructions if sse is available, + // but if someone does end up here they'll apprected the speed increase. + #[cfg(target_arch = "x86")] + use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::*; + // SAFETY: safe, since `_mm_set_ss` takes a 32-bit float, and returns + // a 128-bit type with the lowest 32-bits as `x`, `_mm_sqrt_ss` calculates + // the sqrt of this 128-bit vector, and `_mm_cvtss_f32` extracts the lower + // 32-bits as a 32-bit float. + unsafe { + let m = _mm_set_ss(x); + let m_sqrt = _mm_sqrt_ss(m); + _mm_cvtss_f32(m_sqrt) + } + } + #[cfg(not(target_feature = "sse"))] + { + const TINY: f32 = 1.0e-30; + + let mut z: f32; + let sign: i32 = 0x80000000u32 as i32; + let mut ix: i32; + let mut s: i32; + let mut q: i32; + let mut m: i32; + let mut t: i32; + let mut i: i32; + let mut r: u32; + + ix = x.to_bits() as i32; + + /* take care of Inf and NaN */ + if (ix as u32 & 0x7f800000) == 0x7f800000 { + return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ + } + + /* take care of zero */ + if ix <= 0 { + if (ix & !sign) == 0 { + return x; /* sqrt(+-0) = +-0 */ + } + if ix < 0 { + return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ + } + } + + /* normalize x */ + m = ix >> 23; + if m == 0 { + /* subnormal x */ + i = 0; + while ix & 0x00800000 == 0 { + ix <<= 1; + i = i + 1; + } + m -= i - 1; + } + m -= 127; /* unbias exponent */ + ix = (ix & 0x007fffff) | 0x00800000; + if m & 1 == 1 { + /* odd m, double x to make it even */ + ix += ix; + } + m >>= 1; /* m = [m/2] */ + + /* generate sqrt(x) bit by bit */ + ix += ix; + q = 0; + s = 0; + r = 0x01000000; /* r = moving bit from right to left */ + + while r != 0 { + t = s + r as i32; + if t <= ix { + s = t + r as i32; + ix -= t; + q += r as i32; + } + ix += ix; + r >>= 1; + } + + /* use floating add to find out rounding direction */ + if ix != 0 { + z = 1.0 - TINY; /* raise inexact flag */ + if z >= 1.0 { + z = 1.0 + TINY; + if z > 1.0 { + q += 2; + } else { + q += q & 1; + } + } + } + + ix = (q >> 1) + 0x3f000000; + ix += m << 23; + f32::from_bits(ix as u32) + } +} + +/// Absolute value (magnitude) (f32) +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +pub fn fabsf(x: f32) -> f32 { + f32::from_bits(x.to_bits() & 0x7fffffff) +} + +pub fn scalbnf(mut x: f32, mut n: i32) -> f32 { + let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 + let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126 + let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24 + + if n > 127 { + x *= x1p127; + n -= 127; + if n > 127 { + x *= x1p127; + n -= 127; + if n > 127 { + n = 127; + } + } + } else if n < -126 { + x *= x1p_126 * x1p24; + n += 126 - 24; + if n < -126 { + x *= x1p_126 * x1p24; + n += 126 - 24; + if n < -126 { + n = -126; + } + } + } + x * f32::from_bits(((0x7f + n) as u32) << 23) +} + +/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +// pow(x,y) return x**y +// +// n +// Method: Let x = 2 * (1+f) +// 1. Compute and return log2(x) in two pieces: +// log2(x) = w1 + w2, +// where w1 has 53-24 = 29 bit trailing zeros. +// 2. Perform y*log2(x) = n+y' by simulating muti-precision +// arithmetic, where |y'|<=0.5. +// 3. Return x**y = 2**n*exp(y'*log2) +// +// Special cases: +// 1. (anything) ** 0 is 1 +// 2. 1 ** (anything) is 1 +// 3. (anything except 1) ** NAN is NAN +// 4. NAN ** (anything except 0) is NAN +// 5. +-(|x| > 1) ** +INF is +INF +// 6. +-(|x| > 1) ** -INF is +0 +// 7. +-(|x| < 1) ** +INF is +0 +// 8. +-(|x| < 1) ** -INF is +INF +// 9. -1 ** +-INF is 1 +// 10. +0 ** (+anything except 0, NAN) is +0 +// 11. -0 ** (+anything except 0, NAN, odd integer) is +0 +// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero +// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero +// 14. -0 ** (+odd integer) is -0 +// 15. -0 ** (-odd integer) is -INF, raise divbyzero +// 16. +INF ** (+anything except 0,NAN) is +INF +// 17. +INF ** (-anything except 0,NAN) is +0 +// 18. -INF ** (+odd integer) is -INF +// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) +// 20. (anything) ** 1 is (anything) +// 21. (anything) ** -1 is 1/(anything) +// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) +// 23. (-anything except 0 and inf) ** (non-integer) is NAN +// +// Accuracy: +// pow(x,y) returns x**y nearly rounded. In particular +// pow(integer,integer) +// always returns the correct integer provided it is +// representable. +// +// Constants : +// The hexadecimal values are the intended ones for the following +// constants. The decimal values may be used, provided that the +// compiler will convert from decimal to binary accurately enough +// to produce the hexadecimal values shown. + +pub fn powd(x: f64, y: f64) -> f64 { + const BP: [f64; 2] = [1.0, 1.5]; + const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ + const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ + const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ + const HUGE: f64 = 1.0e300; + const TINY: f64 = 1.0e-300; + + // poly coefs for (3/2)*(log(x)-2s-2/3*s**3: + const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ + const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ + const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ + const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ + const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ + const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ + const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ + const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ + const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ + const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ + const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ + const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ + const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ + const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ + const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ + const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ + const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ + const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ + const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ + const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ + const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ + + let t1: f64; + let t2: f64; + + let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); + let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); + + let mut ix: i32 = (hx & 0x7fffffff) as i32; + let iy: i32 = (hy & 0x7fffffff) as i32; + + /* x**0 = 1, even if x is NaN */ + if ((iy as u32) | ly) == 0 { + return 1.0; + } + + /* 1**y = 1, even if y is NaN */ + if hx == 0x3ff00000 && lx == 0 { + return 1.0; + } + + /* NaN if either arg is NaN */ + if ix > 0x7ff00000 + || (ix == 0x7ff00000 && lx != 0) + || iy > 0x7ff00000 + || (iy == 0x7ff00000 && ly != 0) + { + return x + y; + } + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + let mut yisint: i32 = 0; + let mut k: i32; + let mut j: i32; + if hx < 0 { + if iy >= 0x43400000 { + yisint = 2; /* even integer y */ + } else if iy >= 0x3ff00000 { + k = (iy >> 20) - 0x3ff; /* exponent */ + + if k > 20 { + j = (ly >> (52 - k)) as i32; + + if (j << (52 - k)) == (ly as i32) { + yisint = 2 - (j & 1); + } + } else if ly == 0 { + j = iy >> (20 - k); + + if (j << (20 - k)) == iy { + yisint = 2 - (j & 1); + } + } + } + } + + if ly == 0 { + /* special value of y */ + if iy == 0x7ff00000 { + /* y is +-inf */ + + return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { + /* (-1)**+-inf is 1 */ + 1.0 + } else if ix >= 0x3ff00000 { + /* (|x|>1)**+-inf = inf,0 */ + if hy >= 0 { + y + } else { + 0.0 + } + } else { + /* (|x|<1)**+-inf = 0,inf */ + if hy >= 0 { + 0.0 + } else { + -y + } + }; + } + + if iy == 0x3ff00000 { + /* y is +-1 */ + return if hy >= 0 { + x + } else { + 1.0 / x + }; + } + + if hy == 0x40000000 { + /* y is 2 */ + return x * x; + } + + if hy == 0x3fe00000 { + /* y is 0.5 */ + if hx >= 0 { + /* x >= +0 */ + return sqrtd(x); + } + } + } + + let mut ax: f64 = fabsd(x); + if lx == 0 { + /* special value of x */ + if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { + /* x is +-0,+-inf,+-1 */ + let mut z: f64 = ax; + + if hy < 0 { + /* z = (1/|x|) */ + z = 1.0 / z; + } + + if hx < 0 { + if ((ix - 0x3ff00000) | yisint) == 0 { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } else if yisint == 1 { + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + } + + return z; + } + } + + let mut s: f64 = 1.0; /* sign of result */ + if hx < 0 { + if yisint == 0 { + /* (x<0)**(non-int) is NaN */ + return (x - x) / (x - x); + } + + if yisint == 1 { + /* (x<0)**(odd int) */ + s = -1.0; + } + } + + /* |y| is HUGE */ + if iy > 0x41e00000 { + /* if |y| > 2**31 */ + if iy > 0x43f00000 { + /* if |y| > 2**64, must o/uflow */ + if ix <= 0x3fefffff { + return if hy < 0 { + HUGE * HUGE + } else { + TINY * TINY + }; + } + + if ix >= 0x3ff00000 { + return if hy > 0 { + HUGE * HUGE + } else { + TINY * TINY + }; + } + } + + /* over/underflow if x is not close to one */ + if ix < 0x3fefffff { + return if hy < 0 { + s * HUGE * HUGE + } else { + s * TINY * TINY + }; + } + if ix > 0x3ff00000 { + return if hy > 0 { + s * HUGE * HUGE + } else { + s * TINY * TINY + }; + } + + /* now |1-x| is TINY <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ + let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); + let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ + let v: f64 = t * IVLN2_L - w * IVLN2; + t1 = with_set_low_word(u + v, 0); + t2 = v - (t1 - u); + } else { + // double ss,s2,s_h,s_l,t_h,t_l; + let mut n: i32 = 0; + + if ix < 0x00100000 { + /* take care subnormal number */ + ax *= TWO53; + n -= 53; + ix = get_high_word(ax) as i32; + } + + n += (ix >> 20) - 0x3ff; + j = ix & 0x000fffff; + + /* determine interval */ + let k: i32; + ix = j | 0x3ff00000; /* normalize ix */ + if j <= 0x3988E { + /* |x|<sqrt(3/2) */ + k = 0; + } else if j < 0xBB67A { + /* |x|<sqrt(3) */ + k = 1; + } else { + k = 0; + n += 1; + ix -= 0x00100000; + } + ax = with_set_high_word(ax, ix as u32); + + /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ + let v: f64 = 1.0 / (ax + i!(BP, k as usize)); + let ss: f64 = u * v; + let s_h = with_set_low_word(ss, 0); + + /* t_h=ax+bp[k] High */ + let t_h: f64 = with_set_high_word( + 0.0, + ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), + ); + let t_l: f64 = ax - (t_h - i!(BP, k as usize)); + let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); + + /* compute log(ax) */ + let s2: f64 = ss * ss; + let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); + r += s_l * (s_h + ss); + let s2: f64 = s_h * s_h; + let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); + let t_l: f64 = r - ((t_h - 3.0) - s2); + + /* u+v = ss*(1+...) */ + let u: f64 = s_h * t_h; + let v: f64 = s_l * t_h + t_l * ss; + + /* 2/(3log2)*(ss+...) */ + let p_h: f64 = with_set_low_word(u + v, 0); + let p_l = v - (p_h - u); + let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ + let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); + + /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + let t: f64 = n as f64; + t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0); + t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); + } + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + let y1: f64 = with_set_low_word(y, 0); + let p_l: f64 = (y - y1) * t1 + y * t2; + let mut p_h: f64 = y1 * t1; + let z: f64 = p_l + p_h; + let mut j: i32 = (z.to_bits() >> 32) as i32; + let i: i32 = z.to_bits() as i32; + // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); + + if j >= 0x40900000 { + /* z >= 1024 */ + if (j - 0x40900000) | i != 0 { + /* if z > 1024 */ + return s * HUGE * HUGE; /* overflow */ + } + + if p_l + OVT > z - p_h { + return s * HUGE * HUGE; /* overflow */ + } + } else if (j & 0x7fffffff) >= 0x4090cc00 { + /* z <= -1075 */ + // FIXME: instead of abs(j) use unsigned j + + if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { + /* z < -1075 */ + return s * TINY * TINY; /* underflow */ + } + + if p_l <= z - p_h { + return s * TINY * TINY; /* underflow */ + } + } + + /* compute 2**(p_h+p_l) */ + let i: i32 = j & (0x7fffffff as i32); + k = (i >> 20) - 0x3ff; + let mut n: i32 = 0; + + if i > 0x3fe00000 { + /* if |z| > 0.5, set n = [z+0.5] */ + n = j + (0x00100000 >> (k + 1)); + k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ + let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); + n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); + if j < 0 { + n = -n; + } + p_h -= t; + } + + let t: f64 = with_set_low_word(p_l + p_h, 0); + let u: f64 = t * LG2_H; + let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; + let mut z: f64 = u + v; + let w: f64 = v - (z - u); + let t: f64 = z * z; + let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); + let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); + z = 1.0 - (r - z); + j = get_high_word(z) as i32; + j += n << 20; + + if (j >> 20) <= 0 { + /* subnormal output */ + z = scalbnd(z, n); + } else { + z = with_set_high_word(z, j as u32); + } + + s * z +} + +/// Absolute value (magnitude) (f64) +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +pub fn fabsd(x: f64) -> f64 { + f64::from_bits(x.to_bits() & (u64::MAX / 2)) +} + +pub fn scalbnd(x: f64, mut n: i32) -> f64 { + let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023 + let x1p53 = f64::from_bits(0x4340000000000000); // 0x1p53 === 2 ^ 53 + let x1p_1022 = f64::from_bits(0x0010000000000000); // 0x1p-1022 === 2 ^ (-1022) + + let mut y = x; + + if n > 1023 { + y *= x1p1023; + n -= 1023; + if n > 1023 { + y *= x1p1023; + n -= 1023; + if n > 1023 { + n = 1023; + } + } + } else if n < -1022 { + /* make sure final n < -53 to avoid double + rounding in the subnormal range */ + y *= x1p_1022 * x1p53; + n += 1022 - 53; + if n < -1022 { + y *= x1p_1022 * x1p53; + n += 1022 - 53; + if n < -1022 { + n = -1022; + } + } + } + y * f64::from_bits(((0x3ff + n) as u64) << 52) +} + +/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* sqrt(x) + * Return correctly rounded sqrt. + * ------------------------------------------ + * | Use the hardware sqrt if you have one | + * ------------------------------------------ + * Method: + * Bit by bit method using integer arithmetic. (Slow, but portable) + * 1. Normalization + * Scale x to y in [1,4) with even powers of 2: + * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then + * sqrt(x) = 2^k * sqrt(y) + * 2. Bit by bit computation + * Let q = sqrt(y) truncated to i bit after binary point (q = 1), + * i 0 + * i+1 2 + * s = 2*q , and y = 2 * ( y - q ). (1) + * i i i i + * + * To compute q from q , one checks whether + * i+1 i + * + * -(i+1) 2 + * (q + 2 ) <= y. (2) + * i + * -(i+1) + * If (2) is false, then q = q ; otherwise q = q + 2 . + * i+1 i i+1 i + * + * With some algebraic manipulation, it is not difficult to see + * that (2) is equivalent to + * -(i+1) + * s + 2 <= y (3) + * i i + * + * The advantage of (3) is that s and y can be computed by + * i i + * the following recurrence formula: + * if (3) is false + * + * s = s , y = y ; (4) + * i+1 i i+1 i + * + * otherwise, + * -i -(i+1) + * s = s + 2 , y = y - s - 2 (5) + * i+1 i i+1 i i + * + * One may easily use induction to prove (4) and (5). + * Note. Since the left hand side of (3) contain only i+2 bits, + * it does not necessary to do a full (53-bit) comparison + * in (3). + * 3. Final rounding + * After generating the 53 bits result, we compute one more bit. + * Together with the remainder, we can decide whether the + * result is exact, bigger than 1/2ulp, or less than 1/2ulp + * (it will never equal to 1/2ulp). + * The rounding mode can be detected by checking whether + * huge + tiny is equal to huge, and whether huge - tiny is + * equal to huge for some floating point number "huge" and "tiny". + * + * Special cases: + * sqrt(+-0) = +-0 ... exact + * sqrt(inf) = inf + * sqrt(-ve) = NaN ... with invalid signal + * sqrt(NaN) = NaN ... with invalid signal for signaling NaN + */ + +pub fn sqrtd(x: f64) -> f64 { + #[cfg(target_feature = "sse2")] + { + // Note: This path is unlikely since LLVM will usually have already + // optimized sqrt calls into hardware instructions if sse2 is available, + // but if someone does end up here they'll apprected the speed increase. + #[cfg(target_arch = "x86")] + use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::*; + // SAFETY: safe, since `_mm_set_sd` takes a 64-bit float, and returns + // a 128-bit type with the lowest 64-bits as `x`, `_mm_sqrt_ss` calculates + // the sqrt of this 128-bit vector, and `_mm_cvtss_f64` extracts the lower + // 64-bits as a 64-bit float. + unsafe { + let m = _mm_set_sd(x); + let m_sqrt = _mm_sqrt_pd(m); + _mm_cvtsd_f64(m_sqrt) + } + } + #[cfg(not(target_feature = "sse2"))] + { + use core::num::Wrapping; + + const TINY: f64 = 1.0e-300; + + let mut z: f64; + let sign: Wrapping<u32> = Wrapping(0x80000000); + let mut ix0: i32; + let mut s0: i32; + let mut q: i32; + let mut m: i32; + let mut t: i32; + let mut i: i32; + let mut r: Wrapping<u32>; + let mut t1: Wrapping<u32>; + let mut s1: Wrapping<u32>; + let mut ix1: Wrapping<u32>; + let mut q1: Wrapping<u32>; + + ix0 = (x.to_bits() >> 32) as i32; + ix1 = Wrapping(x.to_bits() as u32); + + /* take care of Inf and NaN */ + if (ix0 & 0x7ff00000) == 0x7ff00000 { + return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ + } + /* take care of zero */ + if ix0 <= 0 { + if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 { + return x; /* sqrt(+-0) = +-0 */ + } + if ix0 < 0 { + return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ + } + } + /* normalize x */ + m = ix0 >> 20; + if m == 0 { + /* subnormal x */ + while ix0 == 0 { + m -= 21; + ix0 |= (ix1 >> 11).0 as i32; + ix1 <<= 21; + } + i = 0; + while (ix0 & 0x00100000) == 0 { + i += 1; + ix0 <<= 1; + } + m -= i - 1; + ix0 |= (ix1 >> (32 - i) as usize).0 as i32; + ix1 = ix1 << i as usize; + } + m -= 1023; /* unbias exponent */ + ix0 = (ix0 & 0x000fffff) | 0x00100000; + if (m & 1) == 1 { + /* odd m, double x to make it even */ + ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; + ix1 += ix1; + } + m >>= 1; /* m = [m/2] */ + + /* generate sqrt(x) bit by bit */ + ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; + ix1 += ix1; + q = 0; /* [q,q1] = sqrt(x) */ + q1 = Wrapping(0); + s0 = 0; + s1 = Wrapping(0); + r = Wrapping(0x00200000); /* r = moving bit from right to left */ + + while r != Wrapping(0) { + t = s0 + r.0 as i32; + if t <= ix0 { + s0 = t + r.0 as i32; + ix0 -= t; + q += r.0 as i32; + } + ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; + ix1 += ix1; + r >>= 1; + } + + r = sign; + while r != Wrapping(0) { + t1 = s1 + r; + t = s0; + if t < ix0 || (t == ix0 && t1 <= ix1) { + s1 = t1 + r; + if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) { + s0 += 1; + } + ix0 -= t; + if ix1 < t1 { + ix0 -= 1; + } + ix1 -= t1; + q1 += r; + } + ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; + ix1 += ix1; + r >>= 1; + } + + /* use floating add to find out rounding direction */ + if (ix0 as u32 | ix1.0) != 0 { + z = 1.0 - TINY; /* raise inexact flag */ + if z >= 1.0 { + z = 1.0 + TINY; + if q1.0 == 0xffffffff { + q1 = Wrapping(0); + q += 1; + } else if z > 1.0 { + if q1.0 == 0xfffffffe { + q += 1; + } + q1 += Wrapping(2); + } else { + q1 += q1 & Wrapping(1); + } + } + } + ix0 = (q >> 1) + 0x3fe00000; + ix1 = q1 >> 1; + if (q & 1) == 1 { + ix1 |= sign; + } + ix0 += m << 20; + f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64) + } +} + +#[inline] +fn get_high_word(x: f64) -> u32 { + (x.to_bits() >> 32) as u32 +} + +#[inline] +fn with_set_high_word(f: f64, hi: u32) -> f64 { + let mut tmp = f.to_bits(); + tmp &= 0x00000000_ffffffff; + tmp |= (hi as u64) << 32; + f64::from_bits(tmp) +} + +#[inline] +fn with_set_low_word(f: f64, lo: u32) -> f64 { + let mut tmp = f.to_bits(); + tmp &= 0xffffffff_00000000; + tmp |= lo as u64; + f64::from_bits(tmp) +} |