diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-15 03:34:50 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-15 03:34:50 +0000 |
commit | def92d1b8e9d373e2f6f27c366d578d97d8960c6 (patch) | |
tree | 2ef34b9ad8bb9a9220e05d60352558b15f513894 /third_party/rust/smawk/src | |
parent | Adding debian version 125.0.3-1. (diff) | |
download | firefox-def92d1b8e9d373e2f6f27c366d578d97d8960c6.tar.xz firefox-def92d1b8e9d373e2f6f27c366d578d97d8960c6.zip |
Merging upstream version 126.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/smawk/src')
-rw-r--r-- | third_party/rust/smawk/src/brute_force.rs | 150 | ||||
-rw-r--r-- | third_party/rust/smawk/src/lib.rs | 570 | ||||
-rw-r--r-- | third_party/rust/smawk/src/monge.rs | 121 | ||||
-rw-r--r-- | third_party/rust/smawk/src/recursive.rs | 191 |
4 files changed, 1032 insertions, 0 deletions
diff --git a/third_party/rust/smawk/src/brute_force.rs b/third_party/rust/smawk/src/brute_force.rs new file mode 100644 index 0000000000..1ec0ca35a7 --- /dev/null +++ b/third_party/rust/smawk/src/brute_force.rs @@ -0,0 +1,150 @@ +//! Brute-force algorithm for finding column minima. +//! +//! The functions here are mostly meant to be used for testing +//! correctness of the SMAWK implementation. +//! +//! **Note: this module is only available if you enable the `ndarray` +//! Cargo feature.** + +use ndarray::{Array2, ArrayView1}; + +/// Compute lane minimum by brute force. +/// +/// This does a simple scan through the lane (row or column). +#[inline] +pub fn lane_minimum<T: Ord>(lane: ArrayView1<'_, T>) -> usize { + lane.iter() + .enumerate() + .min_by_key(|&(idx, elem)| (elem, idx)) + .map(|(idx, _)| idx) + .expect("empty lane in matrix") +} + +/// Compute row minima by brute force in O(*mn*) time. +/// +/// This function implements a simple brute-force approach where each +/// matrix row is scanned completely. This means that the function +/// works on all matrices, not just Monge matrices. +/// +/// # Examples +/// +/// ``` +/// let matrix = ndarray::arr2(&[[4, 2, 4, 3], +/// [5, 3, 5, 3], +/// [5, 3, 3, 1]]); +/// assert_eq!(smawk::brute_force::row_minima(&matrix), +/// vec![1, 1, 3]); +/// ``` +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero columns. +pub fn row_minima<T: Ord>(matrix: &Array2<T>) -> Vec<usize> { + matrix.rows().into_iter().map(lane_minimum).collect() +} + +/// Compute column minima by brute force in O(*mn*) time. +/// +/// This function implements a simple brute-force approach where each +/// matrix column is scanned completely. This means that the function +/// works on all matrices, not just Monge matrices. +/// +/// # Examples +/// +/// ``` +/// let matrix = ndarray::arr2(&[[4, 2, 4, 3], +/// [5, 3, 5, 3], +/// [5, 3, 3, 1]]); +/// assert_eq!(smawk::brute_force::column_minima(&matrix), +/// vec![0, 0, 2, 2]); +/// ``` +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero rows. +pub fn column_minima<T: Ord>(matrix: &Array2<T>) -> Vec<usize> { + matrix.columns().into_iter().map(lane_minimum).collect() +} + +#[cfg(test)] +mod tests { + use super::*; + use ndarray::arr2; + + #[test] + fn brute_force_1x1() { + let matrix = arr2(&[[2]]); + let minima = vec![0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_2x1() { + let matrix = arr2(&[ + [3], // + [2], + ]); + let minima = vec![0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_1x2() { + let matrix = arr2(&[[2, 1]]); + let minima = vec![1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_2x2() { + let matrix = arr2(&[ + [3, 2], // + [2, 1], + ]); + let minima = vec![1, 1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_3x3() { + let matrix = arr2(&[ + [3, 4, 4], // + [3, 4, 4], + [2, 3, 3], + ]); + let minima = vec![0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_4x4() { + let matrix = arr2(&[ + [4, 5, 5, 5], // + [2, 3, 3, 3], + [2, 3, 3, 3], + [2, 2, 2, 2], + ]); + let minima = vec![0, 0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn brute_force_5x5() { + let matrix = arr2(&[ + [3, 2, 4, 5, 6], + [2, 1, 3, 3, 4], + [2, 1, 3, 3, 4], + [3, 2, 4, 3, 4], + [4, 3, 2, 1, 1], + ]); + let minima = vec![1, 1, 1, 1, 3]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } +} diff --git a/third_party/rust/smawk/src/lib.rs b/third_party/rust/smawk/src/lib.rs new file mode 100644 index 0000000000..367d0337dc --- /dev/null +++ b/third_party/rust/smawk/src/lib.rs @@ -0,0 +1,570 @@ +//! This crate implements various functions that help speed up dynamic +//! programming, most importantly the SMAWK algorithm for finding row +//! or column minima in a totally monotone matrix with *m* rows and +//! *n* columns in time O(*m* + *n*). This is much better than the +//! brute force solution which would take O(*mn*). When *m* and *n* +//! are of the same order, this turns a quadratic function into a +//! linear function. +//! +//! # Examples +//! +//! Computing the column minima of an *m* ✕ *n* Monge matrix can be +//! done efficiently with `smawk::column_minima`: +//! +//! ``` +//! use smawk::Matrix; +//! +//! let matrix = vec![ +//! vec![3, 2, 4, 5, 6], +//! vec![2, 1, 3, 3, 4], +//! vec![2, 1, 3, 3, 4], +//! vec![3, 2, 4, 3, 4], +//! vec![4, 3, 2, 1, 1], +//! ]; +//! let minima = vec![1, 1, 4, 4, 4]; +//! assert_eq!(smawk::column_minima(&matrix), minima); +//! ``` +//! +//! The `minima` vector gives the index of the minimum value per +//! column, so `minima[0] == 1` since the minimum value in the first +//! column is 2 (row 1). Note that the smallest row index is returned. +//! +//! # Definitions +//! +//! Some of the functions in this crate only work on matrices that are +//! *totally monotone*, which we will define below. +//! +//! ## Monotone Matrices +//! +//! We start with a helper definition. Given an *m* ✕ *n* matrix `M`, +//! we say that `M` is *monotone* when the minimum value of row `i` is +//! found to the left of the minimum value in row `i'` where `i < i'`. +//! +//! More formally, if we let `rm(i)` denote the column index of the +//! left-most minimum value in row `i`, then we have +//! +//! ```text +//! rm(0) ≤ rm(1) ≤ ... ≤ rm(m - 1) +//! ``` +//! +//! This means that as you go down the rows from top to bottom, the +//! row-minima proceed from left to right. +//! +//! The algorithms in this crate deal with finding such row- and +//! column-minima. +//! +//! ## Totally Monotone Matrices +//! +//! We say that a matrix `M` is *totally monotone* when every +//! sub-matrix is monotone. A sub-matrix is formed by the intersection +//! of any two rows `i < i'` and any two columns `j < j'`. +//! +//! This is often expressed as via this equivalent condition: +//! +//! ```text +//! M[i, j] > M[i, j'] => M[i', j] > M[i', j'] +//! ``` +//! +//! for all `i < i'` and `j < j'`. +//! +//! ## Monge Property for Matrices +//! +//! A matrix `M` is said to fulfill the *Monge property* if +//! +//! ```text +//! M[i, j] + M[i', j'] ≤ M[i, j'] + M[i', j] +//! ``` +//! +//! for all `i < i'` and `j < j'`. This says that given any rectangle +//! in the matrix, the sum of the top-left and bottom-right corners is +//! less than or equal to the sum of the bottom-left and upper-right +//! corners. +//! +//! All Monge matrices are totally monotone, so it is enough to +//! establish that the Monge property holds in order to use a matrix +//! with the functions in this crate. If your program is dealing with +//! unknown inputs, it can use [`monge::is_monge`] to verify that a +//! matrix is a Monge matrix. + +#![doc(html_root_url = "https://docs.rs/smawk/0.3.2")] +// The s! macro from ndarray uses unsafe internally, so we can only +// forbid unsafe code when building with the default features. +#![cfg_attr(not(feature = "ndarray"), forbid(unsafe_code))] + +#[cfg(feature = "ndarray")] +pub mod brute_force; +pub mod monge; +#[cfg(feature = "ndarray")] +pub mod recursive; + +/// Minimal matrix trait for two-dimensional arrays. +/// +/// This provides the functionality needed to represent a read-only +/// numeric matrix. You can query the size of the matrix and access +/// elements. Modeled after [`ndarray::Array2`] from the [ndarray +/// crate](https://crates.io/crates/ndarray). +/// +/// Enable the `ndarray` Cargo feature if you want to use it with +/// `ndarray::Array2`. +pub trait Matrix<T: Copy> { + /// Return the number of rows. + fn nrows(&self) -> usize; + /// Return the number of columns. + fn ncols(&self) -> usize; + /// Return a matrix element. + fn index(&self, row: usize, column: usize) -> T; +} + +/// Simple and inefficient matrix representation used for doctest +/// examples and simple unit tests. +/// +/// You should prefer implementing it yourself, or you can enable the +/// `ndarray` Cargo feature and use the provided implementation for +/// [`ndarray::Array2`]. +impl<T: Copy> Matrix<T> for Vec<Vec<T>> { + fn nrows(&self) -> usize { + self.len() + } + fn ncols(&self) -> usize { + self[0].len() + } + fn index(&self, row: usize, column: usize) -> T { + self[row][column] + } +} + +/// Adapting [`ndarray::Array2`] to the `Matrix` trait. +/// +/// **Note: this implementation is only available if you enable the +/// `ndarray` Cargo feature.** +#[cfg(feature = "ndarray")] +impl<T: Copy> Matrix<T> for ndarray::Array2<T> { + #[inline] + fn nrows(&self) -> usize { + self.nrows() + } + #[inline] + fn ncols(&self) -> usize { + self.ncols() + } + #[inline] + fn index(&self, row: usize, column: usize) -> T { + self[[row, column]] + } +} + +/// Compute row minima in O(*m* + *n*) time. +/// +/// This implements the [SMAWK algorithm] for efficiently finding row +/// minima in a totally monotone matrix. +/// +/// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and +/// Wilbur, *Geometric applications of a matrix searching algorithm*, +/// Algorithmica 2, pp. 195-208 (1987) and the code here is a +/// translation [David Eppstein's Python code][pads]. +/// +/// Running time on an *m* ✕ *n* matrix: O(*m* + *n*). +/// +/// # Examples +/// +/// ``` +/// use smawk::Matrix; +/// let matrix = vec![vec![4, 2, 4, 3], +/// vec![5, 3, 5, 3], +/// vec![5, 3, 3, 1]]; +/// assert_eq!(smawk::row_minima(&matrix), +/// vec![1, 1, 3]); +/// ``` +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero columns. +/// +/// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py +/// [SMAWK algorithm]: https://en.wikipedia.org/wiki/SMAWK_algorithm +pub fn row_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> { + // Benchmarking shows that SMAWK performs roughly the same on row- + // and column-major matrices. + let mut minima = vec![0; matrix.nrows()]; + smawk_inner( + &|j, i| matrix.index(i, j), + &(0..matrix.ncols()).collect::<Vec<_>>(), + &(0..matrix.nrows()).collect::<Vec<_>>(), + &mut minima, + ); + minima +} + +#[deprecated(since = "0.3.2", note = "Please use `row_minima` instead.")] +pub fn smawk_row_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> { + row_minima(matrix) +} + +/// Compute column minima in O(*m* + *n*) time. +/// +/// This implements the [SMAWK algorithm] for efficiently finding +/// column minima in a totally monotone matrix. +/// +/// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and +/// Wilbur, *Geometric applications of a matrix searching algorithm*, +/// Algorithmica 2, pp. 195-208 (1987) and the code here is a +/// translation [David Eppstein's Python code][pads]. +/// +/// Running time on an *m* ✕ *n* matrix: O(*m* + *n*). +/// +/// # Examples +/// +/// ``` +/// use smawk::Matrix; +/// let matrix = vec![vec![4, 2, 4, 3], +/// vec![5, 3, 5, 3], +/// vec![5, 3, 3, 1]]; +/// assert_eq!(smawk::column_minima(&matrix), +/// vec![0, 0, 2, 2]); +/// ``` +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero rows. +/// +/// [SMAWK algorithm]: https://en.wikipedia.org/wiki/SMAWK_algorithm +/// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py +pub fn column_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> { + let mut minima = vec![0; matrix.ncols()]; + smawk_inner( + &|i, j| matrix.index(i, j), + &(0..matrix.nrows()).collect::<Vec<_>>(), + &(0..matrix.ncols()).collect::<Vec<_>>(), + &mut minima, + ); + minima +} + +#[deprecated(since = "0.3.2", note = "Please use `column_minima` instead.")] +pub fn smawk_column_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> { + column_minima(matrix) +} + +/// Compute column minima in the given area of the matrix. The +/// `minima` slice is updated inplace. +fn smawk_inner<T: PartialOrd + Copy, M: Fn(usize, usize) -> T>( + matrix: &M, + rows: &[usize], + cols: &[usize], + minima: &mut [usize], +) { + if cols.is_empty() { + return; + } + + let mut stack = Vec::with_capacity(cols.len()); + for r in rows { + // TODO: use stack.last() instead of stack.is_empty() etc + while !stack.is_empty() + && matrix(stack[stack.len() - 1], cols[stack.len() - 1]) + > matrix(*r, cols[stack.len() - 1]) + { + stack.pop(); + } + if stack.len() != cols.len() { + stack.push(*r); + } + } + let rows = &stack; + + let mut odd_cols = Vec::with_capacity(1 + cols.len() / 2); + for (idx, c) in cols.iter().enumerate() { + if idx % 2 == 1 { + odd_cols.push(*c); + } + } + + smawk_inner(matrix, rows, &odd_cols, minima); + + let mut r = 0; + for (c, &col) in cols.iter().enumerate().filter(|(c, _)| c % 2 == 0) { + let mut row = rows[r]; + let last_row = if c == cols.len() - 1 { + rows[rows.len() - 1] + } else { + minima[cols[c + 1]] + }; + let mut pair = (matrix(row, col), row); + while row != last_row { + r += 1; + row = rows[r]; + if (matrix(row, col), row) < pair { + pair = (matrix(row, col), row); + } + } + minima[col] = pair.1; + } +} + +/// Compute upper-right column minima in O(*m* + *n*) time. +/// +/// The input matrix must be totally monotone. +/// +/// The function returns a vector of `(usize, T)`. The `usize` in the +/// tuple at index `j` tells you the row of the minimum value in +/// column `j` and the `T` value is minimum value itself. +/// +/// The algorithm only considers values above the main diagonal, which +/// means that it computes values `v(j)` where: +/// +/// ```text +/// v(0) = initial +/// v(j) = min { M[i, j] | i < j } for j > 0 +/// ``` +/// +/// If we let `r(j)` denote the row index of the minimum value in +/// column `j`, the tuples in the result vector become `(r(j), M[r(j), +/// j])`. +/// +/// The algorithm is an *online* algorithm, in the sense that `matrix` +/// function can refer back to previously computed column minima when +/// determining an entry in the matrix. The guarantee is that we only +/// call `matrix(i, j)` after having computed `v(i)`. This is +/// reflected in the `&[(usize, T)]` argument to `matrix`, which grows +/// as more and more values are computed. +pub fn online_column_minima<T: Copy + PartialOrd, M: Fn(&[(usize, T)], usize, usize) -> T>( + initial: T, + size: usize, + matrix: M, +) -> Vec<(usize, T)> { + let mut result = vec![(0, initial)]; + + // State used by the algorithm. + let mut finished = 0; + let mut base = 0; + let mut tentative = 0; + + // Shorthand for evaluating the matrix. We need a macro here since + // we don't want to borrow the result vector. + macro_rules! m { + ($i:expr, $j:expr) => {{ + assert!($i < $j, "(i, j) not above diagonal: ({}, {})", $i, $j); + assert!( + $i < size && $j < size, + "(i, j) out of bounds: ({}, {}), size: {}", + $i, + $j, + size + ); + matrix(&result[..finished + 1], $i, $j) + }}; + } + + // Keep going until we have finished all size columns. Since the + // columns are zero-indexed, we're done when finished == size - 1. + while finished < size - 1 { + // First case: we have already advanced past the previous + // tentative value. We make a new tentative value by applying + // smawk_inner to the largest square submatrix that fits under + // the base. + let i = finished + 1; + if i > tentative { + let rows = (base..finished + 1).collect::<Vec<_>>(); + tentative = std::cmp::min(finished + rows.len(), size - 1); + let cols = (finished + 1..tentative + 1).collect::<Vec<_>>(); + let mut minima = vec![0; tentative + 1]; + smawk_inner(&|i, j| m![i, j], &rows, &cols, &mut minima); + for col in cols { + let row = minima[col]; + let v = m![row, col]; + if col >= result.len() { + result.push((row, v)); + } else if v < result[col].1 { + result[col] = (row, v); + } + } + finished = i; + continue; + } + + // Second case: the new column minimum is on the diagonal. All + // subsequent ones will be at least as low, so we can clear + // out all our work from higher rows. As in the fourth case, + // the loss of tentative is amortized against the increase in + // base. + let diag = m![i - 1, i]; + if diag < result[i].1 { + result[i] = (i - 1, diag); + base = i - 1; + tentative = i; + finished = i; + continue; + } + + // Third case: row i-1 does not supply a column minimum in any + // column up to tentative. We simply advance finished while + // maintaining the invariant. + if m![i - 1, tentative] >= result[tentative].1 { + finished = i; + continue; + } + + // Fourth and final case: a new column minimum at tentative. + // This allows us to make progress by incorporating rows prior + // to finished into the base. The base invariant holds because + // these rows cannot supply any later column minima. The work + // done when we last advanced tentative (and undone by this + // step) can be amortized against the increase in base. + base = i - 1; + tentative = i; + finished = i; + } + + result +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn smawk_1x1() { + let matrix = vec![vec![2]]; + assert_eq!(row_minima(&matrix), vec![0]); + assert_eq!(column_minima(&matrix), vec![0]); + } + + #[test] + fn smawk_2x1() { + let matrix = vec![ + vec![3], // + vec![2], + ]; + assert_eq!(row_minima(&matrix), vec![0, 0]); + assert_eq!(column_minima(&matrix), vec![1]); + } + + #[test] + fn smawk_1x2() { + let matrix = vec![vec![2, 1]]; + assert_eq!(row_minima(&matrix), vec![1]); + assert_eq!(column_minima(&matrix), vec![0, 0]); + } + + #[test] + fn smawk_2x2() { + let matrix = vec![ + vec![3, 2], // + vec![2, 1], + ]; + assert_eq!(row_minima(&matrix), vec![1, 1]); + assert_eq!(column_minima(&matrix), vec![1, 1]); + } + + #[test] + fn smawk_3x3() { + let matrix = vec![ + vec![3, 4, 4], // + vec![3, 4, 4], + vec![2, 3, 3], + ]; + assert_eq!(row_minima(&matrix), vec![0, 0, 0]); + assert_eq!(column_minima(&matrix), vec![2, 2, 2]); + } + + #[test] + fn smawk_4x4() { + let matrix = vec![ + vec![4, 5, 5, 5], // + vec![2, 3, 3, 3], + vec![2, 3, 3, 3], + vec![2, 2, 2, 2], + ]; + assert_eq!(row_minima(&matrix), vec![0, 0, 0, 0]); + assert_eq!(column_minima(&matrix), vec![1, 3, 3, 3]); + } + + #[test] + fn smawk_5x5() { + let matrix = vec![ + vec![3, 2, 4, 5, 6], + vec![2, 1, 3, 3, 4], + vec![2, 1, 3, 3, 4], + vec![3, 2, 4, 3, 4], + vec![4, 3, 2, 1, 1], + ]; + assert_eq!(row_minima(&matrix), vec![1, 1, 1, 1, 3]); + assert_eq!(column_minima(&matrix), vec![1, 1, 4, 4, 4]); + } + + #[test] + fn online_1x1() { + let matrix = vec![vec![0]]; + let minima = vec![(0, 0)]; + assert_eq!(online_column_minima(0, 1, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_2x2() { + let matrix = vec![ + vec![0, 2], // + vec![0, 0], + ]; + let minima = vec![(0, 0), (0, 2)]; + assert_eq!(online_column_minima(0, 2, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_3x3() { + let matrix = vec![ + vec![0, 4, 4], // + vec![0, 0, 4], + vec![0, 0, 0], + ]; + let minima = vec![(0, 0), (0, 4), (0, 4)]; + assert_eq!(online_column_minima(0, 3, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_4x4() { + let matrix = vec![ + vec![0, 5, 5, 5], // + vec![0, 0, 3, 3], + vec![0, 0, 0, 3], + vec![0, 0, 0, 0], + ]; + let minima = vec![(0, 0), (0, 5), (1, 3), (1, 3)]; + assert_eq!(online_column_minima(0, 4, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn online_5x5() { + let matrix = vec![ + vec![0, 2, 4, 6, 7], + vec![0, 0, 3, 4, 5], + vec![0, 0, 0, 3, 4], + vec![0, 0, 0, 0, 4], + vec![0, 0, 0, 0, 0], + ]; + let minima = vec![(0, 0), (0, 2), (1, 3), (2, 3), (2, 4)]; + assert_eq!(online_column_minima(0, 5, |_, i, j| matrix[i][j]), minima); + } + + #[test] + fn smawk_works_with_partial_ord() { + let matrix = vec![ + vec![3.0, 2.0], // + vec![2.0, 1.0], + ]; + assert_eq!(row_minima(&matrix), vec![1, 1]); + assert_eq!(column_minima(&matrix), vec![1, 1]); + } + + #[test] + fn online_works_with_partial_ord() { + let matrix = vec![ + vec![0.0, 2.0], // + vec![0.0, 0.0], + ]; + let minima = vec![(0, 0.0), (0, 2.0)]; + assert_eq!( + online_column_minima(0.0, 2, |_, i: usize, j: usize| matrix[i][j]), + minima + ); + } +} diff --git a/third_party/rust/smawk/src/monge.rs b/third_party/rust/smawk/src/monge.rs new file mode 100644 index 0000000000..dbc80e1517 --- /dev/null +++ b/third_party/rust/smawk/src/monge.rs @@ -0,0 +1,121 @@ +//! Functions for generating and checking Monge arrays. +//! +//! The functions here are mostly meant to be used for testing +//! correctness of the SMAWK implementation. + +use crate::Matrix; +use std::num::Wrapping; +use std::ops::Add; + +/// Verify that a matrix is a Monge matrix. +/// +/// A [Monge matrix] \(or array) is a matrix where the following +/// inequality holds: +/// +/// ```text +/// M[i, j] + M[i', j'] <= M[i, j'] + M[i', j] for all i < i', j < j' +/// ``` +/// +/// The inequality says that the sum of the main diagonal is less than +/// the sum of the antidiagonal. Checking this condition is done by +/// checking *n* ✕ *m* submatrices, so the running time is O(*mn*). +/// +/// [Monge matrix]: https://en.wikipedia.org/wiki/Monge_array +pub fn is_monge<T: Ord + Copy, M: Matrix<T>>(matrix: &M) -> bool +where + Wrapping<T>: Add<Output = Wrapping<T>>, +{ + /// Returns `Ok(a + b)` if the computation can be done without + /// overflow, otherwise `Err(a + b - T::MAX - 1)` is returned. + fn checked_add<T: Ord + Copy>(a: Wrapping<T>, b: Wrapping<T>) -> Result<T, T> + where + Wrapping<T>: Add<Output = Wrapping<T>>, + { + let sum = a + b; + if sum < a { + Err(sum.0) + } else { + Ok(sum.0) + } + } + + (0..matrix.nrows() - 1) + .flat_map(|row| (0..matrix.ncols() - 1).map(move |col| (row, col))) + .all(|(row, col)| { + let top_left = Wrapping(matrix.index(row, col)); + let top_right = Wrapping(matrix.index(row, col + 1)); + let bot_left = Wrapping(matrix.index(row + 1, col)); + let bot_right = Wrapping(matrix.index(row + 1, col + 1)); + + match ( + checked_add(top_left, bot_right), + checked_add(bot_left, top_right), + ) { + (Ok(a), Ok(b)) => a <= b, // No overflow. + (Err(a), Err(b)) => a <= b, // Double overflow. + (Ok(_), Err(_)) => true, // Anti-diagonal overflow. + (Err(_), Ok(_)) => false, // Main diagonal overflow. + } + }) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn is_monge_handles_overflow() { + // The x + y <= z + w computations will overflow for an u8 + // matrix unless is_monge is careful. + let matrix: Vec<Vec<u8>> = vec![ + vec![200, 200, 200, 200], + vec![200, 200, 200, 200], + vec![200, 200, 200, 200], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_constant_rows() { + let matrix = vec![ + vec![42, 42, 42, 42], + vec![0, 0, 0, 0], + vec![100, 100, 100, 100], + vec![1000, 1000, 1000, 1000], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_constant_cols() { + let matrix = vec![ + vec![42, 0, 100, 1000], + vec![42, 0, 100, 1000], + vec![42, 0, 100, 1000], + vec![42, 0, 100, 1000], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_upper_right() { + let matrix = vec![ + vec![10, 10, 42, 42, 42], + vec![10, 10, 42, 42, 42], + vec![10, 10, 10, 10, 10], + vec![10, 10, 10, 10, 10], + ]; + assert!(is_monge(&matrix)); + } + + #[test] + fn monge_lower_left() { + let matrix = vec![ + vec![10, 10, 10, 10, 10], + vec![10, 10, 10, 10, 10], + vec![42, 42, 42, 10, 10], + vec![42, 42, 42, 10, 10], + ]; + assert!(is_monge(&matrix)); + } +} diff --git a/third_party/rust/smawk/src/recursive.rs b/third_party/rust/smawk/src/recursive.rs new file mode 100644 index 0000000000..9df8b9c824 --- /dev/null +++ b/third_party/rust/smawk/src/recursive.rs @@ -0,0 +1,191 @@ +//! Recursive algorithm for finding column minima. +//! +//! The functions here are mostly meant to be used for testing +//! correctness of the SMAWK implementation. +//! +//! **Note: this module is only available if you enable the `ndarray` +//! Cargo feature.** + +use ndarray::{s, Array2, ArrayView2, Axis}; + +/// Compute row minima in O(*m* + *n* log *m*) time. +/// +/// This function computes row minima in a totally monotone matrix +/// using a recursive algorithm. +/// +/// Running time on an *m* ✕ *n* matrix: O(*m* + *n* log *m*). +/// +/// # Examples +/// +/// ``` +/// let matrix = ndarray::arr2(&[[4, 2, 4, 3], +/// [5, 3, 5, 3], +/// [5, 3, 3, 1]]); +/// assert_eq!(smawk::recursive::row_minima(&matrix), +/// vec![1, 1, 3]); +/// ``` +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero columns. +pub fn row_minima<T: Ord>(matrix: &Array2<T>) -> Vec<usize> { + let mut minima = vec![0; matrix.nrows()]; + recursive_inner(matrix.view(), &|| Direction::Row, 0, &mut minima); + minima +} + +/// Compute column minima in O(*n* + *m* log *n*) time. +/// +/// This function computes column minima in a totally monotone matrix +/// using a recursive algorithm. +/// +/// Running time on an *m* ✕ *n* matrix: O(*n* + *m* log *n*). +/// +/// # Examples +/// +/// ``` +/// let matrix = ndarray::arr2(&[[4, 2, 4, 3], +/// [5, 3, 5, 3], +/// [5, 3, 3, 1]]); +/// assert_eq!(smawk::recursive::column_minima(&matrix), +/// vec![0, 0, 2, 2]); +/// ``` +/// +/// # Panics +/// +/// It is an error to call this on a matrix with zero rows. +pub fn column_minima<T: Ord>(matrix: &Array2<T>) -> Vec<usize> { + let mut minima = vec![0; matrix.ncols()]; + recursive_inner(matrix.view(), &|| Direction::Column, 0, &mut minima); + minima +} + +/// The type of minima (row or column) we compute. +enum Direction { + Row, + Column, +} + +/// Compute the minima along the given direction (`Direction::Row` for +/// row minima and `Direction::Column` for column minima). +/// +/// The direction is given as a generic function argument to allow +/// monomorphization to kick in. The function calls will be inlined +/// and optimized away and the result is that the compiler generates +/// differnet code for finding row and column minima. +fn recursive_inner<T: Ord, F: Fn() -> Direction>( + matrix: ArrayView2<'_, T>, + dir: &F, + offset: usize, + minima: &mut [usize], +) { + if matrix.is_empty() { + return; + } + + let axis = match dir() { + Direction::Row => Axis(0), + Direction::Column => Axis(1), + }; + let mid = matrix.len_of(axis) / 2; + let min_idx = crate::brute_force::lane_minimum(matrix.index_axis(axis, mid)); + minima[mid] = offset + min_idx; + + if mid == 0 { + return; // Matrix has a single row or column, so we're done. + } + + let top_left = match dir() { + Direction::Row => matrix.slice(s![..mid, ..(min_idx + 1)]), + Direction::Column => matrix.slice(s![..(min_idx + 1), ..mid]), + }; + let bot_right = match dir() { + Direction::Row => matrix.slice(s![(mid + 1).., min_idx..]), + Direction::Column => matrix.slice(s![min_idx.., (mid + 1)..]), + }; + recursive_inner(top_left, dir, offset, &mut minima[..mid]); + recursive_inner(bot_right, dir, offset + min_idx, &mut minima[mid + 1..]); +} + +#[cfg(test)] +mod tests { + use super::*; + use ndarray::arr2; + + #[test] + fn recursive_1x1() { + let matrix = arr2(&[[2]]); + let minima = vec![0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_2x1() { + let matrix = arr2(&[ + [3], // + [2], + ]); + let minima = vec![0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_1x2() { + let matrix = arr2(&[[2, 1]]); + let minima = vec![1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_2x2() { + let matrix = arr2(&[ + [3, 2], // + [2, 1], + ]); + let minima = vec![1, 1]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_3x3() { + let matrix = arr2(&[ + [3, 4, 4], // + [3, 4, 4], + [2, 3, 3], + ]); + let minima = vec![0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_4x4() { + let matrix = arr2(&[ + [4, 5, 5, 5], // + [2, 3, 3, 3], + [2, 3, 3, 3], + [2, 2, 2, 2], + ]); + let minima = vec![0, 0, 0, 0]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } + + #[test] + fn recursive_5x5() { + let matrix = arr2(&[ + [3, 2, 4, 5, 6], + [2, 1, 3, 3, 4], + [2, 1, 3, 3, 4], + [3, 2, 4, 3, 4], + [4, 3, 2, 1, 1], + ]); + let minima = vec![1, 1, 1, 1, 3]; + assert_eq!(row_minima(&matrix), minima); + assert_eq!(column_minima(&matrix.reversed_axes()), minima); + } +} |